SolidWorks Designs
Prototype 1
Figure 1: This a figure of the isometric Solidworks drawing of prototype 1. The assembly places the battery in the front of the AEV.
Figure 2: This a front view of the Solidworks drawing of prototype 1 to better show the position of the battery.
Figure 3: This is a drawing of prototype 1, giving the basic dimensions of the AEV and includes a Bill of Materials.
Estimated Cost: $154,500
Estimated Weight: 0.516 lbs
Prototype 2
Figure 4: This is a figure of prototype 2 in isometric view, it is the second option design for Division I.
Figure 5: This is a figure of prototype 2 in front view, to better show the position of the battery is different.
Figure 6: This is a drawing of prototype 2 depicting the basic dimensions of the design.
Figure 7: This is a figure of the Bill of Materials for prototype 2; it could not fit in the drawing of prototype 2 and is included in this figure.
Estimated Cost: $154,500
Estimated Weight: 0.516 lbs
During the first performance test, two different prototypes were developed and tested to make final design decisions for the division. The team had been working with the other divisions of the company, reviewing and compiling all of the data collected. The first prototype was the design that was used during the Advanced R&D section. The second prototype was where the battery support and battery were placed at the back of the AEV in between the two motor clamps. The team wanted to get a better understanding of how the weight distribution affected the performance of the AEV. It was discovered that placing the battery in the back causes the center of mass to shift towards the back where it is no longer between the two wheels. For the optimal balance of the AEV, the first prototype was the final design decision and kept the AEV parallel to the ground, which helped the efficiency of the AEV.
Arduino Code
Performance Test 1 Code
reverse(4); // reverse the motors
motorSpeed(4,40); // all four motors, 40% power
goToAbsolutePosition(220.0); // position of 220.0 marks
brake(4); // cut power to the motors
goToRelativePosition(20); // coast until 20 marks
reverse(4); // reverse the motors
motorSpeed(4,32); // braking with a power of 32%
goFor(1.8); // for 1.8 seconds
brake(4); // cut power to the motors
goFor(7); // for 7 seconds
reverse(4); // reverse the motors
motorSpeed(4,25); // all four motors, 25% power
goToRelativePosition(225); // position of 225 marks
brake(4); // cut power to the motors
reverse(4); // reverse the motors
motorSpeed(4, 25); // all four motors, 25% power
goFor(2); // for 2 seconds
Performance Test 2 Codes
Code A
reverse(4); // reverse the motors
motorSpeed(4,40); // all four motors, 40% power
goToAbsolutePosition(220.0); // position of 220.0 marks
brake(4); // cut power to the motors
goToRelativePosition(20); // coast until 20 marks
reverse(4); // reverse the motors
motorSpeed(4,32); // braking with a power of 32%
goFor(1.8); // for 1.8 seconds
brake(4); // cut power to the motors
goFor(7); // for 7 seconds
reverse(4); // reverse the motors
motorSpeed(4,25); // all four motors, 25% power
goToRelativePosition(225); // position of 225 marks
brake(4); // cut power to the motors
reverse(4); // reverse the motors
motorSpeed(4, 25); // all four motors, 25% power
goToRelativePosition(62); // position of 62 marks
brake(4); // cut power to the motors
goFor(6); // for six seconds
motorSpeed(4,40); // all four motors, 40% power
goToRelativePosition(-219.5); // position of 219.5 marks in opposite direction of front
brake(4); // cut all power to the motors
goToRelativePosition(-74); // position of 74 marks in the opposite direction of front
reverse(4); // reverse the motors
motorSpeed(4,35); // all four motors, 35% power
goFor(1); // for 1 second
brake(4); // cut all power to the motors
goFor(7); // for seven seconds
Code B
reverse(4); // reverse the motors
motorSpeed(4,40); // all four motors, 40% power
goToAbsolutePosition(220); // position of 220 marks
brake(4); /// all motors brake
goToRelativePosition(20); // position of 20 marks
reverse(4); // reverse all motors
motorSpeed(4,32); // all four motors, 32% power
goFor(1.8); // for 1.8 seconds
brake(4); // all motors brake
goFor(7); // for seven seconds
reverse(4); // reverse all motors
motorSpeed(4,25); // all motors, 25% power
goToRelativePosition(226); // position of 226 marks
brake(4); // all motors brake
reverse(4); // reverse all motors
motorSpeed(4,22); // all motors, 22% power
goToRelativePosition(69); // position of 69 marks
brake(4); // all motors brake
goFor(8); // for eight seconds
motorSpeed(4,40); // all motors, 40% power
goToRelativePosition(-206); // position of 206 marks in opposite direction of front
brake(4); // all motors brake
goToRelativePosition(-54); // position of 54 marks in opposite direction of front
reverse(4); // reverse all motors
motorSpeed(4,47); // all motors, 47% power
goFor(1.25); // for 1.25 seconds
brake(4); // all motors brake
reverse(4); // reverse all motors
goFor(7); // for seven seconds
Final Performance Test
1st Attempt
reverse(4); // reverse the motors
motorSpeed(4,40); // all four motors, 40% power
goToAbsolutePosition(222); // position of 222 marks
brake(4); /// all motors brake
goToRelativePosition(22); // position of 22 marks
reverse(4); // reverse all motors
motorSpeed(4,32); // all four motors, 32% power
goFor(1.5); // for 1.5 seconds
brake(4); // all motors brake
goFor(7); // for seven seconds
reverse(4); // reverse all motors
motorSpeed(4,45); // all motors, 45% power
goToRelativePosition(85); // position of 85 marks
brake(4); // all motors brake
goFor(11); // for eleven seconds
reverse(4);
motorSpeed(4,40); // all motors, 40% power
goToRelativePosition(-218); // position of 218 marks in opposite direction of front
brake(4); // all motors brake
goToRelativePosition(-64); // position of 64 marks in opposite direction of front
reverse(4); // reverse all motors
motorSpeed(4,45); // all motors, 45% power
goFor(1); // for one second
brake(4); // all motors brake
reverse(4); // reverse all motors
goFor(6.5); // for six and half seconds
motorSpeed(4,42); // all motors, 42% power
goToRelativePosition(-88); // position of 88 marks in opposite direction of front
brake(4); // all motors brake
goToRelativePosition(-221); // position of 221 marks in opposite direction of front
reverse(4); reverse all motors
motorSpeed(4,47); // all motors, 47% power
goFor(1); // for 1 seconds
brake(4); // all motors brake
Collected Data on Energy Consumption
Figure 8: Performance Test 3 1st Attempt Power vs. Time Graph
Figure 9: Performance Test 3 1st Attempt Power vs. Distance Graph
Power Consumption: 414 J
Time Elapsed: 59 seconds
2nd Attempt
reverse(4); // reverse all motors
motorSpeed(4, 39); // all motors, 39% power
goToAbsolutePosition(220); // position of 220 marks
brake(4): // all motors brake
goToRelativePosition(22); // position of 22 marks
reverse(4); // reverse all motors
motorSpeed(4, 30); // all motors, 30% power
goFor(1.2); // for 1.2 seconds
brake(4); // all motors brake
goFor(7); // for seven seconds
reverse(4); // reverse all motors
motorSpeed(4, 41); // all motors, 41% power
goToRelativePosition(85); // position of 85 marks
brake(4); // all motors brake
goFor(8); // for eight seconds
reverse(4); // reverse all motors
motorSpeed(4, 41.5); // all motors, 41.5% power
goToRelativePosition(-188); // position of 188 marks in the opposite direction of front
brake(4); // all motors brake
goToRelativePosition(-64); // position of 64 marks in the opposite direction of front
brake(4); // all motors brake
goFor(9); // for nine seconds
motorSpeed(4, 40); // all motors, 40% power
goToRelativePosition(-77); // position of 77 marks in the opposite direction of front
brake(4): // all motors brake
Collected Data on Energy Consumption
Figure 10: Performance Test 3 2nd Attempt Power vs. Time Graph
Figure 11: Performance Test 3 2nd Attempt Power vs. Distance Graph
Power Consumption: 273 J
Time Elapsed: 45 seconds
Figure 12: Cost Breakdown of Each Final Performance Test Attempt











