Benefits to Learning to Sew with an e-Sewing Circuit Challenge

By: Meghan Thoreau, OSU Extension Educator

Click and watch the e-Sewing circuit program highlight video.

Benefits to Kids Learning How to Sew

Teaching children how to sew infuses many essential life skills such as problem-solving, hand-eye coordination, and patience. Sewing encourages people to use their individuality and creativity. It also can be very relaxing and provide a healthy outlet for stress and anxiety relief. Depending on the projects, sewing can expose students to different cultures or historical periods by having them learn different traditional sewing methods, technologies, styles, or pattern-making.

e-Sewing Circuit Projects

Last month the students learned how to sew while simultaneously applying their electrical skills practiced earlier in this program in a hands-on e-Sewing circuit project. Electric sewing (aka e-Sewing) projects are a great way to engage and teach students several different skills at once, including electronics, circuitry, sewing, digital fabrication, collaboration, problem-solving, coding, coordination, math, and creativity.

sewing tool box

An example of a sewing toolbox, of common tools sewers use and techniques the students learned, such as how to use a needle threader.

Sewing techniques used in the unit.

Students learned different stitching techniques, particularly the “running stitch” in their e-Sewing project. They also practiced how to thread a needle using a needle threader tool and different methods to sewing buttons.

Students practice various sewing techniques: threading a needle, sewing buttons, and a running stitch.

Future Career Exploration

Even though sewing may be thought of as being an “old-fashioned” skill, it is certainly not outdated or irrelevant. Sewing has a long history and has been a part of humanity for thousands of years and will continue to offer valuable applied skills. Sewing has evolved along the way and embraces new technologies and advances.

Combining sewing and electronics can expose students to an array of potential careers in fields, such as E-textiles, fashion technology, interactive art, product design, prototyping and invention, soft robotics, textile engineering, or wearable electronics. It broadens their understanding of the diverse applications of STEM in the real world.

Textile Technology for Soft Robotic and Autonomous Garments. Image source: https://onlinelibrary.wiley.com/cms/asset/d2ae9cfa-b8b8-481b-b649-8a1983bbf481/adfm202008278-fig-0004-m.jpg

Success! Students show off their completed sewing projects.

ArtBot Robot & Holiday Card Design Challenge

By: Meghan Thoreau, OSU Extension Educator

What is cooler than a Robot that makes art? Humanizing and retooling robotic art into a personalized holiday card. 

Our young elementary STEMists at Teays Valley Local Schools have been learning about electricity, simple circuits, elements, batteries, electrons, and atoms, and how they work together in electrical and robotic systems.

This winter’s design challenge taught students how to build a simple circuit robot called, ArtBot, which connected a simple motor to a single circuit system that vibrated to create geometric art.

This is an entry-level project that explores terms and concepts of a: robot, moto, battery, circuit, and vibration. It also allowed students to work through the engineering design process and adjust certain variables in the design to change the center of gravity that impacted the geometric art design the robot produced.

Supplies per student included: AA batteries (2), AA battery holder with positive and negative wires (1), 3-volt DC motor (1), cork (1), electrical tape, double-sided tape, hobby knife, scissors, plastic cup (1), popsicle stick (1), washable markers (3), a large paper sheet, and an optional lab notebook for design, reflection, observations, and googly eyes or facial stickers to personalize robot. A short how-to video was used to give the students an idea of construction methods.

The second creative challenge came from using a piece of robotic art in making a holiday greeting card. Additional paper, glue sticks, stamps, and paper cutters were provided to allow students to get creative and personalize their cards.

A great design-build art project to end the year. More to come in 2023!