2024 Second Quarter Fertilizer Prices Across Ohio

Results from a quarterly survey of retail fertilizer prices in the state of Ohio revealed fertilizer prices were slightly lower than national averages reported by Progressive Farmer – DTN (Quinn, 2024). The survey was completed by 32 retailers, representing 19 counties, who do business in the state of Ohio. Respondents were asked to quote spot prices as of the first day of the quarter (April 1st) based on sale type indicated. This is part of a larger study conducted by OSU Extension to better understand local fertilizer prices, which began in December 2023.

In summary, survey participants reported the average price of all fertilizers was lower in Ohio compared to the national prices, except for DAP (18-46-0) at $785/ton in Ohio versus $780/ton nationally, (Quinn, 2024).

The chart below (Table 1.) is the summary of the survey responses. The responses (n) are the number of survey responses for each product. The minimum and maximum values reflect the minimum and maximum values reported in the survey. The average is the simple average of all survey responses for each product rounded to the nearest dollar. We recognize that many factors influence a company’s spot price for fertilizer including but not limited to availability, geography, volume, cost of freight, competition, regulation, etc.

When compared to results from the previous quarter’s survey, prices for fertilizers saw a modest increase, with only anhydrous ammonia, MAP and potash showing a slight decrease. DAP and urea saw the most increase in price from the previous quarter with DAP up $50/ton and urea up $59/ton. This increase equates to an increase in price of 9% for both DAP and urea. Only ammonium thio-sulfate remained unchanged.

Quarter 2 survey data included nine responses to questions about poultry litter, delivered and applied within a 25-mile radius of the facility. Prices ranged from $45-72/ton with an average of $55/ton reported.

Ohio Crop Weather – April 1, 2024

Cloudy and Cool at Season’s Start

Cloudy and cool conditions prevailed across the State as farmers began early-season field activities, according to Ben Torrance, State Statistician, USDA NASS, Ohio Field Office. Topsoil moisture conditions were rated 1 percent very short, 6 percent short, 69 percent adequate, and 24 percent surplus. Statewide, the average temperature for the week ending on March 31 was 46.6 degrees, 1.6 degrees above normal. Weather stations recorded an average of 0.81 inches of precipitation, 0.05 inches above average. There were 2.1 days suitable for fieldwork during the week ending March 31. Farmers began the season with fertilizer and manure applications and tillage. Recent precipitation left some fields saturated, with ponding reported. Oats were 1 percent planted. Winter wheat was 4 percent jointed and winter wheat condition was 67 percent good to excellent. In southern counties, stone fruit and pear trees were in bloom and fruiting plants began to emerge from dormancy. Hay fields were greening, supported by moderate temperatures and adequate precipitation. This is the first weekly crop and weather report of the 2024 season. A series of weekly crop progress and condition reports will be published each Monday at 4:00 p.m. ET throughout the crop season. The reports will cover planting and harvesting activities, crop development, weather data, and timely crop management information provided by farmers, USDA, and Ohio State University experts. For the earliest possible access, look for these reports on the internet shortly after the 4:00 PM release time.

Winter application of manure in Ohio: what’s allowed?

Last week’s snow was a reminder that we’re still in the middle of winter in Ohio, with more cold weather yet to come.  Winter weather is a challenge for those who handle manure, and it’s equally challenging to know the laws for applying manure on frozen and snow covered ground.  Those laws vary according to several important factors:  whether ground is frozen or snow covered, whether a farm is operating under a permit, and the geographical location of the land application.  Here’s a summary of the different winter application rules and standards in effect this winter.

What is frozen ground?  Ohio’s rules don’t define the term frozen ground, but generally, ground is considered frozen if you cannot inject manure into it or cannot conduct tillage within 24 hours to incorporate the manure into the soil.

Farms with Permits.  Farms with permits from the Ohio Department of Agriculture (ODA) or Ohio EPA operate under different rules than other manure applications in Ohio, and they cannot apply manure in the winter unless it is an extreme emergency.  Movement to other suitable storage is usually the selected alternative.  Several commercial manure applicators have established manure storage ponds in recent years to help address this issue. Continue reading Winter application of manure in Ohio: what’s allowed?

Fertilizer Prices Climb; and Injunction for Largest Proposed Fertilizer Mine in Brazil Overturned

Source: Farmdoc, University of Illinois

DTN Farm Business Editor Katie Micik Dehlinger reported yesterday that, “The retail prices of all eight major fertilizers climbed higher in the second week of October, with anhydrousMAP and UAN32 posting the largest gains.

“DTN polls retail  fertilizer sellers each week to compile price estimates and considers a price change of 5% or more to be significant.

Anhydrous prices climbed 16% on average to $804 per ton. MAP and UAN32 each climbed by 7% to $794/ton and $418/ton, respectively.”

Dehlinger explained that, “The prices of the remaining five fertilizers were all higher than last month, but less significantly. DAP cost an average of $711/ton; potash$506/ton; urea$57510-34-0$613/ton; and UAN28$356/ton.”

Continue reading Fertilizer Prices Climb; and Injunction for Largest Proposed Fertilizer Mine in Brazil Overturned

Wheat Planting Management Considerations for Fall 2023

This year, wheat yields were extremely high across Ohio. In the Ohio Wheat Performance Test (https://ohiocroptest.cfaes.osu.edu/wheattrials/default.asp?year=2023), grain yield averaged between 86 and 126 bu/acre across five Ohio counties. Cool temperatures and adequate subsoil moisture led to a long grain fill period. The long grain fill period coupled with low disease resulted in high-yielding conditions. Mother nature certainly helped us out in 2023; however, fall wheat management is important to set your crop up for success.

Now that we’ve entered mid-September, wheat planting is just around the corner. Here are our key management strategies for this fall:

  1. Plant within the 10-day period starting after the county fly-safe date. It can be tempting to plant wheat before your county’s Hessian fly-safe date (Figure ; however, the best time to plant wheat is the 10-day period starting the day after the fly-safe date. Planting before the fly-safe date increases the risk of insect and disease problems including Hessian fly and aphids carrying Barley Yellow Dwarf Virus. Our wheat planting date field trials have shown no yield benefit of planting prior to the county fly-safe date.
  2. Select high-yielding varieties with high test weight, good straw strength, and adequate disease resistance. Do not jeopardize your investment by planting anything but the best-yielding varieties that also have resistance to the important diseases in your area. Depending on your area of the state, you may need good resistance to powdery mildew, Stagonospora leaf blotch, and/or leaf rust. Avoid varieties with susceptibility to Fusarium head scab. Plant seed that has been properly cleaned to remove shriveled kernels and treated with a fungicide seed treatment to control seed-borne diseases.
  3. Optimum seeding rates are between 1.2 and 1.6 million seeds/acre. For drills with 7.5-inch row spacing, this is about 18 to 24 seeds per foot of row. When wheat is planted on time, the actual seeding rate has little effect on yield, but high seeding rates (above 30 seeds per foot of row) increase lodging and risk of severe powdery mildew development next spring.
  4. Planting depth is critical for tiller development and winter survival. Plant seed 1.5 inches deep and make sure planting depth is uniform across the field. No-till wheat seeded into soybean stubble is ideal, but make sure the soybean residue is uniformly spread over the surface of the ground. Shallow planting is the main cause of low tiller numbers and poor winter survival due to heaving and freezing injuries. Remember, you cannot compensate for a poor planting job by planting more seeds; it just costs more money.
  5. Follow the Tri-State Fertilizer Recommendations for Corn, Soybeans, Wheat, and Alfalfa (https://agcrops.osu.edu/FertilityResources/tri-state_info).
  6. Apply 20 to 30 lb of actual nitrogen per acre at planting to promote fall tiller development. A soil test should be completed to determine phosphorus and potassium needs. Wheat requires more phosphorus than corn or soybean, and soil test levels should be maintained between 30-50 ppm (Mehlich-3 P) for optimum production (Table 1). Do not add phosphorus if soil test levels exceed 50 ppm.

Table 1. Wheat phosphorus recommendations from the Tri-State Fertilizer Recommendations for Corn, Soybeans, Wheat, and Alfalfa.

Table 1. Wheat phosphorus recommendations from the Tri-State Fertilizer Recommendations for Corn, Soybeans, Wheat, and Alfalfa.

Soil potassium should be maintained at levels of 100-130 and 120-170 ppm (Mehlich-3 K) on sandy soils (CEC < 5 meq/100 g) and loam/clay soils (CEC > 6 meq/100 g), respectively. If potassium levels are low, apply K2O fertilizer at planting, depending on soil CEC and yield potential (Table 2).

Table 2. Wheat potassium recommendations from the Tri-State Fertilizer Recommendations for Corn, Soybeans, Wheat, and Alfalfa.

Table 2. Wheat potassium recommendations from the Tri-State Fertilizer Recommendations for Corn, Soybeans, Wheat, and Alfalfa.

Soil pH should be between 6.3 and 7.0. In Ohio, limed soils usually have adequate calcium and magnesium.

Poultry Litter Application

By: Glen Arnold, OSU Extension

Stockpiles of poultry litter can be seen in farm fields across Ohio. While common each year in wheat stubble fields, there are also stockpiles commonly found in soybean fields. Getting the poultry litter to the fields ahead of spreading makes time makes the whole process more efficient. Poultry litter is an excellent source of plant nutrients and readily available in most parts of the state. With fall harvest just around the corner these poultry litter piles will soon be spread across farm fields.

Poultry litter can be from laying hens, pullets, broilers, finished turkeys, turkey hens, or poults. Most of the poultry litter in the state comes from laying hens and turkey finishers. Typical nutrient ranges in poultry litter can be from 45 to 57 pounds of nitrogen, 45 to 70 pounds of P2O5, and 45 to 55 pounds of K2O per ton. The typical application rate is two tons per acre which fits nicely with the P2O5 needs of a two-year corn/soybean rotation.

Like all manures, the moisture content of the poultry litter greatly influences the amount of nutrients per ton. Handlers of poultry litter have manure analysis sheets indicating the nutrient content.

Poultry manure from permitted operations needs to follow the Ohio Department of Agriculture standards when being stockpiled prior to spreading.

These include:

– 500 feet from neighbors

– 100 feet from a public road

– 300 feet from streams, grassed waterways, wells, ponds, or tile inlets

– not on occasionally or frequently flooded soils

– stored for not more than six months

– not located on slopes greater than six percent

– located on soils that are deep to bedrock (greater than 40 inches to bedrock)

Farmers who want to apply the poultry litter delivered to their fields are required by Ohio law to have a fertilizer license, Certified Livestock Manager certificate, or be a Certified Crop Advisor.

Field Observations Thru July 21

Corn

Corn growth varies greatly throughout the county, but, more fields are beginning to tassel.  As corn begins to tassel, nutrient (K > N > P) and water (0.30 inch per day) demands for the crop are close to maximum. Heat and drought will affect potential number of kernels.  Scout for insects (e.g., corn leaf aphid, western bean cutworm, corn earworm, fall armyworm) and diseases (e.g., gray leaf spot, southern rust, northern leaf
blight). Total leaf defoliation severely affects final yields.

VT (Tasseling) – Stage VT occurs two to three days before silking, when the last branch of the tassel is completely visible but silks have not emerged yet from the ear shoot. The plant has reached full height and the pollen shed begins. The time between VT and R1 can vary with different hybrids and due to environmental conditions.
Pollen shed (pollen drop) normally occurs during the late morning or early evening. Hail damage is more serious at this time than for any other growth period. All leaves have emerged and the complete loss of a pollen source would result in no grain formation.

We are nearing a point in the growing season where it is time to scout your corn fields and make a decision regarding fungicide applications. Click here to view the 2023 corn fungicide ratings.

Soybeans

Postemergence herbicide applications – Don’t forget the preharvest intervals (PHI) for grazing or harvest. Read more here.

 

Soybean Postemergence Weed Control – Grasses

Soybean Postemergence Weed Control – Broadleaves

Soybean Growth & Development – R2: Full Bloom

  • Open flower at one of two uppermost main-stem nodes
  • About 50% of the total mature node number has been established.
  • Very rapid nitrogen (N), phosphorus (P), potassium (K) and dry-matter accumulation is occurring and will continue through R6.
  • Defoliation of the plant of 50% at this stage will reduce yield by 6%.
  • Approximately 60 days away from beginning of physiological maturity (R7).

County Rainfall Update

Mount Vernon, OH

Corn Water Requirements

Soybean Water Requirements