Bowling Green State University Scholar Shares Her Research Experience

By: Allison Cheek of Bowling Green State University, Candidate of Math and Science Education

Research Experience

This past fall, I was an incoming college freshman and I was told I would be participating in a research group. As a scholar of Bowling Green State University’s Science and Math in ACTION Program, I was allowed to participate in a research group. Research is part of our first-year requirements in the program. I thought that was very intimidating, having to conduct research with a team, as well as moving to a college campus and beginning college classes for the first time. Reflecting over this past year, I could not have been more wrong about being a part of a research group! Being on a research team has been an enlightening and satisfying experience. 

Illustration: an urban heat island. Image credit: NASA/JPL-Caltech, https://climatekids.nasa.gov/heat-islands/

Research Focus: Urban Heat Island

I joined a research group that focused on finding the hottest and coolest places on Bowling Green State University’s campus. Bowling Green is part of an urban heat island. An urban heat island occurs when the temperature is higher in a city than the surrounding rural areas because there are so many man-made structures in one place, such as asphalt parking lots, buildings, concrete structures, and cars. 

Camera Technology

My group and I wanted to find the hottest places on campus and find ways to cool the temperature on campus. We collected data each week at twelve locations throughout campus. Five locations were natural, such as; ponds, grass, and green roofs. Seven locations were man-made, such as roofs and asphalt parking lots. At each location, we recorded the air temperature and surface temperature by using infrared thermometers, as well as FLIR thermal cameras

FLIR T540 Professional Thermal Camera, photo credit: https://www.flir.com/

Roofing Systems

After collecting data for eight weeks, we concluded that the parking lots and roofs on campus had the hottest temperatures. After extensive research, we found that solutions to lower the temperatures on Bowling Green’s campus are to plant trees and vegetation, as well as implement green roofs and stone roofs. 

Green and stone roof systems diagrams, credits: http://www.coninnco.com/building-envelope/dow-building-solutions/inverted-roof-systems, http://godfreyroofing.com/commercial/education/roofing-articles/introduction-to-green-roofing/

Solutions

Using our conclusive solutions, we wrote a Green Fund Grant Proposal to BGSU to implement stone roofs to coat the roof of a dorm with no air conditioning, to cool temperatures. 

 

Graph 1: Natural vs. Man-made Surface Temperature and Air Temperatures created by Allison Cheek and an aerial image of McDonald Hall’s proposed roof site, at Bowling Green State University.

Seek Out Researching Opportunities

Being part of this research team was extremely rewarding for me. We were able to collect data, collaborate ideas, and attempt to implement a solution to cooling BGSU’s campus. I have seen the scientific method come to life with the process of research. Being able to participate in research at a university has been a wonderful experience and I would highly recommend participating in exploration if given the opportunity. This experience has helped me apply my scientific knowledge and make a difference by improving Bowling Green’s campus.

I am grateful to the ACTION Program and to my research advisor, Dr. Jodi Haney, for making this opportunity possible!

Photo: Left Allison Cheek, right Alyson Blunk, research students at BGSU.

 

Chem Basics and Career Exploration

By: Meghan Thoreau, OSU Extension Educator

Last month our young STEMists tacked chemistry basics, the periodic table, what makes up an atom, and chemical and physical changes. (Note: 360-video @ the end of the post!)

DAY 1

The students started the club session with an interactive presentation highlighting several careers in chemistry. All the careers mentioned have a short career highlight video to provide good visualizes of what the jobs entail, as well as how much additional education is expected. The students also learned the differences between credentials, such as an Associate Degree, a Bachler’s, a Master’s, and having a PhD. We were only able to allow the kids to pick five or six careers during the club, so please sit down and re-explore the interactive presentation with your child at home!

Figure 1: Image from the program presentation by Meghan Thoreau, go.osu.edu/chemistrycareers.

They learned about atoms, which is made up of three tiny kinds of particles called subatomic particles: protons, neutrons, and electrons. The protons and the neutrons make up the center of the atom called the nucleus and the electrons fly around above the nucleus in a small cloud.

Figure 2: Photo by Meghan Thoreau captures one of Ms. Walley’s many chemistry wearables. The sweater shirt depicts the element Helium. Helium’s atomic parts are pictures to the right.

Figure 3: the periodic table.

The students then began exploring the periodic table and how elements are organized and what different forms the elements exist at room temperature. They further familiarized themselves by playing a couple of games: Element Scrabble, spelling words with the element’s symbols and Periodic Table Battleship, strategically call out the period, the group, and the name of each element to sink their opponent’s ships.

Figure 4: Photos by Meghan Thoreau depicting element scrabble and periodic battleship learning games.

DAY 2

Students applied what they learned from Day 1 about chemical and physical changes to the hands-on chem labs. They learned that chemical changes have certain indicators: change in color, gas produced, temperature change, light produced, precipitate forms, or are irreversible.

The students broke up into groups and did a series of chemical experiments to see first hand what chemical changes look, feel, and smell like.

Figure 5: video highlight of STEM Club: Chem Basics by Meghan Thoreau produced in iMovies. Retrieve from: https://youtu.be/peZvyjRWB9s.

If slime is still permitted in your household and you’re looking for a Super Fluffy Slime Recipe try this:

  1. put 3 cups shaving cream in a bowl
  2. Add in 1/4-1/2 tsp of baking soda and stir
  3. Mix in 1/2 cup of glue and stir
  4. Add 1 full tbsp of saline solution and a coating on hands
  5. Mix until mixture forms a fluffy slimeball

Next month Dr. Brooke Beam, OSU Extension Educator from Highland County will lead us into learning about 360 technology and video and photo production. The students will be exposed to 360 educational VR experiences for an immersive learning adventure. Testing out the new 360 camera, here’s a clip below:

Figure 6: 360 short video highlight of STEM Club: Chem Basics by Meghan Thoreau produced in GoPro. Retrieve from: https://youtu.be/6JUQny_TdPI.