Does This Product Work?

Source:  Emerson Nafziger, Department of Crop Sciences, University of Illinois

“Every agronomic decision is a good one for someone” is a quote that I saw recently that reminds us that being “entrepreneurial” is high valued in today’s business world, rewarded in some cases by large amounts of venture capital invested in startup companies. That’s as true in crop agriculture as in any other business, and it means that startups are under pressure to find or create niches and product(s) to fill them, and to demonstrate that these products are widely sellable. The “grand prize” can be sale of the startup to a larger company, yielding a large return for investors and a chance for the entrepreneur to get a large financial award and perhaps move on to bigger projects.

The result is an increasing number of novel crop inputs, accompanied by creative marketing campaigns. Such campaigns often employ the trappings of science to help build trust in such inputs and those who develop them. Photos of serious-looking people examining flasks or test tubes while dressed in white lab coats populate websites, especially for startups that are developing and selling novel inputs such as microbes, or the less specific terms “biologicals” or “biostimulants.” Companies tend to point to field trials they have in their database, and a selected set of such results may be available to potential customers. Testimonials are very common, and almost every such website includes mention of the positive ROI (return on investment) that buyers can expect from use of this product.

Unsurprisingly, company websites tend to highlight data selected for the purpose of supporting sales—it would make little sense from a marketing standpoint to show all of the data. A few decades ago, it was common for companies to engage university researchers to conduct trials on novel products, and for companies to use such results (at least the favorable ones) to help support sales. There may have been cases in which results from universities were insufficiently positive to support sales, and a product wasn’t taken to market as a result. But for the most part, university testing was used to demonstrate that the company had enough confidence in the product that it supported public research on it even without knowing what such research might show.

Click here to Read More

Calibration for Rate Controlled Sprayers

Source: Erdal Ozkan, OSU Extension

I had an article in last week’s CORN newsletter encouraging growers to fine tune and calibrate their sprayers. I had mentioned that the next couple of weeks may be the last best time period to do this since planting season is just about to start. There would not be any better time to do this than now. The next day I got an email from a grower asking me this question that I get often: “I have a rate controller in the cab that regulates the flow rate of the sprayer regardless of the changes in sprayer ground speed. So, should I still calibrate the sprayer to find out the application rate?”. The answer is, Yes, you should. Although the rate controllers do an excellent job with regulating the flow rate of nozzles to keep the application rate constant, a manual calibration at least once a year is needed to ensure the rate controller is functioning properly.

Here is why we should confirm the accuracy of rate controllers: Unfortunately, electronic controllers usually cannot detect flow rate changes on each nozzle on the boom, and none can detect changes in spray pattern. If a nozzle is plugged, or extremely worn out, the rate controller cannot tell us this is happening. It will still try to maintain the constant application rate by changing the system pressure and force other nozzles to spray less or more to overcome the problem in one or several nozzles. If the ground speed sensor works based on revolutions of the tractor wheels, the ground speed determined may not be accurate, because of the slippage that may occur under some ground conditions. Even the tire pressure being off just a few psi may change the tire revolutions per minute leading to erroneous travel speed readings. Finally, Controllers don’t show changes in spray patterns that may happen when a nozzle is defective, plugged, or worn-out. So, we will have to continue manually checking the flow rate of the nozzles, and visually observing the changes in spray patterns until the technology is developed to do these observations remotely, and on-the-go.

As I mentioned in the article in last week’s CORN newsletter, it usually doesn’t take more than 30 minutes to calibrate a sprayer, and only three things are needed: a watch or smart phone to record the time when measuring the nozzle flow rate or the travel speed, a measuring tape, and a jar graduated in ounces. Please take a look at the Ohio State University Extension publication FABE-520 for an easy method to calibrate a boom-type sprayer.  Here is the URL for this publication: http:// ohioline.osu.edu/factsheet/fabe-520  

Not knowing limitations of rate controllers may create serious problems. I already mentioned how smoothly the rate controllers keep the application rate the same regardless of changes in travel speed. However, this convenience comes at a cost if the controller is forced to make drastic changes in the application rate as a result of too high or too low of a travel speed. As you know, to achieve best results from pesticides, the application rate, as well as the droplet size must remain relatively unchanged during the entire spraying. When sprayer speed goes up, to maintain the pre-set application rate, the controller requires the system pressure to go up to increase the nozzle flow rate. This, unfortunately results in more drift-prone droplets coming out of the nozzle, especially if the nozzle used is designed for low application rates within the recommended pressure ranges. Conversely, when the sprayer slows down, the opposite happens: the controller forces the system to lower the pressure, in order to reduce flow rate of nozzles. This will result in production of larger than the desired size of droplets, leading to inadequate coverage. If you are spraying Dicamba or 2,4-D herbicides, you need to pay even more attention to operation of rate controllers. As you know, only a small number of nozzles at specific ranges of pressure can be used to spray these products. Significant changes in ground speed may force the rate controller to make significant changes in spray pressure that may be outside the allowable legal pressure range required to spray these herbicides. Without you realizing it, you may find yourself in violation of the label. Make sure the nozzle size selected will allow the controllers to make necessary changes in the flow rates while still staying within a safe, applicable and allowable pressure range.

Taxes, Taxes and More Taxes. WOW … Just WOW!!

Source: Ohio Farm Bureau

Taxes are becoming more of a hot topic in Washington D.C. and some of the plans being proposed would have a disastrous impact on rural Ohio and rural America as a whole. Proposed legislation in Congress would tax capital gains at death and eliminate stepped-up basis as a way to raise revenue for government spending, causing Farm Bureau to issue an Action Alert to our members. Ty Higgins has more with OFBF’s public policy vice president, Jack Irvin.

Click here for more information

 

Should you expect any freeze damage to winter wheat? Most likely, no.

Source: Laura Lindsey, Alexander Lindsey, OSU Extension

The incoming cold temperatures are not likely to impact winter wheat. The magnitude of freeze damage depends on: 1) temperature, 2) duration of temperature, and 3) wheat growth stage.

 

Prior to the Feekes 6 growth stage, the growing point of wheat is below the soil surface, protected from freezing temperatures. Most of the wheat in Ohio is at the Feekes 4 (beginning of erect growth) or Feekes 5 (leaf sheaths strongly erect) growth stage and should be unaffected by the incoming cold temperatures, predicted to be mid- to low 20s on Wednesday and Thursday.

At Feekes 6 growth stage, our research has shown only a 5% reduction in wheat yield at a temperature of 20°F for 15-minute duration and 50% reduction in wheat yield at a temperature of 12°F for 15-minute duration. (Although, it should be noted, there is a great deal of variability in response due to environmental conditions for the remainder of the growing season. Additionally, greater soil moisture levels can help buffer against short-term temperature fluctuations.)

For more information on Freeze Symptoms and Associated Yield Loss in Soft Red Winter Wheat, please see our new FactSheet: https://ohioline.osu.edu/factsheet/anr-93