Tar Spot – A “New” Corn Disease

Adopted from: CPN-2012 Corn – Tar Spot, Crop Protection Network

Initial symptoms of tar spot are brownish lesions on the leaves. Black, spore-producing spots appear later, making the leaf feel rough or bumpy. (Purdue Botany and Plant Pathology photo/Kiersten Wise)

Tar spot is a foliar disease of corn that commonly occurs throughout Mexico, Central America, South America, and the Caribbean. The disease was identified in the United States for the first time in 2015 in northern Illinois and Indiana. As of 2018, it has been confirmed in Iowa, Michigan, Wisconsin, Ohio, and Florida.  During the 2018 growing season, the prevalence and severity of the disease increased dramatically, and in some areas tar spot caused substantial yield losses.

In the United States, tar spot of corn is caused by the fungus Phyllachora maydis. The fungus produces small (0.2-0.8 inch), round to semi-circular, raised black structures called stromata.  In severe cases, stromata may also be observed on leaf sheaths and husks.  Tar spot severity on ear leaves at growth stage R5 (dent stage) can exceed 50 percent in susceptible hybrids when conditions are favorable for the disease.

Corn at any developmental stage is susceptible to infec­tion by the tar spot fungus when conditions are favor­able. Disease symptoms have been observed as early as the third-leaf (V3) growth stage in the United States. P. maydis overwinters on infested corn residue on the soil surface, which serves as a source of inoculum for the subsequent growing season. It is not known if P. maydis overwinters on or infects any other plant hosts in the United States.

Conditions that Favor Disease   In Latin America, cool temperatures (60-70°F) and high relative humidity (greater than 75 percent) favor tar spot development. In addition, disease incidence increases when there is at least seven hours of free moisture on the leaves due to rain, fog, or high relative humidity. However, it is not currently known what conditions favor the disease in the United States. In both 2015 and 2018, warm weather and periods of persistent rain and high humidity during the growing season likely favored the development and spread of the disease.

Continuous corn cultivation with minimum tillage practices, and high application rates of nitrogen fertilizer are also positively correlated with increased disease in Latin America. Although corn lines have been identi­fied in Latin America that have resistance to tar spot complex, U.S. observations indicate that most hybrids grown in the North Central region are susceptible to P. maydis (although they differ in susceptibility).

Yield Losses and Impact   Preliminary data from the Midwest indicate that severe tar spot outbreaks can reduce yield by more than 30 bushels per acre. Yield losses are a function of reduced ear weight, poor kernel fill, loose kernels, and vivipary (a condition in which the seed germinates while still on the cob). Observations also suggest that stalk rot and lodging are increased when tar spot severity is high. Severe tar spot also reduces forage quality.

Diagnosis  You can diagnose corn tar spot in the field by examining corn leaves for the presence of black, tar-like spots. To date, tar spot has been observed most often during mid-to late grain fill (growth stages R3-R6) and usually on leaves below or near the ear leaf. You can observe stromata in green and senesced tissues. Occasionally, you may also observe necrotic brown tissue surrounding the black structures, which produces a fisheye appear­ance.

Management  Most of what we know about tar spot has originated from Mexico and Central America. However, differences in the environments, fungal populations, hybrid genetics, and cropping systems may influence disease development in different areas. Our understanding of this disease in the United States is limited because of its very recent history.

However, several management practices may help reduce tar spot development and severity.

  1. Manage residue. Tilling fields buries infected residue and encourages it to decompose, which may help reduce the amount of overwintering tar spot inoculum.
  2. Rotate to other crops. This will allow residue to decompose and reduce the primary It is not yet known how many years it may take to sufficiently reduce inoculum.
  3. Avoid highly susceptible hybrids.
  4. Investigate fungicides. Some fungicides may reduce tar spot, however, we have little data about application timing that will provide an effective and economical response.  Efforts are underway to understand the biology and epidemiology of this disease, which may help formulate fungicide application decisions in the future.

 

Extensive Spread of Corn Toxin Could Affect 2019 Crop

A wetter than normal summer and fall in Ohio led to the worst spread of a toxin on corn in at least a decade, according to a grain disease expert with The Ohio State University.

And next year’s crop may be at risk as well. The fungus that produces the toxin can survive the winter, particularly if stalks or other plant material from the 2018 corn crop are left on the surface of the soil, said Pierce Paul, an Ohio State University Extension specialist in corn and small grain diseases. OSU Extension is the outreach arm of the College of Food, Agricultural, and Environmental Sciences (CFAES).

The extent of vomitoxin across Ohio and the rest of the Corn Belt led some farmers to receive a lower price for their crop, Paul said.

High moisture levels spur the spread of vomitoxin, which can cause people and animals to get sick. The rainy summer and fall in the state and across the Midwest not only left more moisture in fields, but also delayed some farmers from harvesting.

And any corn left standing in wet fields becomes more susceptible to vomitoxin, Paul said.

Gibberella ear rot, a fungal disease that produces vomitoxin, also sucks nutrients out of corn, leading to smaller and lighter kernels, which can reduce yields and what farmers earn for the grain.

“I know there were farmers who had problems with price discounts, and some had their grain completely rejected,” Paul said.

Vomitoxin can cause animals, particularly pigs, to vomit or simply refuse to eat the tainted corn. If contaminated grain or grain products are consumed, this toxin can also make people ill, which is why the U.S. Food and Drug Administration has set strict limits on the amount of vomitoxin allowed in grain for human and animal consumption.

Moldy corn still can be used to produce ethanol. But the byproduct of ethanol production, typically a rich source of nutrients for animals, cannot be given to them because it will have a high concentration of vomitoxin, Paul said.

Vomitoxin can also contaminate wheat and barley. However, in Ohio, both of these crops were harvested by the first few weeks of July and were out of the fields before the persistent rains came, Paul said.

Not every cornfield had a problem with vomitoxin, because rainfall amounts are never uniform across the state.

The fields that were tainted with vomitoxin could still be a problem next season if the same or another susceptible hybrid is planted, Paul said.

Gibberella ear rot can survive in a field through winter and potentially harm the new crop if wet weather occurs, and “there’s nothing you can do after the fact” to control the disease, Paul said.

As a result, it’s important for farmers to choose corn seed that’s resistant to the fungus, he said. No corn hybrid is totally immune to Gibberella ear rot.

So, buying a hybrid that resists the disease is akin to people getting a flu shot. The hybrid does not guarantee that the crop will not get the disease, but it reduces the odds of that happening. If the crop does get infected, the damage is less extensive.  

In a field contaminated with vomitoxin, burying the stalks and other plant material that remain will help reduce, but won’t eliminate, the spread of the fungus in next year’s crop, Paul said.

Symptoms of Gibberella ear rot include pinkish mold. But it can be easy to overlook if a growing crop has been tarnished by the fungus because the husk covers up where the damage occurs, on the ear of the corn.  

“A lot of farmers are caught off guard,” Paul said. “After you harvest the grain or when you take it into the grain elevator, that’s when you start seeing weird stuff and realize you have a problem.”

For more information on vomitoxin, see go.osu.edu/vomitoxinfacts

Stalk Quality Concerns

Source: Dr.’s Peter Thomison, Pierce Paul, OSU

Poor stalk quality is being observed and reported in Ohio corn fields. One of the primary causes of this problem is stalk rot. Corn stalk rot, and consequently, lodging, are the results of several different but interrelated factors. The actual disease, stalk rot, is caused by one or more of several fungi capable of colonizing and disintegrating of the inner tissues of the stalk. The most common members of the stalk rot complex are Gibberella zeaeColletotrichum graminicolaStenocarpella maydis and members of the genus Fusarium.

The extent to which these fungi infect and cause stalk rot depends on the health of the plant. In general, severely stressed plants (due to foliar diseases, insects, or weather) are more greatly affected by stalk rot than stress-free plants. The stalk rot fungi typically survive in corn residue on the soil surface and invade the base of the corn stalk either directly or through wounds made by corn borers, hail, or mechanical injury. Occasionally, fungal invasion occurs at nodes above ground or behind the leaf sheath. The plant tissue is usually resistant to fungal colonization up to silking, after which the fungus spreads from the roots to the stalks. When diseased stalks are split, the pith is usually discolored and shows signs of disintegration. As the pith disintegrates, it separates from the rind and the stalk becomes a hollow tube-like structure. Destruction of the internal stalk tissue by fungi predisposes the plant to lodging.

Nothing can be done about stalk rots at this stage; however, growers can minimize yield and quality losses associated with lodging by harvesting fields with stalk rot problems as early as possible. Scout fields early for visual symptoms of stalk rot and use the “squeeze test” to assess the potential for lodging. Since stalk rots affect stalk integrity, one or more of the inner nodes can easily be compressed when the stalk is squeezed between the thumb and the forefinger. The “push” test is another way to predict lodging. Push the stalks at the ear level, 6 to 8 inches from the vertical. If the stalk breaks between the ear and the lowest node, stalk rot is usually present. To minimize stalk rot damage, harvest promptly after physiological maturity. Harvest delays will increase the risk of stalk lodging and grain yield losses and slowdown the harvest operation. Since the level of stalk rot varies from field to field and hybrids vary in their stalk strength and susceptibility to stalk rot, each field should be scouted separately.

Seed Quality Issues in Soybeans

Let’s face it – we’ve had historic rains in parts of Ohio during 2018 and we are now observing many late season issues that come with this.  Seed quality is one of them and the symptoms or warning signs that there could be issues are on the stems.  The stems in some fields are heavily colonized with a mix of disease pathogens that cause Anthracnose, Cercospora, and pod and stem blight (Figure 1).  The bottom line is that all of these diseases can be better managed with higher levels of resistance but ultimately during 2018 – we had a perfect storm, lower levels of resistance combined with higher than normal rainfall conditions and add in the presence of a new insect pest, stink bugs.  Below I’ve outlined the general conditions of the crop and for each disease, the distinguishing characteristics.

Figure 1

Continue reading

Ear Rots of Corn: Telling them Apart

by: Pierce Paul, Felipe Dalla Lana da Silva, OSU Extension, (edited)

Over the last few weeks, we have received samples with at least four different types of ear rots – Diplodia, Gibberella, Fusarium, and Trichoderma. Of these, Diplodia ear rot seems to be the most prevalent. Ear rots differ from each other in terms of the damage they cause (their symptoms), the toxins they produce, and the specific conditions under which they develop.  Most are favored by wet, humid conditions during silk emergence (R1) and just prior to harvest. But they vary in their temperature requirements, with most being restricted my excessively warm conditions such as the 90+ F forecasted for the next several days. However, it should be noted that even when conditions are not optimum for ear rot development, mycotoxins may accumulate in infected ears.

A good first step for determining whether you have an ear rot problem is to walk fields between dough and black-layer, before plants start drying down, and observe the ears. The husks of affected ears usually appear partially or completely dead (dry and bleached), often with tinges of the color of the mycelium, spores, or spore-bearing structures of fungus causing the disease. Depending on the severity of the disease, the leaf attached to the base of the diseased ear (the ear leaf) may also die and droop, causing affected plants to stick out between healthy plants with normal, green ear leaves. Peel back the husk and examine suspect ears for typical ear rot symptoms. You can count the number of moldy ears out of ever 50 ears examined, at multiple locations across the field to determine the severity of the problem.

(A) DIPLODIA EAR ROT – This is one of the most common ear diseases of corn in Ohio. The most characteristic symptom and the easiest way to tell Diplodia ear rot apart from other ear diseases such as Gibberella and Fusarium ear rots is the presence of white mycelium of the fungus growing over and between kernels, usually starting from the base of the ear. Under highly favorable weather conditions, entire ears may become colonized, turn grayish-brown in color and lightweight (mummified), with kernels, cobs, and ear leaves that are rotted and soft. Rotted kernels may germinate prematurely, particularly if the ears remain upright after physiological maturity. Corn is most susceptible to infection at and up to three weeks after R1. Wet conditions and moderate temperatures during this period favor infection and disease development, and the disease tends to be most severe in no-till or reduce-till fields of corn planted after corn. The greatest impact of this disease is grain yield and quality reduction. Mycotoxins have not been associated with this disease in US, although animals often refuse to consume moldy grain.

(B) GIBBERELLA EAR ROT – When natural early-season infections occur via the silk, Gibberella ear rot typically develops as white to pink mold covering the tip to the upper half of the ear. However, infections may also occur at the base of the ear, causing the whitish-pink diseased kernels to develop from the base of the ear upwards. This is particularly true if ears dry down in an upright position and it rains during the weeks leading up to harvest. The Gibberella ear rot fungus may also infect via wounds made by birds or insects, which leads to the mold developing wherever the damage occurs. When severe, Gibberella ear rot is a major concern because the fungus produces several mycotoxins, including deoxynivalenol (vomitoxin), that are harmful to livestock. Once the ear is infected by the fungus, these mycotoxins may be present even if no visual symptoms of the disease are detected. Hogs are particularly sensitive to vomitoxin. Therefore the FDA advisory level for vomitoxin in corn to be fed to hogs is 5 ppm and this is not to exceed 20% of the diet.

(C) FUSARIUM EAR ROT – Fusarium ear rot is especially common in fields with bird or insect damage to the ears. Affected ears usually have individual diseased kernels scattered over the ear or in small clusters (associated with insect damage) among healthy-looking kernels. The fungus appears as a whitish mold and infected kernels sometimes develop a brownish discoloration with light-colored streaks (called starburst). Several different Fusarium species are associated with Fusarium ear rot, some of which produce toxins called Fumonisins. Horses are particularly sensitive to Fumonisins, but cattle and sheep are relatively insensitive.

(D) TRICHODERMA EAR ROT – Abundant, thick, greenish mold growing on and between the kernels make Trichoderma ear rot very easy to distinguish from Diplodia, Fusarium, and Gibberella ear rots. However, other greenish ear rots such as Cladosporium, Penicillium and Aspergillus may sometimes be mistaken for Trichoderma ear rot. Like several of the other ear rots, diseased ears are commonly associated with bird, insect, or other types of damage. Another very characteristic feature of Trichoderma ear rots is sprouting (premature germination of the grain on the ear in the field). Although some species of Trichoderma may produce mycotoxins, these toxins are usually not found in Trichoderma-affected ears under our growing conditions.

Farm Science Review Agronomy College is September 11th

by: Harold Watters, OSU Extension

The FSR Agronomy College is held in partnership between the Ohio AgriBusiness Association & OSU Extension. The event is designed to educate agronomists, Certified Crop Advisers, custom applicators and farmers on current agronomy issues. The full-day event features time with OSU Extension staff in the field in the agronomy plots on the east side of the Farm Science Review grounds. Breakout sessions will feature topics including a weed management update, weed and crop screen, variable rate soybean seeding, an update to the Tri-State Fertilizer Recommendations, the new Ohio Phosphorus Index, and some how we will squeeze in even more. CCA and pesticide application credits available to those attending.

Date: September 11, 2018

Location: Farm Science Review – Molly Caren Agricultural Center, London, OH

Time: Check-in begins at 8:30 a.m.; sessions begin at 9 a.m. and concludes at 4:00 p.m.

Cost: $120 Registration: Click here to register for the event. (or try this link:http://oaba.net/aws/OABA/pt/sd/calendar/67757/_PARENT/layout_details/false)

Contact: Janice Welsheimer at 614-326-7520 or by email: jwelsheimer@oaba.net

Or for additional information, Harold Watters, 937-604-2415 or by email: watters.35@osu.edu

Foliar Fungicide Use in Corn

by: Pierce Paul, OSU Extension

Foliar diseases, especially Gray Leaf Spot (GLS), are beginning to show up in some corn fields. This is not at all surprising, given that the crop was planted relatively late and it has been wet and humid in some areas. GLS is favored by humid conditions, particularly if temperatures are between 70 and 90 F. Foliar diseases of corn are generally a concern when they develop early and progress up the plant before grain fill is complete. This is especially true when the hybrid is susceptible. In most years, GLS and NCLB usually develop late or remain restricted to the lower leaves. However, if it continues to rain and stays humid, this will likely not be the case this year.

Due to wide variations in planting dates, weather conditions, and hybrid maturities, the corn crop is at growth stages ranging from emergence to tassel across the state. Now is the time to start scouting those early-planted fields for foliar diseases, especially those planted with susceptible hybrids in an area with a history of foliar diseases or in a continuous-corn, no-till fields. Those are the fields most likely to benefit from a fungicide application. Use hybrid susceptibility, weather conditions, field history, and current disease level as guides when making a decision to apply a fungicide.

Click to Read More