Yep … The Problem is Agriculture!!??

Source: OFBF (edited)

Yeah it’s easier, let’s just blame agriculture!

Why are they allowed to put ANY sewage in the river? 

Where have the regulators been for the last 20 years?

A fine of only $29,936.00 which equals about $.00001 per gallon

Given 30 years to fix the problem – WHAT????

Maybe now we have found the real problem! 

 

Unlike permitted livestock farms, such as CAFOs, that are not allowed to discharge an ounce of manure into Ohio’s waterways, municipalities have agreements with Ohio EPA to allow for a certain amount of sewage to be dumped directly into tributaries located in watersheds that flow into Lake Erie.

For Maumee, Ohio, that agreement is 25 million gallons per year. However, due to an outdated sewer infrastructure, the municipality has actually been adding as much as 150 million gallons of sewage into the Maumee River for each of the past 20 years.

City Law Director David Busick confirmed that Department of Public Service Sewer Division employees, who keep track of sewer discharge levels, did not comply with the law when they failed to self-report the incidences of annual sewer overflow in Maumee. The City Council has since approved an action plan that requires mandated maintenance upgrades and infrastructure replacement guidelines. The city has also been fined by Ohio EPA to the tune of $29,936. which can be applied to remediation steps.

“We have always said that water quality issues are complex, involving many sources of nutrients, changing weather patterns and lack of data,” said Adam Sharp, executive vice president of Ohio Farm Bureau. “We are certainly not absolving agriculture of its contribution to this challenge or responsibility in finding solutions, but what Maumee has been doing over the past two decades is disturbing and makes you wonder if other municipalities with equally run down sewer infrastructures are having similar issues.”

During the same period that Maumee was illegally dumping massive amounts of sewage, Ohio farmers have been using new equipment and technology to maximize the placement of nutrients used for crop production. They also are following strict state regulations and participating in voluntary water quality programs like H2Ohio find better management practices to minimize the amount of nutrient runoff from farm fields and into the watershed.

“Farmers have been heavily scrutinized for their impact on Lake Erie and have answered that criticism with unprecedented efforts to help solve the problem. It is time to hold municipal administrations and their wastewater facilities to the same standards,” Sharp said. “If a city’s wastewater infrastructure is failing, those issues should be addressed immediately with the same urgent action Ohio agriculture has taken to protect Ohio’s water quality.”

 

Nutrient Removal for Field Crops in Ohio

Source: Harold Watters, OSU Extension

An update for nutrient recommendations for Ohio’s major field crops (corn, soybean, wheat, and alfalfa) was published in 2020 as the Tri-State Fertilizer Recommendations for Corn, Soybean, Wheat, and Alfalfa. This fact sheet builds on that information, and expands it to include recommendations for other agronomic crops grown in Ohio.

*from one state value.
1 Tri-State Fertilizer Recommendations for Corn, Soybean, Wheat, and Alfalfa
2 Forages/hay is presented as 10% moisture content except where noted.

Click here to view the entire factsheet

 

Fine-tuning Fertilizer

Quantifying soil spatial variability doesn’t do a farmer any good unless they are able to respond to that variability. Dr. John Fulton, Professor in the Department of Food, Agricultural and Biological Engineering at The Ohio State University, joins the FarmBits Podcast to discuss variable rate application technology and effective input management methods for responding to spatial variability.

Is It Too Early to Apply Nitrogen to Wheat?—-Yes

Source: Laura Lindsey, Ed Lentz, OSU Extension

With melted snow and warmer weather in the forecast, is it time to apply nitrogen to wheat?

The short answer. Wait until green-up to apply N to wheat.

The long answer. Wheat does not require large amounts of N until stem elongation/jointing (Feekes Growth Stage 6), which is generally the middle or the end of April depending on the location in the state and spring temperature. Ohio research has shown no yield benefit from N applications made prior to this time. Soil organic matter and/or N applied at planting generally provide sufficient N for early growth until stem elongation.

Nitrogen applied prior to rapid uptake by the plant has the potential to be lost and unavailable for the crop. Nitrogen source will also affect the potential for loss. Urea-ammonium nitrate (28%) has the greatest potential for loss, ammonium sulfate the least, and urea would be somewhere between the two other sources.

Ohio research has shown that yield losses may occur from N applied prior to green-up regardless of the N source. The level of loss depends on the year (losses are smaller if the ground is not frozen or snow/ice covered). This same research did not observe a yield increase from applications made prior to green-up compared to green-up or Feekes Growth Stage 6 applications. Keep in mind that green-up is a descriptive, relative term and not a definable growth stage. Our definition of green-up is when the new growth of spring has covered the dead tissue from winter giving the field a solid green color- thus, growing plants.

There is a legitimate concern that wet weather may prevent application of N at early stem elongation. Ohio research has shown a yield decrease may occur when N application is delayed until Feekes Growth Stage 9 (flag leaf fully emerged). Thus, a practical comprise is to topdress N at any time fields are suitable for application after initial green-up to early stem elongation. There is still a potential for loss even at green-up applications. To lessen this risk a producer may want to use a N source that has a lower potential for loss such as urea or ammonium sulfate. ESN (polymer-coated urea) is another option but it needs to be blended with urea or ammonium sulfate to ensure enough N will be available for the crop between Feekes Growth Stage 6-9. The source of N becomes less important as the application date approaches stem elongation. The percentage of urea and/or ammonium sulfate would need to be increased with ESN for application times closer to Feekes Growth Stage 6. A producer may want to consider the use of a urease inhibitor with urea if conditions are favorable for volatilization losses: warming temperatures, drying winds and no rain in the forecast for 48 hours.

A split application of N may also be used to spread the risk of N loss and to improve N efficiency; however, Ohio State University research has not shown a yield increase from this practice compared to a single application after green-up. In a split system, the first application should be applied no sooner than green-up. A small rate should be applied with the first application since little is needed by the crop at that time and the larger rate applied closer to Feekes Growth Stage 6.

In summary, a producer may get away with applying N prior to green-up on wheat. However, university data has not shown a yield advantage for these early applications, but results have shown in certain years a major N loss and yield reduction from applications prior to green-up. Why take the risk? Just wait until green-up; the wheat does not need most of the N until April and May anyway.

 

Corn, Soybean and Wheat Enterprise Budgets – Projected Returns for 2021 Increasing Fertilizer Prices May Force Tough Decisions

Source: Barry Ward, John Barker, OSU Extension

The profit margin outlook for corn, soybeans and wheat is relatively positive as planting season approaches. Prices of all three of our main commodity crops have moved higher since last summer and forward prices for this fall are currently at levels high enough to project positive returns for 2021 crop production. Recent increases in fertilizer prices have negatively affected projected returns. Higher crop insurance costs as well as moderately higher energy costs relative to last year will also add to overall costs for 2021.

Production costs for Ohio field crops are forecast to be modestly higher compared to last year with higher fertilizer, fuel and crop insurance expenses. Variable costs for corn in Ohio for 2021 are projected to range from $386 to $470 per acre depending on land productivity. Variable costs for 2021 Ohio soybeans are projected to range from $216 to $242 per acre. Wheat variable expenses for 2021 are projected to range from $166 to $198 per acre.

Returns (excluding government payments) will likely be higher for many producers depending on price movement throughout the rest of the growing year. Grain prices currently used as assumptions in the 2021 crop enterprise budgets are $4.30/bushel for corn, $11.55/bushel for soybeans and $6.25/bushel for wheat. Projected returns above variable costs (contribution margin) range from $216 to $434 per acre for corn and $284 to $509 per acre for soybeans. Projected returns above variable costs for wheat range from $193 to $342 per acre. As a reminder, fixed costs (overhead) must be paid from these returns above variable costs. Fixed costs include machinery ownership costs, land costs including rent and payment for owner operator labor and management including other unpaid family labor.

Fertilizer prices continue to increase.  If you have not checked fertilizer prices lately, be prepared for some sticker shock. Producers with some fertilizer purchased and stored or pre-priced prior to recent price increases will likely see a healthier bottom line this upcoming crop year.

Those with little or no fertilizer pre-purchased and stored or pre-priced may want to consider using P and K buildup to furnish crop needs this year in anticipation of possibly lower prices in the future.  Now may be a good time review your fertilizer plans as you are considering how to best utilize your financial resources in 2021.

  • Use realistic yield goals.  Yield goals vary by field.  Each field has unique characteristics that can impact yield.
  • Utilize crop removal rates to determine crop nutrient needs.  Crop removal rates can be found in the new Tri-State Fertilizer Recommendations for Corn, Soybeans, Wheat, and Alfalfa (Tables 15 and 16), available at your local Extension Office.
  • Start with a recent soil test.  If your soil test levels are in the maintenance range or higher, 2021 may be a good year to “borrow” from your soil nutrient bank.

As an example, a 150-bushel corn crop will remove about 55 pounds of P2O5 per acre in the harvested grain.  This would result in a reduction in the soil test level of approximately 3 ppm.

Current budget analyses indicates favorable returns for soybeans compared to corn but crop price change and harvest yields may change this outcome. These projections are based on OSU Extension Ohio Crop Enterprise Budgets. Newly updated Enterprise Budgets for 2021 have been completed and posted to the Farm Office website: https://farmoffice.osu.edu/farm-mgt-tools/farm-budgets

 

Corn College and Soybean School

The Agronomic Crops Team will host a virtual Corn College and Soybean School on February 11, 2021. Corn College is in the morning, from 9:00 – 12:00pm, with Soybean School in the afternoon from 1:00-4:00pm. Each program will feature updates from OSU Specialists. CCA CEUs are available. The schedule for the day is as follows:

 

Corn College, 9:00am-12:00pm

  • Corn Management for 2021, Peter Thomison, 1.0 CM CCA CEUs
  • Meeting Nutrient Needs in Corn, Steve Culman, 1.0 NM CCA CEUs
  • Disease Management, Pierce Paul, 1.0 PM CCA CEUs
  • Insect Management, Andy Michel, 1.0 PM CCA CEUs

Soybean School, 1:00-4:00pm

  • Soybean Management for 2021, Laura Lindsey, 1.0 CM CCA CEUs
  • Weed Management, Mark Loux, 1.0 PM CCA CEUs
  • Disease Management, Anne Dorrance, 1.0 PM CCA CEUs
  • Insect Management, Kelley Tilmon, 1.0 PM CCA CEUs

This program is free to attend. Register at www.go.osu.edu/agronomyschools.

Ag Tech Tuesdays

The Ohio State Digital Ag Team’s Ag Tech Tuesday webinars are continuing this month! The online February series will cover results from several 2020 eFields trials and be held each Tuesday starting at 10:00 EST for 1 hour. There will be plenty of time for participants to ask questions.  The following provides details for the 2021 Ag Tech Tuesday sessions.

 

2021 AG TECH TUESDAY: EFIELDS RESULTS

  • February 2 – Improving Profitability in Corn Production

Weather and Climate Trends, Aaron Wilson

Irrigation, Amanda Douridas and Will Hamman

Corn Seeding Rates, Chris Zoller

SmartFirmer Seeding Rate, Elizabeth Hawkins

  • February 9 – Pushing Soybean Productivity in Ohio

Boots on the Ground, Laura Lindsey

Local Boots on the Ground Results, Mary Griffith

Foliar Fertilizer, James Morris

Soybean Seeding Rates, Ken Ford

Sulfur on Soybeans, John Barker

  • February 16 – Tech to Improve On-Farm Efficiency

Manure On-the-Go Sensing, Chris Shoup

Yield Monitor Data, Alysa Gauci

Virtual Reality and Field Demonstrations, Brooke Beam

Equipment Technology, Andrew Klopfenstein

  • February 23 – eFields Small Grains, Forages, Soil Health, and Water Quality Results

Production Budgets and Custom Rates, Barry Ward

Winter Annual Forages, Jason Hartschuh

Barley Cohort, Eric Richer

Hemp, Lee Beers

Soil Health Testing, Boden Fisher

Registration for Ag Tech Tuesdays is free but required.  Just visit go.osu.edu/AgTechTues to register.  If you have any questions, please contact Elizabeth Hawkins (hawkins.301@osu.edu