When to Start Grazing: Don’t Rush It!

– Chris Penrose, Extension Educator, Ag and Natural Resources, Morgan County

Originally posted on the BEEF Newsletter

 

One goal I have had with livestock grazing over the years is to start as soon as I can. I put spring calving cows on stockpiled grass in early March to calve with the hope of not having to feed any more hay. Many years this works but not this year, grass is just starting to grow. The stockpile is about gone and I have started feeding them some more hay but hope to move the group with the fall calving cows this weekend. I then plan on starting a fast rotation around many of the paddocks and hay fields which is actually later than many years.

Continue reading

5 Reasons Why Soil Biology Matters on the Farm

Jeff Goodwin, Conservation Stewardship Leader and Pasture and Range Consultant
(Previously published with Noble Research Institute; March 13, 2019)

Success and long-term viability for most agricultural enterprises ultimately hinges on the health of their soil. This is true for beef operations in the Southern Great Plains to row crop farms in the Midwest.

For decades, the agriculture industry has focused, studied, and ultimately understood the physical and chemical characteristics of our soil resource (e.g., soil texture, soil pH, etc.). However, until the past few years, little emphasis has been placed on the biological constituents and their importance in a healthy, functional soil.

 

 

 

Continue reading

Understanding Parasites on Pasture

Brady Campbell, Program Coordinator, OSU Sheep Team

Originally posted on the SHEEP Newsletter

 

Recently, I had a sheep producer ask me, “when do I need to start thinking about parasites on my pastures?” This is a great question and certainly a valid concern as livestock are making their way to pastures this spring.

Now I know what some of you are thinking, “I don’t have issues with parasites. If I did, my sheep would be showing clinical signs of disease such as decreased appetite, decreased  activity, or even death.” However, this is a common mistake that we as producers make too often. Typically, clinical signs of parasitic infection are only noticed when the cases become severe. According to Dr. Thomas Craig, DVM, PhD, DACVM, most losses associated with parasitic infection are economic rather than clinical. Parasitized livestock are extremely inefficient as demonstrated by a decrease in overall animal performance, such as decreases in average daily gain and reproductive performance. In order to understand the effects of parasitism, we must first be familiar with how and why our livestock become infected.

Continue reading

Soybean Planting – Does maturity group affect planting date?

Source: University of Illinois

Should later-maturing varieties be planted first in order to take maximum advantage of the longer time in the field? There’s no problem with doing that, although early planting moves up harvest date some, so works counter to the goal of spreading harvest time by using different maturities. In 2018 we ran a trial at Urbana, supported by a seed company, to see how varietal maturity affected response to planting date. The first planting date was April 26, the last was June 6, and varieties ranged in maturity from MG 2.3 (very early for this location) to MG 3.6, which is a little later than average for this location.

 

For all but the earliest-maturing variety in this trial, the planting date response was almost perfectly linear, with the loss of nearly 7/10ths of a bushel per day of planting delay—a total of more than 27 bushels—over the 41 days from the first to the last date (Figure 2). This loss rate accelerated a little for the latest-maturing variety between May 24 and June 6. The earliest-maturing variety lost only 17 bushels from first to last planting, but only because its yield at the earliest date was so much lower than yields of the later-maturing varieties.

The month of May 2018 was much warmer than normal, and this got the soybean plants off to a very fast start. Warm nights are conducive to early flowering, and this was especially notable in 2018. In the early-planted crop, first flowers appeared in early June, well before the longest day of the year, and unlike the interruption of flowering that often takes place under normal night temperatures for about a week before and after the longest day, flowering was early and continuous in 2018. As a result, nearly half of the Illinois soybean crop was flowering by July 1. The warm May probably affected the yield response to planting date as well; with warm temperatures, early-planted soybeans as fast as late-planted ones, and this widened the developmental gap between the different plantings.

Planted on April 26, the earliest variety reached first flower on June 9 and matured on August 28, compared to June 15 and September 17 for the latest-maturing variety. When planted on May 24, the earlier and later varieties flowered on June 15 and July 2, and matured on September 12 and September 25, respectively. So when planted late, both varieties flowered very early in their life cycles, both spent less time in reproductive stages than when they were planted early, and they ended up yielding about the same. While in this case it’s accurate to say that the later-maturing variety benefitted more from early planting, that’s only because the early-maturing one was physiologically less able to use the longer growing period allowed by early planting to produce high yield.

Spring Herbicide Applications on Winter Wheat – Part 2 Labeled Herbicides

Source: Purdue University (Edited)

If weed infestations are severe enough to require a herbicide application, the use of liquid nitrogen fertilizer solution as a carrier is a popular option for applying herbicides and topdressing the wheat crop in a single pass over the field.  Caution should be taken when using a liquid fertilizer as a herbicide carrier as moderate to severe crop injury can result, especially in saturated conditions.  Many post applied wheat herbicide labels allow for liquid nitrogen carriers, but require different rates and types of surfactants than if the herbicide was applied with water as the carrier.  Table 1 includes precautions to be taken when applying wheat herbicides using liquid fertilizer as a carrier; further details and directions can be acquired from the herbicide label.

Another consideration growers should take into account when planning early spring herbicide applications is the plant back restrictions to double crop soybeans.  A large percentage of the herbicides listed in Table 1, especially those with activity on Ryegrass and Brome, have soybean plant back restrictions greater than the typical three month time period between spring applications and double crop soybean planting.  The soybean plant back restrictions greatly reduce the number of options available to wheat producers who double crop soybeans after wheat.  Refer to Table 1 for more specific plant back timing restrictions.Click Here For Complete Table

Spring Herbicide Applications on Winter Wheat – Part 1 Growth Stages

Source: Purdue University (Edited)

The winter is finally winding down and we are bound to have warmer days and spring in the near future. As we look towards the warmer weather there a few field activities that are going to start quickly, including winter wheat greenup herbicide applications and winter annual weed burndown applications in no-till fields. There are few things to keep in mind as these activities are added to the calendar. Many wheat producers, especially in the southern regions of Indiana will soon be or already are topdressing their wheat.  Those looking into topdressing need to also be scouting for weeds and determining if a herbicide application is necessary on any existing winter annual weeds.  The following information will outline winter annual weeds to look out for, weed scouting tips, crop stage restrictions, and herbicide recommendations.

Some common broadleaf weeds to scout for in your winter wheat are dandelion, purple deadnettle, henbit, chickweed, Canada thistle, and wild garlic.  These winter annual species that emerge in the fall can remain relatively inconspicuous through the winter and become competitive and troublesome during the spring if not controlled early in the spring.  Summer annual weeds such as ragweed will be of less concern in the early spring and will be outcompeted by the wheat crop if managed properly.  Grass weeds to be aware of and scouting for are: annual bluegrass, annual ryegrass, cheat, and downy brome.

Determining the severity of weed infestations in your wheat fields is key in determining the necessity of a herbicide application.  As with all agronomic crops, you should scout your entire field to determine what weed management practices need to be implemented and determine any areas of severe weed infestations.  Wheat fields that contain uniform infestations of at least one broadleaf weed and/or three grass weeds per square foot should be taken into consideration for a herbicide application to avoid yield loss and harvest interference problems.  Some fields that have less uniform infestations, but rather pockets of severe infestation should be managed to reduce weed seed production and future infestations.

When determining your herbicide program for spring applications, the stage of the wheat crop should be considered.  The majority of wheat herbicides are labeled for application at certain wheat growth stages and some commonly used herbicides have very short windows in which they can be applied.  The popular broadleaf weed herbicides 2,4-D and MCPA are efficient and economical, but can only be applied for a short period of time between tillering and prior to jointing in the early spring.  Wheat growth stages and herbicide timing restriction are outlined in Figure 1 above.

Pesticide & Fertilizer Re-certification

Time is running out – Check the Expiration date on your pesticide and fertilizer license!

If you need your Pesticide and Fertilizer License Re-certification this year, our final re-certification class in Knox County will be held on March 27, 9 a.m. in the conference room of Advantage Ag and Equipment, 1025 Harcourt Road, Mount Vernon. All categories will be offered. There is a $35 class fee.

Fertilizer License and Poultry Litter

Source: Glen Arnold, Field Specialist, OSU Extension (edited)

 

This winter there have been a few questions  about fertilizer license and spreading poultry manure.  According to Senate Bill 1 (SB 1), passed a few years ago, any farmer handling, receiving, or applying poultry litter (or any other manure) from a PERMITTED farm in Ohio must have either a fertilizer license or a Certified Livestock Manager certificate or be a Certified Crop Advisor.  If you have nay questions, call the Knox County Extension Office at 740-397-0401.