Bees are Natural Engineers

By: Meghan Thoreau, OSU Extension Educator

Scioto Valley BeekeepersScioto Valley Beekeepers visited STEM Club this month. The Scioto Valley Beekeepers are active and dedicated to assisting current and future beekeepers in Pickaway County and the surrounding areas in Ohio. Their mission is “to promote public awareness of the benefits, necessity, and value of the honeybee throughout human existence.” If you would like to learn more about this organization or become more involved please visit their website or attend one of their monthly meetings.

The Benefits of Bees

Bees provide essential pollination services to millions of acres of crops, improving sustainability and biodiversity. Bees are critically important to agriculture. At least a third of the human food supply from crops and plants depends on insect pollination, which is mostly done by bees! They also contribute to the complex, interconnected ecosystems that allow a diverse number of different species to co-exist. (1)

Many of our scientific and engineering projects have been inspired by bees, such as the use of hexagons in engineering. The study of bees (particularly honey bees) continues to produce an enormous amount of scientific research and these insects have become one of the most studied creatures after humans. (2)

They have also generated an array of philosophical and poetic ideas. In ancient times, bees and honey played major roles and were symbolic of ancient Greek culture. Bees have been frequently connected with ideals of knowledge, health, and power. The ancient Greeks considered bees servants of the gods and their honey was worshipped for its healing qualities and power. Artisans represented bees in jewelry, money, and statues of goddesses. (3)

Bees have much to teach humans about cooperation and industriousness.

Bee Society

An average beehive is about two square feet (or 22 inches by 16 inches), with at least a five-foot buffer around the hive for in- and outbound bee traffic. In many ways, honey bees create a well-organized mini-society in a box. Honey bees, in particular, are very social insects that have evolved into a highly cooperative or collective existence. A hive is fiercely united around the “all-for-one and one-for-all” slogan as their workforce sets out to do a variety of complex tasks that are decided by the communal collective groups that are acted on instinctually. (4)

Honey bees communicate with each other through movement and odor. They send sophisticated messages about which duties to shift to, potential dangers, intruder alerts, locations of food sources, new hive sites, and a variety of other things. (5)

With ultraviolet visions, bees see targets on flowers where the pollen and nectar are located.

Bees can see both visible and ultraviolet light and have precise olfactory receptors. They can also detect electric fields. Flowers have a slight negative charge relative to the air around them. When bumblebees are flying through the air the friction between the air and their bee bodies causes them to become positively charged, and the students learned threw our program that two electrical charges of opposite polarity attract – chemistry in motion. (6)

Infographic by Fuse Consulting Ltd.

Each colony has only one queen at a time, whose primary function is reproduction. She only mates once in her lifetime shortly after she emerges from her egg and kills her other sister queens. She leaves the hive seeking out a cloud of drone bees from another colony. When she returns to her hive, she starts laying 1,500-2,000 eggs per day, selectively fertilizing or not fertilizing the eggs in accordance with how her worker bees are collectively directing her to do. The worker bees engineer and manage each opening of their comb. A queen lives two to three years (sometimes five years) and will produce up to 250,000 eggs per year and possibly lay more than a million eggs in her lifetime.

Drone bees represent five percent of the colony’s bee population and are only present during the late spring and early summer months. The queen may have a longer abdomen for storing the sperm, but a drone is larger overall than the queen and female worker bees. Drones also do not have stingers, pollen baskets, or wax glands, because their main purpose for their colony is to fertilize a virgin queen from a neighboring colony. They die instantly upon mating. While alive drones rely solely on food gathered and processed by the workers’ groups. Drones stay in the hive for the first eight days of life and eat three times more than their sister workers. Day 9 they start leaving the hive from noon to 4:00 p.m. taking orientation flights to acquaint themselves with the surrounding territory for mating purposes. When the weather cools and food becomes scarce the surviving drones are forced out of their hive to starve. (The only exception to this ousting is if the colony is queenless.)

Workers may be the smallest in body size, but they are some of the busiest bees in the group and make up 94 percent of the colony’s population. When compared to their queen they are sexually undeveloped females who under normal hive conditions do not lay eggs (and under a queenless condition lay unfertilized eggs.) Workers have specialized anatomy such as the addition of brood food glands, scent glands, wax glands, and pollen baskets, which allow them to perform all the laborious duties the hive requires. They also clean cells, feed the brood, care for the queen, remove debris and dead bees, handle incoming nectar, engineer beeswax combs, guard the entrance, and air-condition and ventilate the hive during their first few weeks as adults. Works then advance to field duties where they forage for nectar, pollen, water, and propolis (plant sap). (7, 8, 9)

Bee Body Parts and Anatomy

 Infographic source: https://awkwardbotany.com/2015/03/14/year-of-pollination-the-anatomy-of-a-bee/

Infographic source: https://beeprofessor.com/anatomy-of-a-honey-bee-beginners-guide/


The Power of Pollinators

#BeeTheSolution

1. Plant a Bee Garden

One of the largest threats to bees is a lack of safe habitat where they can build homes and find a variety of nutritious food sources. By planting a bee garden, you can create a safe haven for bees with pollen- and nectar-rich flowers by planting a range of shapes, sizes, colors, and bloom times. You don’t need a ton of space to grow bee-friendly plants — gardens can be established across yards and in window boxes, flower pots, and mixed into vegetable gardens. Seek out locally native plants as often as possible as many bee species have coevolved to feed exclusively on native flowers and need them to survive.

2. Go Chemical-Free for Bees

Regardless of which flowers you plant, avoid using pesticides and herbicides. Synthetic pesticides, fertilizers, herbicides, and neonicotinoids are harmful to bees, wreaking havoc on their sensitive systems. A garden can thrive without these harmful chemicals — in fact, one goal of a bee-friendly garden is to build a sustainable ecosystem that keeps itself in check by fostering beneficial populations. If you must use a pesticide, choose a targeted organic product, and always avoid applying pesticides when flowers are blooming or directly to the soil.

3. Become a Community Scientist

Join a global movement to collect data on our favorite pollinators! Community science transforms the passion and interest of regular people into data-driven activities that support scientific research. By participating in a community science project, you can provide important insights and local knowledge, which can lead to more relevant and useful research outcomes. Join our “A Bee Or Not a Bee” iNaturalist project, which invites you to document and upload species on iNaturalist, collaborating with naturalists around the world to determine whether the insect buzzing by is a bee, wasp, fly, or other common bee doppelgängers.

4. Provide Trees for Bees

Did you know that bees get most of their nectar from trees? When a tree blooms, it provides hundreds — if not thousands — of blossoms to feed from. Trees are not only a great food source for bees but also an essential habitat. Tree leaves and resin provide nesting material for bees, while natural wood cavities make excellent shelters. Native trees such as maples, redbuds, and black cherry all attract and support bees. You can help bolster bee food sources and habitats by caring for and planting trees. Trees are also great at sequestering carbon, managing our watersheds, and cooling air temperatures.

5. Create a Bee Bath

Bees work up quite a thirst foraging and collecting nectar. Fill a shallow bird bath or bowl with clean water, and arrange pebbles and stones inside so that they break the water’s surface. Bees will land on the stones and pebbles to take a long, refreshing drink.

6. Protect Ground Nesting Bees

Did you know that 70% of the world’s 20,000 bees — including bumblebees — live underground? There, they build nests and house their young, who overwinter and emerge each spring. Ground nesting bees need bare, mulch-free, well-drained, protected soil in a sunny area to create and access their nests. Leave an untouched section for ground-nesting bees in your garden!

7. Leave Stems Behind

30% of bees live: in holes inside trees, logs, or hollow plant stems. Don’t cut those hollow stems, which are valuable bee habitats. A hollow stem may not seem like prime real estate to us, but to Mason and other bees, it’s a cozy home in which they may overwinter. Wait until the spring to cut back dead flower stalks, leaving stems 8 to 24 inches high to provide homes for cavity-nesting bees.

8. Teach Tomorrow’s Bee Stewards

Inspire the next generation of eco citizens with guides, lessons, and activities to get them buzzed about bees! Educators can use our collection of free resources to bring nature and ecology into the classroom — and the hearts of children everywhere.

9. Host a Fundraiser

Peer-to-Peer fundraising is a fantastic way to spread the mission of The Bee Conservancy and empower your community to help raise money for our impactful programs. With the help of tools from Fundraise Up, you can share your personal fundraising page on social media and with friends and family. It’s an easy, fun way to make a serious impact. Start your own fundraiser today!

10. Support Local Beekeepers and Organizations

Local beekeepers work hard to nurture their bees and the local community. The easiest way to show your appreciation is to buy locally-made honey and beeswax products. Many beekeepers use products from their hives to create soaps, lotions, and beeswax candles. Plus, local honey is not only delicious — it is made from local flora and may help with seasonal allergies! You can also give time, resources, and monetary donations to local beekeeping societies and environmental groups to help their programs grow. (10)


Ohio Bee Identification Guides

 

OhioBeeGuideFINAL

 

Ohio Bee Identification Guide _ Ohioline


REFERENCE
1  Medicine, C. for V. (n.d.). Helping Agriculture’s helpful honey bees. U.S. Food and Drug Administration. https://www.fda.gov/animal-veterinary/animal-health-literacy/helping-agricultures-helpful-honey-bees#:~:text=It’s%20their%20work%20as%20crop,bills%20buzzing%20over%20U.S.%20crops.
2  Why do honey bees make hexagons when building honeycombs? with video. BuzzAboutBees.net. (n.d.). https://www.buzzaboutbees.net/why-bees-use-hexagons.html
3  Out of the past. Bee Culture -. (2020, September 1). https://www.beeculture.com/out-of-the-past/#:~:text=Bees%20and%20honey%20were%20a,money%2C%20and%20statues%20of%20goddesses.
Wcislo, W., & Fewell, J. H. (n.d.). Sociality in bees (Chapter 3) – comparative social evolution. Cambridge Core. https://www.cambridge.org/core/books/comparative-social-evolution/sociality-in-bees/EDB3BC0012570CEEF1237E662563B4FD
5  The language of bees. PerfectBee. (2020, September 17). https://www.perfectbee.com/blog/the-language-of-bees#:~:text=They%20don’t%20use%20words,a%20variety%20of%20other%20things.
6  Baisas, L. (2022, October 24). A swarm of honeybees can have the same electrical charge as a storm cloud. Popular Science. https://www.popsci.com/environment/honeybees-electric-atmospheric-charge/
7  Remolina, S. C., & Hughes, K. A. (2008, September). Evolution and mechanisms of long life and high fertility in queen Honey Bees. Age (Dordrecht, Netherlands). https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2527632/#:~:text= Honey%20bees%20(Apis%20mellifera)%20are,200%20days%20in%20the%20winter.
8  The colony and its organization. Mid-Atlantic Apiculture Research and Extension Consortium. (n.d.). https://canr.udel.edu/maarec/honey-bee-biology/the-colony-and-its-organization/
9  Welcome to the Hive!. Beverly Bees. (2019, January 30). https://www.beverlybees.com/home-hive/
10  10 ways to save the bees. The Bee Conservancy. (2023, April 21). https://thebeeconservancy.org/10-ways-to-save-the-bees/

Virtual STEM Club November Kick-off: video conferencing etiquette, Schoology, bug benefits, and career paths within Entomology!

By: Meghan Thoreau, OSU Extension Educator, Community Development & STEM, Pickaway County

We have a full line up for the month of November. We’re starting with an important first club meeting, Saturday, November 7, 2020 @ 10:00 a.m. where club members and parents get to meet virtually for the first time and say hello. STEM teachers will share the club’s expectations, resource blog site, video conferencing etiquette, and provide a virtual walk-thru of the Schoology Club site.

(Students and parents please note that all Zoom meeting details can be found in Schoology’s Virtual STEM Club class! If you have any questions or issues finding the announcement please email STEM teachers.)


The following two Saturday’s will focus on bugs and learning about the benefits insects perform and provide vital functions within our ecosystems. For example, bugs provide foods for many birds, mammals, and fishes on which fishing and hunting depends. They also decompose dead materials, and reintroduce nutrients into the soil. On Saturday, November 14, 2020 @ 10:00 a.m. Jeni Ruisch, Director of Outreach and Academic Programming, Department of Entomology at The Ohio State University will be joining our club session. Jeni curates a collection of live critters for outreach activities on or near The OSU campus. During COVID-19, she is personally housing the Columbus BugZoo & providing educational outreach programs via Zoom.

She Majored in Psychology, minored in English, Pop Culture Studies, and Neuroscience. Her education focus is on human and non-human animal cognition and behavior, and professional background in husbandry. She has additional education in writing and publishing, with 10-years of professional writing experience, including three years as the editor of a magazine. Hobbies are pretty much like her job, diverse and pet friendly. She has lots of bug pets, stays busy caring and maintaining their enclosures, and also trains dogs. Jeni’s career is quirky, but throughly rewarding. Below are some photos of Jeni with some bugs at the Cincinnati Zoo. (The giant stick bug is over a foot long!)

During our Club meeting we’ll learn more about iNaturalist, an online social network of naturalists, citizen scientists, and biologists built on the concept of mapping and sharing observations of biodiversity across the globe. iNaturalist may be accessed via its website or from its mobile applications.

If you can’t wait still we meet, enjoy this Life of Insects educational video by environmental steward, David Attenborough, with some arthropods!


On Saturday, November 21, 2020 @ 10:00 a.m. we’ll engage in more bug challenges and learn about Entomologist Careers and why entomologists are so important?

Club Highlights from 2018-2019

By: Meghan Thoreau, OSU Extension

LED Display Circuit Board Challenge

Elementary STEM Club just started its third year of STEM (science, technology, engineering, math) programming, engaging approximately a hundred 4th and 5th graders in after school hands-on STEM challenges and career exploration throughout the academic school year. Judy Walley, Teays Valley High School Chemistry Teacher, and Meghan Thoreau, OSU Extension Educator, co-teach the program, which also involves over two dozen high school mentor students. The mentors assist with club activities while themselves gaining both soft and technical skills, leadership, community service, and college/career exploration opportunities.

Physics and Center of Gravity Challenges

STEM education programs can have a positive impact on students’ attitudes towards STEM disciplines, 21st century skills, and a greater interest in STEM careers. Educators throughout Pickaway County have been busy in supporting a number of problem-based learning initiatives, business-teacher partnerships, and STEM teaching initiatives.

Foldscope, Origami Microscope Biology Challenge

Elementary STEM Club is one of those local initiatives that employs hands-on learning through a multidisciplinary approach into many subjects and career paths. The program challenges its youth in chemistry, astronomy, biology, coding, drone technology, connected toys, wearable tech, strategic mind games, escape classrooms, electric circuits, physics, renewable energy, beekeeping, aerospace, flight simulations, aviation, fostering a community service mindset, and more.

Strategic Mind Games and Bee Science Challenges

We invite specialists from the community to teach, share, and engage with the students, such as the Scioto Valley Beekeeping Association, OSU Professors, an Extension Energy Specialist, an OSU Health Dietitian, and the Civil Air Patrol to name a few. Next year we’re hoping to bring some virtual reality, 360 photography, and video production challenges to our students. If you’re interested in sharing a skillset, a technology, a career path, or a meaningful life experience to some amazing and eager-minded students, please email, thoreau.1@osu.edu or jwalley@tvsd.us.

We’d like to also thank everyone who has been involved in the program over the last two years. It’s been a pleasure and a plunge into the wild side of STEM education, youth workforce development, and promoting a mindset of lifelong learning – all critical to today’s workforce.

Civil Air Patrol and Aerospace Careers

Civil Air Patrol

We ended last year with a great program partnering with Civil Air Patrol (CAP). Civilian volunteers – with a passion for flight, science, and engineering – led the program highlighting STEM careers in aviation, space, cyber security, emergency services, and the military. The whole organization is powered by a team of dedicated civilian volunteers with a passion for aviation and STEM education. If you know of a student, 12-years and up, that has in interest in aviation, would like a chance to fly a plane, work towards their pilot license, attend leadership encampments, career academies, and more, visit http://www.ohwg.cap.gov/.

Aerospace Officer Donna Herald, Lieutenant Casey Green, and Lieutenant Colonel David Dlugiewicz volunteered their time and aviation skills to lead our youth into exploring the history of the Civil Air Patrol, emphasize the value of civic engagement, and underscore the growing deficient of pilots and aerospace specialist in the workforce.

Physics Concepts, Bernoulli Principle on Air Pressure Differential Theory Challenges

The CAP lessons built on previous STEM Club programming that taught physic concepts, the law of gravity, and re-instilled aircraft principal axes, such as the friction, center of gravity, and coding parrot drones challenges. Lieutenant Colonel Dlugiewicz taught the discussed Bernoulli Principle (an air pressure differential theory) and Sir Isaac Newton and the laws of motion and lift. The students engaged in a hands-on activity such as filling an air bag with one breath, leaving a gap between their mouth and the bag to allow a vacuum to form, demonstrating Bernoulli’s principle.

Part of a Airplane and Axis Challenges

Lieutenant Casey Green discussed the parts of an airplane focusing on the components that control an aircraft’s moment and direction. The students broke into groups and rotated between two stations. The first engaged the students in building paper airplane that they cut strategic slits into. The students experimented by folding different components of their airplanes to change and control the overall direction of their paper airplanes. The second station engaged the students in two different sets of CAP flight simulators to further the students’ understandings of the aviation principles taught in the program. The flight simulators provided a semi authentic experience that helps young pilots learn to fly.

Flight Simulator Challenges

Our community has some amazing young minds that are thinking and embrace the many dynamic career pathways of a STEMist. Please get involved and support more STEM programming in your community, it matters.

 

Buzzing Around In STEM


By: Emma Rico, Teays Valley High School STEM Club Mentor

Photo: Emma Rico leads the honey sampling station

Over the past year, I have been fortunate enough to be able to be apart of the STEM Club mentoring program at Teays Valley Elementary School Buildings. The program engages young minds in STEM challenges while stressing the importance of the science fields and problem solving skills. I watched the students eyes sparkle with curiosity and saw each grow as a student and an individual. However, when I’ve assisted with teaching the students, I also learned a couple extra things. I not only learned things in relation to the science topic that day (which I found very interesting), but I also learned more about myself. There is something about nurturing the minds of others that allows me to see myself more clearly and to impact others. The STEM mentoring program has allowed me to stretch my mind and the minds of others.

Photo taken by Emma Rico, bee keeper Louise Adkins leads discussion on bee anatomy.

This April the elementary students learned about the community, function, and purpose of one of the oldest creatures on earth: bees. With the help of OSU Extension, the Scioto Valley Beekeepers Association, Teays Valley School District, and a senior high school student, Erin Robinski, we have been able to teach the importance of bees and what we can do to help them survive in today’s changing environment.

Video produced by Emma Rico

We started off with a brief introduction by Tina Bobeck on the importance of bees being pollinators and the other variety of pollinators that exists, such as hummingbirds and bats, but also by monkeys, marsupials, lemurs, bears, rabbits, deer, rodents, lizards, and other animals. We learned surprising facts such that there are over five-hundred different types of bees that live in Ohio alone. The students also discovered some medical benefits from honeybee products, such as honey, bee pollen, propolis, Royal jelly, beeswax, and bee venom, have all long been used in traditional medicine.

Photo by Emma Rico, Louise Adkins showing off honeybee products to students.

Erin Robinski provided a short presentation to the students on what flowers to plant to help the bees in our area. The program was fortunate to have the president of the Scioto Valley Beekeepers, Louise Adkins, talk to the students about the anatomy of the bee and what makes them unique. The students learned that bees have five eyes, communicate with their antennas, can see ultra light, and do not have lungs. (Instead, bees draw in oxygen through holes in their bodies known as spiracles and pump the oxygen through a system of increasingly tiny tubes that deliver oxygen directly to tissues and muscles!) The students were eager to learn more during this portion and tended to ask more questions then the program allotted for, but we appreciated the inquiring minds.

Photo taken by Emma Rico, Observation Hive built by bee keeper Tom Zwayer.

We also had the Vice President of the Scioto Valley Beekeepers, Tom Zwayer, talk to the students about the role of a beekeeper and how the hive functions. Zwayer share the bee hive history to the students. In the 1800s Lorenzo Langstroth, an American apiarist, clergyman, and teacher created the modern day beehive used today. Langstroth is considered the “father of American beekeeping (and lived most in life here in Ohio.) The students also learned how bees are very protective of their home and do not like outsiders. They were shown how beekeepers can add an accessory to a hive’s entry point to confuse outside insects and bees by changing the “front door” access point. Beekeepers also set internal traps in the hive to catch unwanted mites and beetles that can harm the hive and bees. The students were able to try on the beekeeper suits, look at some real bees in the observation hive, try honey, and ask more questions of our local bee experts. They even came up with questions that I had not even thought of!

Photo by Meghan Thoreau, students trying on beekeeper suits, O-H-I-O.

I think the bee program was one of my favorite STEM themes, because the students were able to learn about how small creatures keep our world alive. In addition, the students learned how they can help bees through planting local pollinators as well as growing food and treating for pests more sustainably. It doesn’t take much to make a big differences for bees. I feel honored to be able to influence young students in exploring STEM fields. It is an opportunity that I wish I could have been involved in more during high school. This program has allowed me to be more involved in the community, help ignite the flame of curiosity, and learn more about how the world around me works. It is one of the things that I will miss after graduation, but I hope that these young STEM students will grow and make real transformative impacts to come in our future!