Where’s the driver?

 

See the latest technology at this year’s Farm Science Review.  Demonstrations, beginning at 12:30 daily, will showcase ag technology innovations including an autonomous tractor, drone spraying, high-clearance robotic irrigation system capable of applying animal nutrient sources to row crops, and wireless communications options for connecting these devices.

“We are beginning to see autonomy product offerings that solve challenging problems for farmers who want to stay ahead of the competition by increasing yields, better utilizing production inputs, and resolving skilled labor shortages during peak times for field operations which ultimately leads to increased profits,” said Scott Shearer, professor and chair of the CFAES Department of Food, Agricultural and Biological Engineering (FABE).

The self-driving autonomous farm tractor is one example and performs its duties without an operator in the cab. “They are internet connected to share computational loads with a web-based interface for mission planning, provide in-field high accuracy position information, track progress, and enable remote monitoring of machine performance. Increasingly, artificial intelligence is being utilized to avoid collisions by detecting obstacles including humans, animals, other vehicles, and other obstacles, said John Fulton, professor and Extension specialist in FABE. “Tractors without drivers are being deployed with varying levels of autonomy ranging from remote monitoring via tractor-mounted cameras to on-board artificial intelligence to carry out routine, repetitive, and labor-intensive procedures.”

Because they can record information automatically and store it in the cloud for easy access, automated tractors can also make it easier to create, keep, and transfer records of agricultural procedures. Self-driving and self-steering tractors can also significantly improve the accuracy of seeding, weeding, harvesting, and other procedures which can mean reduced use of seeds, pesticides, and other chemicals.

“There is no doubt that automation has already provided benefits to agriculture,” said Fulton, who specializes in developing technology and automated components related to application equipment to more accurately place and meet site-specific crop and soil needs. His research program also focuses on translational data analytics, developing telemetry solutions, and digital tools to improve the farm business and in-season decisions.

Shearer and Fulton have also conducted research on using drones in agriculture. The machines were initially used for non-spraying applications, such as scouting fields and collecting data on crop and field conditions. When humans scout a field, the professors explained, they typically only go to four or five locations within a field, but a drone can visit as many as 30 locations that are uniformly distributed over a field in less time.

Drones can capture important data such as soil characteristics, location of drainage tiles, crop nutrient stress level, crop emergence or stand counts, weed species and distribution levels across fields, and detection of insects and diseases.

But the most recent advancement related to drones and farming is using drones for spraying and applying to cover crops. Although spraying with a drone is still in its infancy in the United States, interest in the technology is high. “A rapid increase of easy-to-operate drones for spraying pesticides is underway. They are lightweight, but powerful enough to lift a 8–18-gallon tank,” said Fulton. A variety of drones will be on-site at FSR to illustrate how the technology works. Regulatory requirements of drone application in agriculture, as well as current challenges of the technology will also be discussed.

With drones becoming increasingly available to farmers and with the advances in analytical tools, weed detection and eradication can be accomplished with greater speed and accuracy. Research at Ohio State is being conducted to determine spray deposition, swath control, and coverage and drift from drone sprayers in comparison to other methods used for pesticide application.

Participants at FSR will also be able to see a robotic high-clearance irrigation system that can apply liquid animal nutrient sources at the base of actively growing corn plants. The uniqueness of this system is its ability to follow planter passes regardless of the shape and size of the field. The irrigator follows and applies whatever the crop needs right at the base of the plant throughout the growing season.

“A major benefit of robotic irrigation is the ability to apply both water and nutrients when the crop is most in need of these inputs,” said Andrew Klopfenstein, a senior research engineer in FABE. “Rather than overapplying at less optimal times, nutrients can be applied more frequently in smaller amounts and when crops can readily utilize nutrients, thus reducing nutrient loss and improving nutrient use efficiency.”

Manure application through robotic irrigation systems presents several advantages over traditional land application methods—namely reduced compaction, the ability to apply to growing crops, better application control, and lower costs. Additional advantages may include increased asset utilization through extended application periods, elimination of plugging concerns, reduced odor levels, and reduced surface water contamination.

Automating routine field activities in agriculture results in better input utilization, higher yields, and farming precision, which leads to greater yields and financial returns. One of the most significant impacts seen is gains in efficiency and accuracy. Additional benefits include more timely nutrient application and better distribution, decreased fuel use, and lower labor and production costs. Visit FSR where you can see the machines in action and talk with the Ohio State specialists who are researching the best ways to use them.

Soybean Planter Considerations

Click on the video below to watch Dr. John Fulton discuss soybean planter considerations and recommendations to meet a variety of field conditions we may face this spring.  Dr. Fulton specifically talks about:

  1. Downforce pressure for consistent seed depth
  2. Adjustments due to soil variability
  3. Row-unit settings
  4. Comments on speed tubes

Participate in a Study to Identify Major Barriers to Precision Agriculture Technology Adoption

The Ohio State University Department of Food, Agricultural, and Biological Engineering (FABE) is looking for farmers, consultants, and other individuals who work alongside farmers to participate in a survey aimed at identifying major barriers that row crop farmers, consultants, and other personnel involved in crop production face when adopting precision agriculture technologies. Eligible participants must have row cropping operations in Arkansas, Florida, Georgia, Illinois, Indiana, Iowa, Kansas, Kentucky, Louisiana, Michigan, Minnesota, Mississippi, Nebraska, North Dakota, Ohio, South Dakota, and Texas or preform consulting tasks or other tasks for famers who have row crop operations within the states stated above.

Participants who are interested in participating are required to take the survey found with the link here: https://osu.az1.qualtrics.com/jfe/form/SV_201lPMuZxRSESge. You will have six weeks from April 25, 2022 to June 15, 2022 to respond to the survey. Completing the survey will constitute your consent to participate in the study.

Inquires with questions about the survey or its use should be directed to John Fulton; fulton.20@osu.edu.

 

Fine-tuning Fertilizer

Quantifying soil spatial variability doesn’t do a farmer any good unless they are able to respond to that variability. Dr. John Fulton, Professor in the Department of Food, Agricultural and Biological Engineering at The Ohio State University, joins the FarmBits Podcast to discuss variable rate application technology and effective input management methods for responding to spatial variability.

Calibration for Rate Controlled Sprayers

Source: Erdal Ozkan, OSU Extension

I had an article in last week’s CORN newsletter encouraging growers to fine tune and calibrate their sprayers. I had mentioned that the next couple of weeks may be the last best time period to do this since planting season is just about to start. There would not be any better time to do this than now. The next day I got an email from a grower asking me this question that I get often: “I have a rate controller in the cab that regulates the flow rate of the sprayer regardless of the changes in sprayer ground speed. So, should I still calibrate the sprayer to find out the application rate?”. The answer is, Yes, you should. Although the rate controllers do an excellent job with regulating the flow rate of nozzles to keep the application rate constant, a manual calibration at least once a year is needed to ensure the rate controller is functioning properly.

Here is why we should confirm the accuracy of rate controllers: Unfortunately, electronic controllers usually cannot detect flow rate changes on each nozzle on the boom, and none can detect changes in spray pattern. If a nozzle is plugged, or extremely worn out, the rate controller cannot tell us this is happening. It will still try to maintain the constant application rate by changing the system pressure and force other nozzles to spray less or more to overcome the problem in one or several nozzles. If the ground speed sensor works based on revolutions of the tractor wheels, the ground speed determined may not be accurate, because of the slippage that may occur under some ground conditions. Even the tire pressure being off just a few psi may change the tire revolutions per minute leading to erroneous travel speed readings. Finally, Controllers don’t show changes in spray patterns that may happen when a nozzle is defective, plugged, or worn-out. So, we will have to continue manually checking the flow rate of the nozzles, and visually observing the changes in spray patterns until the technology is developed to do these observations remotely, and on-the-go.

As I mentioned in the article in last week’s CORN newsletter, it usually doesn’t take more than 30 minutes to calibrate a sprayer, and only three things are needed: a watch or smart phone to record the time when measuring the nozzle flow rate or the travel speed, a measuring tape, and a jar graduated in ounces. Please take a look at the Ohio State University Extension publication FABE-520 for an easy method to calibrate a boom-type sprayer.  Here is the URL for this publication: http:// ohioline.osu.edu/factsheet/fabe-520  

Not knowing limitations of rate controllers may create serious problems. I already mentioned how smoothly the rate controllers keep the application rate the same regardless of changes in travel speed. However, this convenience comes at a cost if the controller is forced to make drastic changes in the application rate as a result of too high or too low of a travel speed. As you know, to achieve best results from pesticides, the application rate, as well as the droplet size must remain relatively unchanged during the entire spraying. When sprayer speed goes up, to maintain the pre-set application rate, the controller requires the system pressure to go up to increase the nozzle flow rate. This, unfortunately results in more drift-prone droplets coming out of the nozzle, especially if the nozzle used is designed for low application rates within the recommended pressure ranges. Conversely, when the sprayer slows down, the opposite happens: the controller forces the system to lower the pressure, in order to reduce flow rate of nozzles. This will result in production of larger than the desired size of droplets, leading to inadequate coverage. If you are spraying Dicamba or 2,4-D herbicides, you need to pay even more attention to operation of rate controllers. As you know, only a small number of nozzles at specific ranges of pressure can be used to spray these products. Significant changes in ground speed may force the rate controller to make significant changes in spray pressure that may be outside the allowable legal pressure range required to spray these herbicides. Without you realizing it, you may find yourself in violation of the label. Make sure the nozzle size selected will allow the controllers to make necessary changes in the flow rates while still staying within a safe, applicable and allowable pressure range.

OSU Extension Virtual Programming: Week of March 8

The following virtual programs are available next week.

 

MONDAY, MARCH 8

Farm Bill Webinar: 2021 Corn and Soybean Crop Insurance Considerations

10:00 am to 12:00 pm

2021 Virtual Ohio AgritourismReady Conference

6:30 pm to 8:30 pm

 

TUESDAY, MARCH 9

Virtual Conservation Tillage Conference

8:00 am to 3:00 pm

 

WEDNESDAY, MARCH 10

Virtual Conservation Tillage Conference

8:00 am to 3:00 pm

Southern Ohio Farm Show (Virtual)

10:00 am to 11:00 am

Beef Sire Selection for the Dairy Herd (Virtual)

12:00 pm to 1:00 pm

Farm Office Live

7:00 pm to 8:30 pm

 

THURSDAY, MARCH 11

Virtual Conservation Tillage Conference

8:00 am to 3:00 pm

The Dirt on Soil Health: Investing Below the Surface (Virtual)

8:00 am to 8:30 am

 

Wood Destroying Insect Inspection Training Webinar

8:30 am to 3:30 pm

Midwest Women in Ag Community Education Series

9:00 am to 11:00 am

County Outlook Meeting (Virtual)

10:00 am to 11:30 am

East Ohio Women In Agriculture Program Series

12:00 pm to 1:00 pm

Butler Innovative Farm Forum (Virtual)

7:00 pm to 8:30 pm

 

FRIDAY, MARCH 12

Virtual Conservation Tillage Conference

8:00 am to 3:00 pm

A DAY in the WOODS (Virtual)

10:00 am to 11:30 am

Escape to the Forest Webinar

10:00 am to 12:00 pm

Farm Office Live

 

Ag Tech Tuesdays

The Ohio State Digital Ag Team’s Ag Tech Tuesday webinars are continuing this month! The online February series will cover results from several 2020 eFields trials and be held each Tuesday starting at 10:00 EST for 1 hour. There will be plenty of time for participants to ask questions.  The following provides details for the 2021 Ag Tech Tuesday sessions.

 

2021 AG TECH TUESDAY: EFIELDS RESULTS

  • February 2 – Improving Profitability in Corn Production

Weather and Climate Trends, Aaron Wilson

Irrigation, Amanda Douridas and Will Hamman

Corn Seeding Rates, Chris Zoller

SmartFirmer Seeding Rate, Elizabeth Hawkins

  • February 9 – Pushing Soybean Productivity in Ohio

Boots on the Ground, Laura Lindsey

Local Boots on the Ground Results, Mary Griffith

Foliar Fertilizer, James Morris

Soybean Seeding Rates, Ken Ford

Sulfur on Soybeans, John Barker

  • February 16 – Tech to Improve On-Farm Efficiency

Manure On-the-Go Sensing, Chris Shoup

Yield Monitor Data, Alysa Gauci

Virtual Reality and Field Demonstrations, Brooke Beam

Equipment Technology, Andrew Klopfenstein

  • February 23 – eFields Small Grains, Forages, Soil Health, and Water Quality Results

Production Budgets and Custom Rates, Barry Ward

Winter Annual Forages, Jason Hartschuh

Barley Cohort, Eric Richer

Hemp, Lee Beers

Soil Health Testing, Boden Fisher

Registration for Ag Tech Tuesdays is free but required.  Just visit go.osu.edu/AgTechTues to register.  If you have any questions, please contact Elizabeth Hawkins (hawkins.301@osu.edu