Proteomic models

Return to Preclinical Screening of Novel Food Products and Ingredients

Abstract Examples

Nicholas C, Batra S, Vargo MA, Voss OH, Gavrilin MA, Wewers MD, Guttridge DC, Grotewold E, Doseff AI. Apigenin blocks lipopolysaccharide-induced lethality in vivo and proinflammatory cytokines expression by inactivating NF-kappaB through the suppression of p65 phosphorylation. J Immunol 2007 Nov;179(10):7121-7.

LPS stimulates monocytes/macrophages through the activation of signaling events that modulate the production of inflammatory cytokines. Apigenin, a flavonoid abundantly found in fruits and vegetables, exhibits anti-proliferative and anti-inflammatory activities through poorly defined mechanisms. In this study, we demonstrate that apigenin inhibits the production of proinflammatory cytokines IL-1beta, IL-8, and TNF in LPS-stimulated human monocytes and mouse macrophages. The inhibitory effect on proinflammatory cytokine production persists even when apigenin is administered after LPS stimulation. Transient transfection experiments using NF-kappaB reporter constructs indicated that apigenin inhibits the transcriptional activity of NF-kappaB in LPS-stimulated mouse macrophages. The classical proteasome-dependent degradation of the NF-kappaB inhibitor IkappaBalpha was observed in apigenin LPS-stimulated human monocytes. Using EMSA, we found that apigenin does not alter NF-kappaB-DNA binding activity in human monocytes. Instead we show that apigenin, as part of a non-canonical pathway, regulates NF-kappaB activity through hypophosphorylation of Ser536 in the p65 subunit and the inactivation of the IKK complex stimulated by LPS. The decreased phosphorylation on Ser536 observed in LPS-stimulated mouse macrophages treated with apigenin was overcome by the over-expression of IKKbeta. In addition, our studies indicate that apigenin inhibits in vivo LPS-induced TNF and the mortality induced by lethal doses of LPS. Collectively, these findings suggest a molecular mechanism by which apigenin suppresses inflammation and modulates the immune response in vivo.

 

Clubbs EA, Bomser JA. Glycitein activates extracellular signal-regulated kinase via vascular endothelial growth factor receptor signaling in nontumorigenic (RWPE-1) prostate epithelial cells. J Nutr Biochem 2007.

Increased consumption of soy is associated with a decreased risk for prostate cancer; however, the specific cellular mechanisms responsible for this anticancer activity are unknown. Dietary modulation of signaling cascades controlling cellular growth, proliferation and differentiation has emerged as a potential chemopreventive mechanism. The present study examined the effects of four soy isoflavones (genistein, daidzein, glycitein and equol) on extracellular signal-regulated kinase (ERK1/2) activity in a nontumorigenic prostate epithelial cell line (RWPE-1). All four isoflavones (10 mumol/L) significantly increased ERK1/2 activity in RWPE-1 cells, as determined by immunoblotting. Isoflavone-induced ERK1/2 activation was rapid and sustained for approximately 2 h posttreatment. Glycitein, the most potent activator of ERK1/2, decreased RWPE-1 cell proliferation by 40% (P<.01). Glycitein-induced ERK1/2 activation was dependent, in part, on tyrosine kinase activity associated with vascular endothelial growth factor receptor (VEGFR). The presence of both VEGFR1 and VEGFR2 in the RWPE-1 cell line was confirmed by immunocytochemistry. Treatment of RWPE-1 cells with VEGF(165) resulted in transient ERK1/2 activation and increased cellular proliferation. The ability of isoflavones to modulate ERK1/2 signaling cascade via VEGFR signaling in the prostate may be responsible, in part, for the anticancer activity of soy.

 

Clubbs EA, Bomser JA. Glycitein activates extracellular signal-regulated kinase via vascular endothelial growth factor receptor signaling in nontumorigenic (RWPE-1) prostate epithelial cells. J Nutr Biochem 2007.

Increased consumption of soy is associated with a decreased risk for prostate cancer; however, the specific cellular mechanisms responsible for this anticancer activity are unknown. Dietary modulation of signaling cascades controlling cellular growth, proliferation and differentiation has emerged as a potential chemopreventive mechanism. The present study examined the effects of four soy isoflavones (genistein, daidzein, glycitein and equol) on extracellular signal-regulated kinase (ERK1/2) activity in a nontumorigenic prostate epithelial cell line (RWPE-1). All four isoflavones (10 mumol/L) significantly increased ERK1/2 activity in RWPE-1 cells, as determined by immunoblotting. Isoflavone-induced ERK1/2 activation was rapid and sustained for approximately 2 h posttreatment. Glycitein, the most potent activator of ERK1/2, decreased RWPE-1 cell proliferation by 40% (P<.01). Glycitein-induced ERK1/2 activation was dependent, in part, on tyrosine kinase activity associated with vascular endothelial growth factor receptor (VEGFR). The presence of both VEGFR1 and VEGFR2 in the RWPE-1 cell line was confirmed by immunocytochemistry. Treatment of RWPE-1 cells with VEGF(165) resulted in transient ERK1/2 activation and increased cellular proliferation. The ability of isoflavones to modulate ERK1/2 signaling cascade via VEGFR signaling in the prostate may be responsible, in part, for the anticancer activity of soy.

 

Guo Y, Wang S, Hoot DR, Clinton SK. Suppression of VEGF-mediated autocrine and paracrine interactions between prostate cancer cells and vascular endothelial cells by soy isoflavones. J Nutr Biochem 2006.

Angiogenesis is an essential process involved in the development and progression of prostate cancer. Vascular endothelial growth factor (VEGF) is hypothesized to be a critical regulator of angiogenesis during prostate carcinogenesis. We have reported that dietary soy products inhibit prostate tumor progression in animal models, in association with a reduction in tumor microvessel density. The goal of the present study is to investigate potential antiangiogenic mechanisms of genistein, the major soy isoflavone, using in vitro systems. Genistein (5-50 muM) significantly inhibited the growth of human umbilical vein endothelial cells (HUVECs) in control media when stimulated by supplemental VEGF or when cultured in hypoxia-exposed PC-3 prostate adenocarcinoma cell conditioned media. These in vitro studies suggest detectable inhibitory effects by 5-10 muM genistein (P<.05) with an IC(50) of approximately 20 muM or less. Genistein (10-50 muM) caused significant inhibition of basal VEGF expression and hypoxia-stimulated VEGF expression in both human prostate cancer PC-3 cells and HUVECs based on semiquantitative reverse transcription-polymerase chain reaction (P<.05). In parallel, VEGF secretion by PC-3 cells quantitated by enzyme-linked immunosorbent assay was significantly (P<.05) reduced by genistein (10-50 muM). Furthermore, genistein (10-50 muM) significantly (P<.05) reduced PC-3 nuclear accumulation of hypoxia-inducible factor-1alpha, the principle transcription factor that regulates VEGF expression in response to hypoxia. Expression of the VEGF receptor fms-like tyrosine kinase-1, but not kinase insert domain-containing kinase, in HUVECs was also reduced (P<.05) by genistein (10-50 muM). These observations support the hypothesis that genistein may inhibit prostate tumor angiogenesis through the suppression of VEGF-mediated autocrine and paracrine signaling pathways between tumor cells and vascular endothelial cells.

 

Rodrigo KA, Rawal Y, Renner RJ, Schwartz SJ, Tian Q, Larsen PE, Mallery SR. Suppression of the tumorigenic phenotype in human oral squamous cell carcinoma cells by an ethanol extract derived from freeze-dried black raspberries. Nutr Cancer 2006.

Despite focused efforts to improve therapy, 5-yr survival rates for persons with advanced-stage oral squamous cell carcinoma (SCC) remain discouragingly low. Clearly, early detection combined with strategies for local intervention, such as chemoprevention prior to SCC development, could dramatically improve clinical outcomes. Previously conducted oral cavity human chemoprevention trials, however, have provided mixed results. Although some therapies showed efficacy, they were often accompanied by either significant toxicities or circulating antiadenoviral antibodies. It is clearly apparent that identification of nontoxic, effective treatments is essential to prevent malignant transformation of oral epithelial dysplasias. This study employed cell lines isolated from human oral SCC tumors to investigate the effects of a freeze-dried black raspberry ethanol extract (RO-ET) on cellular growth characteristics often associated with a transformed phenotype such as sustained proliferation, induction of angiogenesis, and production of high levels of reactive species. Our results demonstrate that RO-ET suppresses cell proliferation without perturbing viability, inhibits translation of the complete angiogenic cytokine vascular endothelial growth factor, suppresses nitric oxide synthase activity, and induces both apoptosis and terminal differentiation. These data imply that RO-ET is a promising candidate for use as a chemopreventive agent in persons with oral epithelial dysplasia.

 

Vargo MA, Voss OH, Poustka F, Cardounel AJ, Grotewold E, Doseff AI. Apigenin-induced-apoptosis is mediated by the activation of PKCdelta and caspases in leukemia cells. Biochem Pharmacol 2006.

Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. In the present study, the treatment of different cell lines with apigenin resulted in selective antiproliferative and apoptotic effect in monocytic and lymphocytic leukemias. Apigenin-induced-apoptosis was mediated by the activation of caspase-9 and caspase-3. Apigenin was found intracellularly and localized to the mitochondria. Treatment of monocytic cells with apigenin was accompanied by an increase in reactive oxygen species (ROS) and phosphorylation of the MAPKs, p38 and ERK. However, the inhibition of ROS, p38 or ERK failed to block apoptosis, suggesting that these cellular responses induced by apigenin are not essential for the induction of apoptosis. In addition, apigenin induced the activation of PKCdelta. Pharmacological inhibition of PKCdelta, the expression of dominant-negative PKCdelta and silencing of PKCdelta in leukemia cells showed that apigenin-induced-apoptosis requires PKCdelta activity. Together, these results indicate that this flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin.

parker-pilot-plant