Fall fertilizer considerations in 2019

Source: Emerson Nafziger, Univ. of Illinois

While this article is written for Illinois many of the concepts apply in Ohio.

The high number of prevented-planting fields in some areas, the late start to harvest, and the inability to apply P and K fertilizer as planned last fall or this past spring combine to raise a number of questions about fall application of P, K, and lime over the next few months.

Prevented-planting fields

If P and K fertilizers were applied last fall or this past spring but no crop could be planted, there’s no reason not to count all of the applied P and K as available for the 2020 crop. The same goes for any lime applied over the past 12 months. Any nitrogen (N) that was applied with MAP or DAP is likely no longer available, and shouldn’t be counted in the 2020 supply.

If the plan was to sample soil last fall or this spring to determine how much P, K, and lime to apply but that didn’t get done, these fields can be sampled now in preparation for fall or spring application. If the plan was to sample after the 2020 crop, there’s no reason to move that up to this fall; these nutrients didn’t (and won’t) go anywhere. By the same token, there’s no reason not to apply after two years based on estimated removal using the same P and K rates set to be applied a year ago. Unless a cover crop has been or will be harvested from a prevented-planting field this fall, removal will be zero.

Our most recent numbers to use for estimating P and K removal (see my Bulletin article with details) are 0.37 (.35 in Ohio) lb P2O5 and 0.24 (.20 in Ohio) lb K2O per bushel of corn and 0.75 (.79 in Ohio) lb P2O5 and 1.17 (1.14 in Ohio) lb K2O per bushel of soybean.

 

We mentioned last spring the concern about the “fallow syndrome” that’s been associated with having no crop in a field for an entire growing season. This problem, which appears as a phosphorus deficiency, has been more commonly seen in fields or parts of fields where water has stood for much of the season; it was reported in the Mississippi River bottomlands in 1994 following the flood of 1993, when water stood on parts of fields through much of the summer. If weeds or cover crops grew on prevented-planting fields for most of this summer, especially in August and September, the crop-friendly fungi (VA mycorrhizae, or VAM) that prevent this problem likely are still present, and there’s no cause for concern.

In low-lying spots where water stood into mid-summer, and in fields kept weed-free through the summer by tillage or herbicide, we can’t rule out a possible problem due to loss of VAM. There are commercial preparations of VAM that can be applied in-furrow to inoculate corn next spring. In most cases, it will be enough to make sure there’s adequate P close the seed so the crop can take it up as growth begin, after which VAM will start to regrow in the roots of the new crop. Growing a cover crop this fall will restart VAM growth this fall, and should rule out the need for any additional steps next spring.

A year without a crop is used deliberately in some dry regions to store water for the next crop, but is a novelty for most Illinois fields. So we don’t have much research to help predict what this might mean for the next crop: is “fallow” in 2019 more like soybean or more like corn in its effect on the 2020 crop? We think the answer is “neither” – that 2019 will instead be an “amnesty” year, in which any effects of the 2018 crop got canceled or at least minimized, leaving open the choice of crop in 2020. Wheat planted this fall can be expected to do well on fields where neither corn nor soybean grew in 2019, as long as we get rid of plants that can serve as a reservoir of insect-vectored diseases (see Nathan Kleczewski’s Bulletin article on this), take care not to plant too early, and provide enough P for the crop.

The extent to which weeds or cover crops grew and matured might influence how having no crop this year might affect next year’s crop. Any addition to the weed seed supply could complicate weed control going forward. Large quantities of mature (high-carbon, low nitrogen) residue produced this year may act much like corn crop residue, increasing the N requirement for a 2020 corn crop. Because weed or cover crop growth requires soil water, there may be a little less stored soil water next spring in fields where there was a lot of growth this year. But most fields that didn’t grow a crop this year are likely to have more water stored in the soil now, and should also have more mineralized N, both because less N was taken up by a crop, and because there is less residue whose breakdown ties up N. These increases may well diminish by next spring, but they still might be helpful to next year’s crop, whether that’s corn or soybean. In using the N rate calculator to set corn N rates in fields with no crop and minimal weed or cover crop growth this year, I suggest choosing soybean as the previous crop; in fact, with no removal of mineralized N from the soil by soybean this year, it might be appropriate to also set N rates for next year’s corn crop a little lower (within the MRTN range) than usual. In fields with a lot of residue present now, it might be more appropriate to select “corn” as the previous crop when using the calculator.

Fields with a crop in 2019

If neither soil sampling nor P and K application could be done as planned for the 2019 crop, the yield-based estimate of nutrient removal by this year’s crop can be added to the estimate of removal by crops grown since the last application. The urgency of the need to apply “catch-up” P and K depends on soil test levels the last time the field was sampled: if P and K levels are already high, there’s less concern about yield loss even if 2019 ends up being a “skipped” year of replacement. Yields in some fields will also not be as high in 2019 as they were in 2018, meaning less nutrient removal. But any of the immobile nutrients like P and K that were removed with harvest of any crop will need to be replaced at some point if soil test levels are to be maintained.

Other than less nutrient uptake in fields where yields are lower than expected this season, soil sampling and nutrient management can continue as usual in fields where a crop was grown this year. In the drier parts of Illinois, late-planted crops took up water (and matured or will mature) later than normal, although the total amount of water taken up is less where yields are lower. Where it’s dry enough to make it difficult to get a soil probe to the proper depth, we can expect soil samples to show more variability than usual, especially in K test levels. This is due both to variable depth of samples and to the effect of dry soils on K extractability. Samples taken from dry soils often show lower than expect soil test K levels because K cations get trapped in clay lattices. Test levels of pH and P are less affected than the K test by soil moisture before and during sampling. Dry soils are rare in the spring, and so soil test levels, especially of K, are more consistent when measured on samples taken in the spring.

Fertilizer application

Soils are currently dry enough to allow application of dry fertilizer materials over much of Illinois; the wettest part of the state is northwestern Illinois, where the crop still has to mature. Harvest started slowly in Illinois, but with the warm weather this week, it will accelerate quickly as long as it stays dry. The development of wet conditions could slow both harvest and fertilizer application that follows harvest, but soils in the drier parts of Illinois can take in an inch or two of rainfall without turning muddy or forcing much delay. Most people are anxious to start applying fertilizer after the delays and frustration in getting this done over the past year.

There has been a considerable amount of discussion about whether or not placing P fertilizer beneath the soil surface is a sound practice. The main reason for doing this is to keep the P in MAP or DAP, which is highly soluble, from dissolving and running down slopes and into streams in the event of heavy rain. How much of this might occur is affected by slope, permeability of the surface soil, how dry the soil is, how much crop residue is present, and the intensity of rainfall. Soils following soybean harvest are generally more permeable than following corn harvest, but corn leaves more residue. Tillage increases surface permeability, but also loosens soil to make it move more readily with runoff water. Drier soils can take in more water before runoff begins than can wet soils.

October and November are drier months, on average, than spring months, crops growing into the fall extract a significant amount of water from the soil thus leaving it drier, and high-intensity rainfall events are less likely in the fall. So overall, chances of getting high-loss conditions are lower in the fall than in the spring, but they aren’t zero. Surface-applied P will move into the soil under normal weather conditions, and will end up safe from direct loss (it can still move if soil runs off the field) by December. Most research has shown no yield benefit to subsurface P and K placement in the fall, and it is not clear that the added cost of subsurface placement will provide a positive return in most years and on most fields. In strip-till systems, however, where subsurface placement doesn’t add to the amount of surface soil disturbance, applying P and K beneath the strip while strip-tilling in the fall may be a cost-effective way to apply these nutrients.

Although we’ve found that the N in DAP tends to be available to the next year’s crop if DAP is applied after soils cool down to 50 degrees, applying MAP or DAP when soils are warm will allow much of the ammonium from these materials to convert to nitrate in the fall; once it’s nitrate it can move down with water into and through the soil, including to tile lines if there’s a lot of rainfall. Even if the N doesn’t move too far down in the soil in the fall before the soil freezes, it will have a head start when water begins to move through the soil in the spring. There can also be direct movement of ammonium (along with P) in surface runoff during heavy rainfall before the MAP or DAP has had a chance to dissolve and move into the soil.

While it may not be practical to hold off on applying MAP or DAP until soil temperatures fall to below 50 degrees, we should recognize that even though the amount of N in these fertilizers is relatively small, it can add appreciably to the N that moves to surface waters through drainage tile. One solution that has been suggested is to switch from using MAP/DAP as the P source to using triple-super-phosphate (TSP, 0-46-0) which contains no N. If TSP is available at about the same cost per pound of P as MAP or DAP, it would be a good source to use, especially for applications made before mid-October. The “free” N that comes with MAP or DAP is more likely to reach tile lines than the roots of next year’s corn crop if it’s applied when soils are warm in the fall. If it’s applied after soil temperatures reach 50 degrees or if it’s applied next spring, the N in MAP or DAP does contribute to the N supply for next year’s crop.

Continue reading

Field Drying and Harvest Losses in Corn

Source: Peter Thomison, OSU (edited)

Late corn plantings and sporadic rain in some areas are not helping with field drying. Some growers are delaying harvest until grain moisture drops further. However, these delays increase the likelihood that stalk rots present in many fields will lead to stalk lodging problems (Fig. 1). Leaving corn to dry in the field exposes a crop to unfavorable weather conditions, as well as wildlife damage. A crop with weak plant integrity is more vulnerable to yield losses from stalk lodging and ear drop when weathering conditions occur. Additional losses may occur when ear rots reduce grain quality and can lead to significant dockage when the grain is marketed. Some ear rots produce mycotoxins, which may cause major health problems if fed to livestock.

Several years ago we conducted a study that evaluated effects of four plant populations (24,000, 30,000, 36,000, and 42,000 plants/A) and three harvest dates (early-mid Oct., Nov. and Dec.) on the agronomic performance of four hybrids differing in maturity and stalk quality. The study was conducted at three locations in NW, NE, and SW Ohio over a three-year period for a total of eight experiments. Results of this study provide some insight on yield losses and changes in grain moisture and stalk quality associated with delaying harvest. The following lists some of the major findings from this research.

Key Findings:

Continue reading

Tar Spot of Corn in Ohio Again this 2019

Source:  Pierce Paul, Felipe Dalla Lana da Silva, OSU Extension

Tar Spot, a new disease of corn caused by the fungus Phyllachora maydis, was reported for the first time in Ohio at the end of the 2018 growing season. At that time, it was found mostly in counties close to the Indiana border, as the disease continued to spread from the middle of country where it was first confirmed in 2015. Over the last few weeks, there have been several new, confirmed report of Tar Spot in Ohio, this time not only in the northwestern corner of the state, but also from a few fields in central and south-central Ohio. As was the case last year, disease onset was late again this year, with the first reports coming in well after R4. However, some of the regions affected last year had more fields affected this year, with much higher levels of disease severity. It could be that Tar Spot is becoming established in some areas of the state due to the fungus overwintering in crop residue from one growing season to another. This is very consistent with the pattern observed in parts of Indiana and Illinois where the disease was first reported. We will continue to keep our eyes out for Tar Spot, as we learn more about it and develop management strategies. You can help by looking for Tar Spot as you walk fields this fall, and please send us samples.

What does it look like? Even though corn is drying down, if Tar Spot is present, you can still detect it on dry, senescent leaves almost as easily as you can on healthy leaves. So, please check your fields to see if this disease is present. “Symptoms of tar spot first appear as oval to irregular bleached to brown lesions on leaves in which raised, black spore-producing structures call stroma are formed… giving the symptomatic areas of the leaf a rough or bumpy feel to the touch… resembling pustules on leaves with rust. Lesions … may coalesce to cause large areas of blighted leaf tissue. Symptoms may also be present on leaf sheaths and husks.” As the name of the disease suggests, symptoms look like the splatter of “tar” on the leaves. In some cases, each black tar-like spot may be surrounded by a necrotic halo, forming what is referred to as “fish-eye” lesions.

What causes Tar Spot and how damaging is it? In the past, the greatest impact of this disease in terms of yield loss were observed when P. maydis-infected plants were co-infected with a second fungus called Monographella maydis. In other words, the damage tended to be much more severe when the two fungi worked together to affect the plant. So far, only the first fungus, P. maydis, has been reported in the US, but based on work done in Illinois, this pathology alone is capable of causing substantial yield reduction on highly susceptible hybrids when conditions are favorable and infections occur early.  

Where did it come from and will it survive and become established? At this point it is still unclear as to how Tar Spot got to the US in the first place and how it continues to spread. The fungus is not known to be seed-borne or infect other plant species, so corn seeds and weeds are unlikely to be the sources of inoculum. However, the fungus can survive and be moved around on fresh and dry plant materials such as leaves and husks. In addition, since spores of the fungus can be carried be wind, it could be blowing in from neighboring states/counties/fields. Although not yet confirmed through survival studies, it appears that the fungus could be overwintering in infected crop stubble between growing seasons.

What should I do if I find Tar Spot? If you see anything that fits the description of, or resembles (Picture) Tar Spot, please inform your state specialist, field specialist, or county extension educator, but most importantly, please send samples to my lab (1680 Madison Ave, Wooster, OH) for confirmation. We will also be using your samples to study the fungus in order to develop effective management strategies.

Read more about Tar Spot of Corn at:

https://cropprotectionnetwork.org/resources/articles/diseases/tar-spot-of-corn

https://www.extension.purdue.edu/extmedia/BP/BP-90-W.pdf

 

Stalk Quality Concerns

Source: Peter Thomison, Pierce Paul, OSU Extension

2019 may be an especially challenging year for corn stalk quality in Ohio. Stress conditions increase the potential for stalk rot that often leads to stalk lodging (Fig. 1).  This year persistent rains through June caused unprecedented planting delays. Saturated soils resulted in shallow root systems. Corn plantings in wet soils often resulted in surface and in-furrow compaction further restricting root growth. Since July, limited rainfall in much of the state has stressed corn and marginal root systems have predisposed corn to greater water stress.

Continue reading

Managing Corn Harvest this Fall with Variable Corn Conditions

Source:  Jason Hartschuh, Elizabeth Hawkins, James Morris, Will Hamman, OSU Extension

Thanks to the weather we had this year, corn is variable across fields and in some areas we will be harvesting corn at higher moistures than normal. Stalk quality may also be variable by field and amount of stress the plant was under, see the article Stalk Quality Concerns in this weeks CORN Newsletter. This variability and high moisture may require us to look harder at combine settings to keep the valuable grain going into the bin. Each ¾ pound ear per 1/100 of an acre equals 1 bushel of loss per acre. This is one ear per 6, 30 inch rows in 29 feet of length. A pre harvest loss assessment will help with determining if your combine is set properly. Initial settings for different combines can be found in the operator’s manual but here are a few adjustments that can be used to help set all machines. Thanks to the weather we had this year, corn is variable across fields and in some areas we will be harvesting corn at higher moistures than normal. Stalk quality may also be variable by field and amount of stress the plant was under, see the article Stalk Quality Concerns in this weeks CORN Newsletter. This variability and high moisture may require us to look harder at combine settings to keep the valuable grain going into the bin. Each ¾ pound ear per 1/100 of an acre equals 1 bushel of loss per acre. This is one ear per 6, 30 inch rows in 29 feet of length. A pre harvest loss assessment will help with determining if your combine is set properly. Initial settings for different combines can be found in the operator’s manual but here are a few adjustments that can be used to help set all machines.

Corn Head

Continue reading

Corn Grain Test Weight

Source: R.L. Nielsen, Purdue Univ. (edited)

Among the top 10 most discussed (and cussed) topics at the Chat ‘n Chew Cafe during corn harvest season is the grain test weight being reported from corn fields in the neighborhood. Test weight is measured in the U.S. in terms of pounds of grain per volumetric “Winchester” bushel. In practice, test weight measurements are based on the weight of grain that fills a quart container (37.24 qts to a bushel) that meets the specifications of the USDA-FGIS (GIPSA) for official inspection (Fig. 1). Certain electronic moisture meters, like the Dickey-John GAC, estimate test weight based on a smaller-volume cup. These test weight estimates are reasonably accurate but are not accepted for official grain trading purposes.

The official minimum allowable test weight in the U.S. for No. 1 yellow corn is 56 lbs/bu and for No. 2 yellow corn is 54 lbs/bu (USDA-GIPSA, 1996). Corn grain in the U.S. is marketed on the basis of a 56-lb “bushel” regardless of test weight. Even though grain moisture is not part of the U.S. standards for corn, grain buyers pay on the basis of “dry” bushels (15 to 15.5% grain moisture content) or discount the market price to account for the drying expenses they expect to incur handling wetter corn grain.

Growers worry about low test weight because local grain buyers often discount their market bids for low test weight grain. In addition, growers are naturally disappointed when they deliver a 1000 bushel (volumetric bushels, that is) semi-load of grain that averages 52-lb test weight because they only get paid for 929 56-lb “market” bushels (52,000 lbs ÷ 56 lbs/bu) PLUS they receive a discounted price for the low test weight grain. On the other hand, high test weight grain makes growers feel good when they deliver a 1000 bushel semi-load of grain that averages 60 lb test weight because they will get paid for 1071 56-lb “market” bushels (60,000 lbs ÷ 56 lbs/bu).

These emotions encourage the belief that high test weight grain (lbs of dry matter per volumetric bushel) is associated with high grain yields (lbs. of dry matter per acre) and vice versa. However, there is little evidence in the research literature that grain test weight is strongly related to grain yield.

Hybrid variability exists for grain test weight, but does not automatically correspond to differences in genetic yield potential. Grain test weight for a given hybrid often varies from field to field or year to year, but does not automatically correspond to the overall yield level of an environment.

Similarly, grain from high yielding fields does not necessarily have higher test weight than that from lower yielding fields. In fact, test weight of grain harvested from severely stressed fields is occasionally higher than that of grain from non-stressed fields, as evidenced in Fig. 2 for 27 corn hybrids grown at 3 locations with widely varying yield levels in Kansas in 2011. Another example from Ohio with 22 hybrids grown in common in the drought year of 2012 and the much better yielding year of 2013 also indicated no relationship between yield level and grain test weight (Fig. 3).

Conventional dogma suggests that low test weight corn grain decreases the processing efficiency and quality of processed end-use products like corn starch (U.S. Grains Council, 2018), although the research literature does not consistently support this belief. Similarly, low test corn grain is often thought to be inferior for animal feed quality, although again the research literature does not support this belief (Rusche, 2012Simpson, 2000Wiechenthal Pas et al., 1998). Whether or not low test weight grain is inferior to higher test weight grain may depend on the cause of the low test weight in the first place.

Common Causes of Low Grain Test Weight

Continue reading

Converting Wet Corn Weight to Dry Corn Weight

Source: Bob Nielsen, Purdue University

Corn is often harvested at grain moisture contents higher than the 15% moisture typically desired by grain buyers. Wetter grain obviously weighs more than drier grain and so grain buyers will “shrink” the weight of “wet” grain (greater than 15% moisture) to the equivalent weight of “dry” grain (15% moisture) and then divide that weight by 56 to calculate the market bushels of grain they will purchase from the grower.

The two sources of weight loss due to mechanical drying are 1) the weight of the moisture (water) removed by the drying process and 2) the anticipated weight loss resulting from the loss of dry matter that occurs during the grain drying and handling processes (e.g., broken kernels, fines, foreign materials). An exact value for the handling loss, sometimes called “invisible shrink”, is difficult to predict and can vary significantly from one grain buyer to another. For a lengthier discussion on grain weight shrinkage due to mechanical drying, see Hicks & Cloud, 1991.

The simple weight loss due to the removal of grain moisture represents the greatest percentage of the total grain weight shrinkage due to drying and is easily calculated using a handheld calculator or a smartphone calculator app. In general terms, you first convert the “wet” weight (greater than 15% moisture) to absolute dry weight (0% moisture). Then you convert the absolute dry weight back to a market-standard “dry” weight at 15% grain moisture.

Concept:

  1. The initial percent dry matter content depends on the initial grain moisture content. For example, if the initial grain moisture content is 20%, then the initial percent dry matter content is 80% (e.g., 100% – 20%).
  2. If the desired ending grain moisture content is 15% (the typical market standard), then the desired ending percent dry matter content is 85% (100% – 15%).
  3. Multiply the weight of the “wet” grain by the initial percent dry matter content, then divide the result by the desired ending percent dry matter content.

Example:

  1. 100,000 lbs of grain at 20% moisture = 80,000 lbs of absolute dry matter (i.e., 100,000 x 0.80).
  2. 80,000 lbs of absolute dry matter = 94,118 lbs of grain at 15% moisture (i.e., 80,000 / 0.85).
  3. 94,118 lbs of grain at 15% moisture = 1681 bu of grain at 15% moisture (i.e., 94,118 / 56).

One take-home reminder from this little exercise is the fact that the grain trade allows you to sell water in the form of grain moisture… up to a maximum market-standard 15% grain moisture content (or 14% for long term storage). Take advantage of this fact and maximize your “sellable” grain weight by delivering corn grain to the elevator at moisture levels no lower than 15% moisture content. In other words, if you deliver corn to the elevator at grain moisture contents lower than 15%, you will be paid for fewer bushels than you otherwise could be paid for.

 

Will Late Planted Corn Reach Black Layer Before a Killing Frost?

Source:  Allen Geyer, Rich Minyo, Peter Thomison, OSU

Early morning frost on corn Source: Purdue Univ.

Ohio saw record late corn planting in 2019.  According to the Agricultural Statistics Service, only 33% of Ohio’s corn was planted by June 2.  The question being asked now is will the June planted corn reach physiological maturity (black layer) before a killing frost?  Corn is killed when temperatures are near 32°F for a few hours and when temperatures are near 28°F for a few minutes.

A useful tool is available from the Midwestern Regional Climate Center (the U2U tool, available at:  https://mrcc.illinois.edu/U2U/gdd/) that uses current and historical weather data to predict when corn will reach black layer.  The user selects the geographic location that they are interested in, actual planting date and the adjusted relative maturity of the planted hybrid.

Previous studies have indicated that the GDD requirement of late planted corn to reach black layer from planting is less than the requirement of corn planted on a “normal” date.  Keeping this in mind, Dr. Bob Nielsen from Purdue University has developed an adjustment to the GDD requirements for late planted corn.  This calculator can be found at:  https://www.agry.purdue.edu/ext/corn/news/timeless/hybridmaturitydelayedplant.html  Using this calculator, enter the adjusted GDD value in the U2U tool in the “Black Layer GDDs” line.

We have used the U2U tool to predict whether our corn research will accumulate enough GDDs before a killing frost.  Table 1 shows the results of using these tools for the 2019 Ohio Corn Performance Test sites (OCPT) as well as a late planted demo plot that was planted at Hoytville.  These results are based on a 109-day (2618 GDD) hybrid.  The table indicates the planting date, adjusted GDD requirement for the 109 day hybrid, whether physiological maturity (black layer) will be achieved before frost, the predicted black layer date and the average 32° and 28° frost dates.  Because of the adjusted GDD requirements with later planting dates, the predicted GDD accumulations will exceed or just meet the required GDDs before the average frost date for all 10 OCPT sites, including the 5 sites that were planted in June.  We hope that these predictions come true!  Note that the demo plots at Hoytville that were planted on June 27 will not reach black layer before a killing frost based on the U2U tool.

Table 1.  Planting date, Adjusted Hybrid GDD Requirement, Reach BL Before Frost, Predicted Black Layer (BL) Date, and Average Frost Dates for 2019 Ohio Corn Performance Test sites.