October’s Halloween STEM Challenges, Part 2: Electrons, Batteries, LEDs, and Simple Circuits

DAY 2

STUDENT’S NOTES FROM THE CIRCUIT PROGRAM

Student notes were taken to remember what they learned about simple circuits and their paper circuit project.

Simple Circuits with Meghan Thoreau, OSU Extension Educator, and Judy Walley, Teays Valley Chemistry Teacher. Full presentation link: go.osu.edu/simplecircuits 

Why Understanding Simple Circuits is Important?

Basic circuit knowledge is important for many different disciplines, including engineering, physics, chemistry, and mathematics. It’s also useful knowledge around this time of year when you may need to repair a string of old holiday lights? Understanding and building simple circuits show us important concepts learned in school that can describe useful real-world systems, like devices we use every day, cell phones, light switches, Chromebooks, cars, etc.

The electric charge that flows through your house is called your electric circuit. This carries useful energy through your house that you can transform into other forms of energy to do various tasks. The US standard household circuit has an effective voltage that takes 120-volts. Volts represent the energy per unit charge. We discussed these basic building blocks of simple circuits in STEM Club this month. Our hands-on simple circuit design challenge uses 3-volt lithium batteries. Before jumping into our design challenges we’ll cover a few basic circuitry concepts and energy principles.

For program presentation, click here.

Conservation of Energy, First Law of Thermodynamics

The conservation of energy principle was discovered and published by Julius Robert von Mayer in 1842. Mayer was a German physicianchemist, and physicist and one of the founders of thermodynamics. However, there were many others working in the field that made significant contributions, such as, James Prescott JouleHermann von Helmholtz,  Alessandro Volta, and Benjamin Thomson.

The principle of conservation of energy is an effective tool in solving problems and understanding how different forms of energy directly impact our lives. There are also benefits to this principle. These include recycling of materials, lower energy costs for consumers, less pollution due to a reduction in the use of fossil fuels, and less harm to animals and the environment. We watched a short video, from Two Minute Classroom, that explained the basic concepts of how energy transforms itself into other forms and never truly disappears or is destroyed.

Below are 10 common types of energy:

Atoms and Electrons

Judy Walley led students through the basic concepts of atoms and electrons, because, without the flow of electrons, we have no electric circuit to work with.

Judy Walley explains the basic concepts of atoms and electrons as students formed a single circuit where electrons passed through them to power a sound buzzer.

Walley also explained the chemistry of a battery and how chemical reactions occur inside the battery that causes an imbalance or a build-up of electrons (-) on one side of the battery over the other, hence why one side or one terminal of the battery is negative (-) and the other positive (+). We also introduced the basic materials for our hands-on design challenges and explain how a battery works.

Screenshot from our virtual simple circuit presentation.

How a Battery Works

Batteries are important to everyday life. Batteries are essential to most electrical devices. They exist in our cars, cell phones, laptops, and other electronic appliances, and serve as critical backup sources of electricity in telecommunications, public transportation, and medical devices. A battery is essentially a container full of chemicals that produce electrons (-). Inside the battery itself, a chemical reaction produces the electrons.

The battery is a device that stores chemical energy and converts it to electrical energy. The chemical reactions in a battery involve the flow of electrons from one material (electrode) to another, through an external circuit. The flow of electrons provides an electric current that can be used to do work. In our case, students use copper tape to build a paper circuit to create light energy with an LED. Below depicts the inner wors of a battery.

Screenshot of how a battery works from our virtual simple circuit presentation.

The students learned that a battery has three main parts: an anode (-), cathode (+), and the electrolyte that separates the two terminal ends on the battery. We discussed the chemical reaction happening inside the battery that causes electrons (-) to build up on one side of the battery causing one end to be negatively charged (-) and the other end positively charged (+). This buildup causes an imbalance of electrons (-), that want to travel to the other side of the battery, but can’t move freely until a conductive circuit is completely looped for the electrons to travel through; in our case, the conduit is copper tape.

When a circuit is complete, or a loop created, the electrons will flow through the conductive paths racing to reach the other side of the battery terminal. When the electrons flow through the loop, the chemical energy inside the battery is transformed into electrical energy running through the circuit. When all electrons (-) make it to the other side, the battery stops working. All of the electric energy was transformed into other forms of energy.

Electrical energy allows us to do work by transforming energy into other forms. We use LEDs in our paper circuit design challenge because it’s a simple way to show how electric energy is transformed or converted into light energy. We could replace the LED with a simple motor and the motor would convert electrical energy into kinetic.

Screenshot of simple circuit components and electricity concepts from our virtual simple circuit presentation.

What’s a Diode?

Both LEDs and motors can easily be added to simple circuits. However, LEDs are somewhat more restrictive than motors, because LEDs are diodes. A diode only allows current to flow in one direction. From the cathode, (-) leg of the LED through the anode (+) leg. Note that the anode on a battery is negatively charged, but the anode on an LED is positively charged! The correct way to connect an LED legs to the battery terminals is positive to positive/anode to cathode and negative to negative/ cathode to anode. Study the image above if this is confusing. If the LED or battery is flipped in the wrong configuration then no current or electrons flow through the LED because the diode only allows for current to flow in one direction.

Image source: https://diotlabs.daraghbyrne.me/docs/controlling-outputs-motors/diodes/

A motor does not have a diode, therefore current can flow in either direction, and depending on how the motor is connected to the battery will decide what direction the motor turns left/right, or moves forwards/backward.

Image source: https://www.robotroom.com/DPDT-Bidirectional-Motor-Switch.html

Electric Circuit Design Challenges

As a virtual group, we challenged ourselves with a few NearPod activities to reinforce our electricity concepts before beginning our hands-on paper circuit challenges. A paper circuit is a functioning electronic circuit built on a paper surface instead of a printed circuit board (PCB). Projects can range from greeting cards to origami, to traditional art such as paintings or drawings. STEM totes went home with the students and included paper circuit design challenges and supplies.

Supply List (we purchased all our supplies through Amazon)

  • LED
  • Conductive copper tape
  • Plain card stock, or templates printed on card stock
  • 3-V coin cell battery
  • Tape (not included)
  • Binder Clip

Other useful items: multicolor/print card stock, glue stick, scissors, pencils, markers

Teays Valley High school mentor, Julia Kudar, assisting elementary students with our paper circuits program.

October’s Halloween STEM Challenges, Part 1: Science of Color, Vision, and Phosphorescent

We covered a lot of material last month. We thought we’d take advantage of the spooky mystery themes of Halloween and challenge our students to become science detectives, experimenting with hands-on activities involving chromatography, perception of vision, and phosphorescent slime chemistry. We also learned about atoms, electrons, batteries, LEDs, and simple circuits.

Two Minute Video Highlight of Program


DAY 1

Chromatography

The students became CSI lab technicians, tasked with solving a who-done-it pumpkin theft. All that was left at the scene of the crime was a letter demanding cookies! No fingerprints were found, but six suspects were brought in for questioning and all six had different black markers on their person. The marker evidence was tagged and brought to the CSI lab along with the random letter for further analysis. Marker samples were taken and a chromatography test was performed by our young lab technicians.

Chromatography is a laboratory technique for the separation of a mixture (more specifically separation of molecules) and in our case black marker ink molecules. The ink was dissolved in a water solution process of mobile to stationary phase, revealing distinct ink-finger prints for comparative analysis against an ink sample taken from the random note. The students discovered different ink molecules travel at different speeds, causing them to separate and reveal distinct color patterns that could help identify the pumpkin thief from the six suspects.

People don’t often pick up a marker or pen and think of molecules,  but ink and paints are made up of atoms and the molecules, like everything, follow rules. Ink and paints follow the standard CPK rule, which is a popular color convention for distinguishing atoms of different chemical elements in molecular modeling (named after the chemists Robert Corey, Linus Pauling, and Walter Koltun). Basically, certain elements are associated with different colors. For example,

  • Hydrogen = White
  • Oxygen = Red
  • Chlorine = Green
  • Nitrogen = Blue
  • Carbon = Grey
  • Sulphur = Yellow
  • Phosphorus = Orange
  • Other = Varies – mostly Dark Red/Pink/Maroon

Teays Valley High school mentor, Drew Dean, assists elementary students with our chromatography lab.

PERSISTENCE OF VISION

Persistence of vision refers to the optical illusion that occurs when visual perception of an object does not cease for some time after the rays of light proceeding from it have ceased to enter the eye. The discovery was first discussed in 1824 when an English-Swiss physicist named Peter Mark Roget presented a paper, “Explanation of an Optical Deception in the Appearance of the Spokes of a Wheel when seen through Vertical Apertures” to the Royal Society in London. Shortly after, in 1832, a Belgian physicist Joseph Plateau built a toy that took advantage of the optical illusion trick. (Photo below source: http://streamline.filmstruck.com/2012/01/07/the-persistence-of-persistence-of-vision/)

The toy made images move independently but overlapped them or when placed in a series made them look as if they were walking, running, juggling, dancing. This concept soon laid the foundation for early filmmaking. (Photo below source be: http://1125996089.rsc.cdn77.org/wp-content/uploads/2011/12/persistence-of-vision-transit.jpg)

The students learned how our eyes report basic imaginary back to the brain, or rather how our eyes perceive shapes, their motion, and their relative position from other objects. The students discovered that eyes are not simple windows to the world. Eyes do not see what is, but instead, see approximations.

PHOSPHORESCENT SLIME

The students learned how different objects glow in the dark. First, students learned that heat is a good emitter of light, such as a fire or an old-fashioned light bulb, but heat isn’t always required to make something appear to glow. For example, bedroom glow-in-the-dark stickers, glow sticks, or fireflies do not require heat. The stickers and even certain types of rocks, like the Bologna Stone, require several hours of light to charge them in order to later glow. But glow sticks and fireflies, do not require heat or light, but instead, deal with chemistry where two different elements are mixed together to make a ‘luminescent’ compound.

We talked about phosphorescence and the process in which energy absorbed by a substance is released slowly in the form of light. Unlike the relatively swift reactions in fluorescence, such as those seen in a common fluorescent tube, phosphorescent materials “store” absorbed energy for a longer time, as the processes required to re-emit energy occur less often.

Finally, we let the students become chemists and make their own phosphorescent slime for later glow in the dark fun after the compound was charged by light. The young chemists used measuring devices to concoct their spooky slime recipe.

Make another batch at home with your young chemist:

  1. Add 20.0 mL of glue to cup
  2. Add 15.0 mL of water to cup
  3. STIR!
  4. Drop of preferred food coloring
  5. STIR!
  6. Add a drop of glow in the dark phosphorescence paint
  7. Add 12.0 mL of BORAX solution
  8. STIR! It will be runny until you take it out of the cup and start to play with it.

 

STEM Professionals Panel: learn, engage, and explore four STEM career pathways

Get ready STEM Club, because we have four guest professionals coming to join us for some lively discussion on their STEM careers, life experiences, and tips when considering working towards a STEM Career. Save the date: Thursday, 21 May 2020 @ 4:00 P.M. (Zoom meeting details are found in our Elementary STEM Club’s Google Classroom.) Click here to watch the recorded club meeting. Our panel includes the following:

WILLIAM MILLER-LITTLE is a M.D. Ph.D. Medical Candidate & Researcher at Case Western Reserve University School of Medicine, Department of Pathology/Immunology actively works in a research laboratory.

MELISSA SMITH is a Phlebotomist & Clinical Lab Supervisor Technician at OSU Medical Center, Outpatient Care East Lab in Columbus, OH (and STEM Club mom.) 

KARINA HANKENFOF is a Product Engineer & Lab Technician, specialized in materials and mechanical systems with Cincinnati Testing Labs in Cincinnati, OH (and Teays Valley alumni.)

CLAY BURGETT is a Chemist & Information Technology Manager at the American Chemical Society for the Chemical Abstracts Service (CAS), a division of the American Chemical Society in Columbus, Ohio.

COSI Science Festival’s Meet A Scientist Library Youth Program

STEM Club students, please take advantage of this free virtual library youth program made possible through a community collaboration between COSI, DuPont (Circleville), Pickaway County Library, and OSU Extension. Pre-register now!

COSI Science Festival’s Meet A Scientist Youth Program, Saturday, May 9, 2020, 11:00 AM – Peggy Scott, a Dupont polymer scientist, and Christy Yu, a Dupont quality engineer, share their personal experiences and passion for STEM careers to youth and their families. Learn about polymer chemistry, science careers, and engage in a virtual polymer-scavenger hunt from the comfort of your home. Pre-registration is required for this free educational event, go to, go.osu.edu/polymeryouthprogram. After registering, you will receive a confirmation email containing information and passcode to join the meeting. We’ll also send a reminder email prior to the event. #COSISciFest

For more information please email, thoreau.1@osu.edu. Here is the recording of the Polymer Scientist program! 

Bowling Green State University Scholar Shares Her Research Experience

By: Allison Cheek of Bowling Green State University, Candidate of Math and Science Education

Research Experience

This past fall, I was an incoming college freshman and I was told I would be participating in a research group. As a scholar of Bowling Green State University’s Science and Math in ACTION Program, I was allowed to participate in a research group. Research is part of our first-year requirements in the program. I thought that was very intimidating, having to conduct research with a team, as well as moving to a college campus and beginning college classes for the first time. Reflecting over this past year, I could not have been more wrong about being a part of a research group! Being on a research team has been an enlightening and satisfying experience. 

Illustration: an urban heat island. Image credit: NASA/JPL-Caltech, https://climatekids.nasa.gov/heat-islands/

Research Focus: Urban Heat Island

I joined a research group that focused on finding the hottest and coolest places on Bowling Green State University’s campus. Bowling Green is part of an urban heat island. An urban heat island occurs when the temperature is higher in a city than the surrounding rural areas because there are so many man-made structures in one place, such as asphalt parking lots, buildings, concrete structures, and cars. 

Camera Technology

My group and I wanted to find the hottest places on campus and find ways to cool the temperature on campus. We collected data each week at twelve locations throughout campus. Five locations were natural, such as; ponds, grass, and green roofs. Seven locations were man-made, such as roofs and asphalt parking lots. At each location, we recorded the air temperature and surface temperature by using infrared thermometers, as well as FLIR thermal cameras

FLIR T540 Professional Thermal Camera, photo credit: https://www.flir.com/

Roofing Systems

After collecting data for eight weeks, we concluded that the parking lots and roofs on campus had the hottest temperatures. After extensive research, we found that solutions to lower the temperatures on Bowling Green’s campus are to plant trees and vegetation, as well as implement green roofs and stone roofs. 

Green and stone roof systems diagrams, credits: http://www.coninnco.com/building-envelope/dow-building-solutions/inverted-roof-systems, http://godfreyroofing.com/commercial/education/roofing-articles/introduction-to-green-roofing/

Solutions

Using our conclusive solutions, we wrote a Green Fund Grant Proposal to BGSU to implement stone roofs to coat the roof of a dorm with no air conditioning, to cool temperatures. 

 

Graph 1: Natural vs. Man-made Surface Temperature and Air Temperatures created by Allison Cheek and an aerial image of McDonald Hall’s proposed roof site, at Bowling Green State University.

Seek Out Researching Opportunities

Being part of this research team was extremely rewarding for me. We were able to collect data, collaborate ideas, and attempt to implement a solution to cooling BGSU’s campus. I have seen the scientific method come to life with the process of research. Being able to participate in research at a university has been a wonderful experience and I would highly recommend participating in exploration if given the opportunity. This experience has helped me apply my scientific knowledge and make a difference by improving Bowling Green’s campus.

I am grateful to the ACTION Program and to my research advisor, Dr. Jodi Haney, for making this opportunity possible!

Photo: Left Allison Cheek, right Alyson Blunk, research students at BGSU.

 

Exploring Virtual STEM Club Sessions

Image result for virtual teaching through Zoom

Dear STEM Parents,

We, Judy and Meghan, have been exploring and video conferencing about how we could offer Virtual Elementary STEM Club Sessions for your child during the COVID-19 disruption. We developed a short survey that will help us assess what devices your student has available and if there is an internet or a mobile device with Wifi. We understand that online programs have an equity issue, but this problem will take many solutions to overcome, and this may be one of many. Please try to submit the survey by the end of day Friday, 27 March 2020. We’d like to start working on this asap: https://airtable.com/shrKY3ZocUI6oXhcy (Please only fill out the survey once! This is only for students already registered for the STEM Club Program.) We have also emailed this message to parents to cover our bases!)

We’d also like to include a few high school students in this program to help them earn their STEM Certificate and get more experience while sharing some tech skills as we plan and deliver our program. And remember to keep visiting our STEM Blog as we will be posting more stories in the coming weeks.

Remember to stay healthy, keep learning, enjoy the chaos of these close family times, and practice social distancing!

Image result for social distancing

Image source above: What is social distancing and how should you do it? [Getty Images]

Top header image source: Shutterstock / Rawpixel.com

Chem Basics and Career Exploration

By: Meghan Thoreau, OSU Extension Educator

Last month our young STEMists tacked chemistry basics, the periodic table, what makes up an atom, and chemical and physical changes. (Note: 360-video @ the end of the post!)

DAY 1

The students started the club session with an interactive presentation highlighting several careers in chemistry. All the careers mentioned have a short career highlight video to provide good visualizes of what the jobs entail, as well as how much additional education is expected. The students also learned the differences between credentials, such as an Associate Degree, a Bachler’s, a Master’s, and having a PhD. We were only able to allow the kids to pick five or six careers during the club, so please sit down and re-explore the interactive presentation with your child at home!

Figure 1: Image from the program presentation by Meghan Thoreau, go.osu.edu/chemistrycareers.

They learned about atoms, which is made up of three tiny kinds of particles called subatomic particles: protons, neutrons, and electrons. The protons and the neutrons make up the center of the atom called the nucleus and the electrons fly around above the nucleus in a small cloud.

Figure 2: Photo by Meghan Thoreau captures one of Ms. Walley’s many chemistry wearables. The sweater shirt depicts the element Helium. Helium’s atomic parts are pictures to the right.

Figure 3: the periodic table.

The students then began exploring the periodic table and how elements are organized and what different forms the elements exist at room temperature. They further familiarized themselves by playing a couple of games: Element Scrabble, spelling words with the element’s symbols and Periodic Table Battleship, strategically call out the period, the group, and the name of each element to sink their opponent’s ships.

Figure 4: Photos by Meghan Thoreau depicting element scrabble and periodic battleship learning games.

DAY 2

Students applied what they learned from Day 1 about chemical and physical changes to the hands-on chem labs. They learned that chemical changes have certain indicators: change in color, gas produced, temperature change, light produced, precipitate forms, or are irreversible.

The students broke up into groups and did a series of chemical experiments to see first hand what chemical changes look, feel, and smell like.

Figure 5: video highlight of STEM Club: Chem Basics by Meghan Thoreau produced in iMovies. Retrieve from: https://youtu.be/peZvyjRWB9s.

If slime is still permitted in your household and you’re looking for a Super Fluffy Slime Recipe try this:

  1. put 3 cups shaving cream in a bowl
  2. Add in 1/4-1/2 tsp of baking soda and stir
  3. Mix in 1/2 cup of glue and stir
  4. Add 1 full tbsp of saline solution and a coating on hands
  5. Mix until mixture forms a fluffy slimeball

Next month Dr. Brooke Beam, OSU Extension Educator from Highland County will lead us into learning about 360 technology and video and photo production. The students will be exposed to 360 educational VR experiences for an immersive learning adventure. Testing out the new 360 camera, here’s a clip below:

Figure 6: 360 short video highlight of STEM Club: Chem Basics by Meghan Thoreau produced in GoPro. Retrieve from: https://youtu.be/6JUQny_TdPI.


 

Engineering a Catapult and Creative Writing Challenge

By: Meghan Thoreau, OSU Extension Educator

This September Teays Valley elementary students learned about catapults and the engineering design process which involves problem solving and building solutions through teamwork, designing, prototyping, testing, rebuilding, and continuing to improve and reevaluate their design solutions.

Students learned the basic catapult design concepts and components. They learned about force, accuracy, precision, and angels – and made engineering connections – engineers apply science, writing, and math concepts early into the design process and prototyping before they’re ready to build final products to meet their clients’ needs.

https://www.gettingsmart.com/2017/10/integrating-edp-and-cbl-in-stem/

They also learned how force affects the motion of a projectile, the difference between accuracy and precision, as well as learned the optimum angle for launching a projectile the farthest distance, being at 45 degrees.https://wafflesonwednesday.com/accuracy-vs-precision/

Catapults may be an old technology, but engineers still apply many design concepts into modern applications that need to store potential energy to propel a payload. Examples such as clay pigeon shooting or more complex in aircraft catapult take off for short runways.

Our catapult project was a two-part challenge: 1) apply the engineering design process to building a catapult, and 2) use the catapults in a creative writing challenge. The students worked in groups moving through target stations.

They used their catapults to hit a dynamic target that gave them points, letters, words, and images. The students had to add up their points, look up new vocabulary with the acquired letters, add the words and phrases collected, and finally handwrite a group creative writing narrative that they read out loud to their peers.

Skills Applied:

  • Engineering concepts
  • Geometry/Angles
  • Visual Motor
  • Bimanual
  • Math/Addition
  • Alphabetization
  • Handwriting
  • Creative Thinking/Storytelling
  • Team Communication
  • Oral Presentation

*Pictures from Teays Valley Elementary Students registered for 2019-2020 STEM Club Program.

 

Club Highlights from 2018-2019

By: Meghan Thoreau, OSU Extension

LED Display Circuit Board Challenge

Elementary STEM Club just started its third year of STEM (science, technology, engineering, math) programming, engaging approximately a hundred 4th and 5th graders in after school hands-on STEM challenges and career exploration throughout the academic school year. Judy Walley, Teays Valley High School Chemistry Teacher, and Meghan Thoreau, OSU Extension Educator, co-teach the program, which also involves over two dozen high school mentor students. The mentors assist with club activities while themselves gaining both soft and technical skills, leadership, community service, and college/career exploration opportunities.

Physics and Center of Gravity Challenges

STEM education programs can have a positive impact on students’ attitudes towards STEM disciplines, 21st century skills, and a greater interest in STEM careers. Educators throughout Pickaway County have been busy in supporting a number of problem-based learning initiatives, business-teacher partnerships, and STEM teaching initiatives.

Foldscope, Origami Microscope Biology Challenge

Elementary STEM Club is one of those local initiatives that employs hands-on learning through a multidisciplinary approach into many subjects and career paths. The program challenges its youth in chemistry, astronomy, biology, coding, drone technology, connected toys, wearable tech, strategic mind games, escape classrooms, electric circuits, physics, renewable energy, beekeeping, aerospace, flight simulations, aviation, fostering a community service mindset, and more.

Strategic Mind Games and Bee Science Challenges

We invite specialists from the community to teach, share, and engage with the students, such as the Scioto Valley Beekeeping Association, OSU Professors, an Extension Energy Specialist, an OSU Health Dietitian, and the Civil Air Patrol to name a few. Next year we’re hoping to bring some virtual reality, 360 photography, and video production challenges to our students. If you’re interested in sharing a skillset, a technology, a career path, or a meaningful life experience to some amazing and eager-minded students, please email, thoreau.1@osu.edu or jwalley@tvsd.us.

We’d like to also thank everyone who has been involved in the program over the last two years. It’s been a pleasure and a plunge into the wild side of STEM education, youth workforce development, and promoting a mindset of lifelong learning – all critical to today’s workforce.

Civil Air Patrol and Aerospace Careers

Civil Air Patrol

We ended last year with a great program partnering with Civil Air Patrol (CAP). Civilian volunteers – with a passion for flight, science, and engineering – led the program highlighting STEM careers in aviation, space, cyber security, emergency services, and the military. The whole organization is powered by a team of dedicated civilian volunteers with a passion for aviation and STEM education. If you know of a student, 12-years and up, that has in interest in aviation, would like a chance to fly a plane, work towards their pilot license, attend leadership encampments, career academies, and more, visit http://www.ohwg.cap.gov/.

Aerospace Officer Donna Herald, Lieutenant Casey Green, and Lieutenant Colonel David Dlugiewicz volunteered their time and aviation skills to lead our youth into exploring the history of the Civil Air Patrol, emphasize the value of civic engagement, and underscore the growing deficient of pilots and aerospace specialist in the workforce.

Physics Concepts, Bernoulli Principle on Air Pressure Differential Theory Challenges

The CAP lessons built on previous STEM Club programming that taught physic concepts, the law of gravity, and re-instilled aircraft principal axes, such as the friction, center of gravity, and coding parrot drones challenges. Lieutenant Colonel Dlugiewicz taught the discussed Bernoulli Principle (an air pressure differential theory) and Sir Isaac Newton and the laws of motion and lift. The students engaged in a hands-on activity such as filling an air bag with one breath, leaving a gap between their mouth and the bag to allow a vacuum to form, demonstrating Bernoulli’s principle.

Part of a Airplane and Axis Challenges

Lieutenant Casey Green discussed the parts of an airplane focusing on the components that control an aircraft’s moment and direction. The students broke into groups and rotated between two stations. The first engaged the students in building paper airplane that they cut strategic slits into. The students experimented by folding different components of their airplanes to change and control the overall direction of their paper airplanes. The second station engaged the students in two different sets of CAP flight simulators to further the students’ understandings of the aviation principles taught in the program. The flight simulators provided a semi authentic experience that helps young pilots learn to fly.

Flight Simulator Challenges

Our community has some amazing young minds that are thinking and embrace the many dynamic career pathways of a STEMist. Please get involved and support more STEM programming in your community, it matters.

 

Buzzing Around In STEM


By: Emma Rico, Teays Valley High School STEM Club Mentor

Photo: Emma Rico leads the honey sampling station

Over the past year, I have been fortunate enough to be able to be apart of the STEM Club mentoring program at Teays Valley Elementary School Buildings. The program engages young minds in STEM challenges while stressing the importance of the science fields and problem solving skills. I watched the students eyes sparkle with curiosity and saw each grow as a student and an individual. However, when I’ve assisted with teaching the students, I also learned a couple extra things. I not only learned things in relation to the science topic that day (which I found very interesting), but I also learned more about myself. There is something about nurturing the minds of others that allows me to see myself more clearly and to impact others. The STEM mentoring program has allowed me to stretch my mind and the minds of others.

Photo taken by Emma Rico, bee keeper Louise Adkins leads discussion on bee anatomy.

This April the elementary students learned about the community, function, and purpose of one of the oldest creatures on earth: bees. With the help of OSU Extension, the Scioto Valley Beekeepers Association, Teays Valley School District, and a senior high school student, Erin Robinski, we have been able to teach the importance of bees and what we can do to help them survive in today’s changing environment.

Video produced by Emma Rico

We started off with a brief introduction by Tina Bobeck on the importance of bees being pollinators and the other variety of pollinators that exists, such as hummingbirds and bats, but also by monkeys, marsupials, lemurs, bears, rabbits, deer, rodents, lizards, and other animals. We learned surprising facts such that there are over five-hundred different types of bees that live in Ohio alone. The students also discovered some medical benefits from honeybee products, such as honey, bee pollen, propolis, Royal jelly, beeswax, and bee venom, have all long been used in traditional medicine.

Photo by Emma Rico, Louise Adkins showing off honeybee products to students.

Erin Robinski provided a short presentation to the students on what flowers to plant to help the bees in our area. The program was fortunate to have the president of the Scioto Valley Beekeepers, Louise Adkins, talk to the students about the anatomy of the bee and what makes them unique. The students learned that bees have five eyes, communicate with their antennas, can see ultra light, and do not have lungs. (Instead, bees draw in oxygen through holes in their bodies known as spiracles and pump the oxygen through a system of increasingly tiny tubes that deliver oxygen directly to tissues and muscles!) The students were eager to learn more during this portion and tended to ask more questions then the program allotted for, but we appreciated the inquiring minds.

Photo taken by Emma Rico, Observation Hive built by bee keeper Tom Zwayer.

We also had the Vice President of the Scioto Valley Beekeepers, Tom Zwayer, talk to the students about the role of a beekeeper and how the hive functions. Zwayer share the bee hive history to the students. In the 1800s Lorenzo Langstroth, an American apiarist, clergyman, and teacher created the modern day beehive used today. Langstroth is considered the “father of American beekeeping (and lived most in life here in Ohio.) The students also learned how bees are very protective of their home and do not like outsiders. They were shown how beekeepers can add an accessory to a hive’s entry point to confuse outside insects and bees by changing the “front door” access point. Beekeepers also set internal traps in the hive to catch unwanted mites and beetles that can harm the hive and bees. The students were able to try on the beekeeper suits, look at some real bees in the observation hive, try honey, and ask more questions of our local bee experts. They even came up with questions that I had not even thought of!

Photo by Meghan Thoreau, students trying on beekeeper suits, O-H-I-O.

I think the bee program was one of my favorite STEM themes, because the students were able to learn about how small creatures keep our world alive. In addition, the students learned how they can help bees through planting local pollinators as well as growing food and treating for pests more sustainably. It doesn’t take much to make a big differences for bees. I feel honored to be able to influence young students in exploring STEM fields. It is an opportunity that I wish I could have been involved in more during high school. This program has allowed me to be more involved in the community, help ignite the flame of curiosity, and learn more about how the world around me works. It is one of the things that I will miss after graduation, but I hope that these young STEM students will grow and make real transformative impacts to come in our future!