Would global trade contribute to food security without overwhelming our planet?

Global trade supplies food to countries in conditions of food scarcity by redistributing food commodities among the different regions of the world; at this time, roughly one-fourth of the food supply globally is provided through international trade (D’Odorico et al., 2014). If more productive regions (producing more output per unit input of land) export their produce to countries with lower productivity, we could feed more people than we could when the food supply is only domestically generated. As shown in Figure 1, for example, cereal demand in Africa and East Asia can hardly be met without global trade. The global food trade is also a more efficient way of using natural resources world-wide. 588m3 of water is needed to produce 1 ton of wheat in France, whereas 18,698m3 of water is required for producing the same amount of wheat in Somalia (Mekonnen & Hoekstra, 2011). By importing agricultural commodities, countries with low agricultural productivity and scarce natural resources like Somalia can optimize resource use (i.e., water or land) at both the national and global level. Thus, the global food trade not only plays an important role in global food security, but has also become a crucial part of allocating limited global resources.

Figure 1. Global Cereal Trade in 2017. The colors of the regions represent the net import of cereal products (import-export). Reds are net importers and blues are net exporters. The top 10 flows in terms of the volume traded are shown. The flows shown account for 16.3% of the total cereal products related to global trade. Cereals include wheat, rice, maize, barley, millet, oat, rye, and sorghum. Trade data were taken from the FAOSTAT database.

 

However, global trade is not always conducive to global food security and resource conservation.

First, decreased food prices due to trade can boost consumption in the importing countries, thus in turn causing overproduction in the exporting countries (Kastner et al., 2014). The so-called rebound effect highlights a possibility that increased production efficiencies through trade may increase overall demand, so that resource use can instead be expanded. For example, deforestation in the Brazilian Amazon has been driven by the increase in soybean production for livestock feed in developing countries, with a rebound of soybean prices in global markets (Morton et al., 2006).

Second, trade dependency can make importing countries vulnerable to external shocks, as these countries increasingly rely on resources that they do not directly control (D’Odorico et al., 2014). It is widely known that droughts in production regions, as well as banned grain exports, triggered the Arab Spring in 2011[i]. An unexpected crisis like the pandemic last year (and continuing into this year) poses greater challenges to import-dependent countries as well[ii]. Furthermore, an influx of cheap subsidized commodities from exporting countries can threaten both the domestic market and local biodiversity, as well as undermine rural livelihoods, which in turn strengthens the trade dependency (Carr et al., 2016). For instance, exports of maize from the U.S. to Mexico under NAFTA are reported to be as detrimental to Mexico’s smallholder farmers and domestic biodiversity of maize varieties (Martinez-Alier, 1993).

Third, the increasing export of value-added crops (i.e., coffee, cocoa, or tropical fruits) from lower-income countries may influence food security at the local level. The increasing rate of traded volume from 1987 to 2017 is higher in stimulants (244%) and fruits (217%) than in cereals (153%), which has been largely driven by developing countries. While some argue that cultivating such crops is beneficial to food security because of increase in rural income (Kuma et al., 2016), others find negative relationships between household food security and value-added crop production (Anderman et al., 2014). For example, the expansion of banana plantations in Northern Laos for Chinese customers raises concerns about food security due to the conversion of paddy rice fields to the plantation and rising rice prices (Friis & Nielsen, 2016).

The three points listed above imply that “a multifaceted and linked global strategy” (Godfray et al., 2010) should complement international food trade in order to feed growing populations without overwhelming our planet. Measures to shift dietary preferences toward less consumption of meat products can be helpful for mitigating the rebound effect. Continuous efforts to increase domestic productivity and to diversify suppliers will buffer external supply shocks in import-dependent countries. Strategies to ensure the food security of cash crop farmers in developing countries are required, and environmental regulations for sustainable resource use need to be implemented as well.

Sohyun Park

PhD Candidate in Department of Geography

The Ohio State University

 

  • Anderman, T. L., Remans, R., Wood, S. A., DeRosa, K., & DeFries, R. S. (2014). Synergies and tradeoffs between cash crop production and food security: A case study in rural Ghana. Food Security, 6(4), 541–554.
  • Carr, J. A., D’Odorico, P., Suweis, S., & Seekell, D. A. (2016). What commodities and countries impact inequality in the global food system? Environmental Research Letters, 11(9), 095013.
  • D’Odorico, P., Carr, J. A., Laio, F., Ridolfi, L., & Vandoni, S. (2014). Feeding humanity through global food trade. Earth’s Future, 2(9), 458–469.
  • Friis, C., & Nielsen, J. Ø. (2016). Small-scale land acquisitions, large-scale implications: Exploring the case of Chinese banana investments in Northern Laos. Land Use Policy, 57, 117–129.
  • Godfray, H. C. J., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, J. F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: The challenge of Feeding 9 Billion People. Science, 327.
  • Kastner, T., Erb, K.-H., & Haberl, H. (2014). Rapid growth in agricultural trade: effects on global area efficiency and the role of management. Environmental Research Letters, 9(3), 034015.
  • Kuma, T., Dereje, M., Hirvonen, K., & Minten, B. (2016). Cash crops and food security: Evidence from Ethiopian smallholder coffee producers. The Journal of Development Studies, 55(6), 1267-1284.
  • Martinez-Alier, J. (1993). Distributional Obstacles to International Environmental Policy: The Failures at Rio and Prospects after Rio. Environmental Values, 2(2), 97–124.
  • Mekonnen, M. M., & Hoekstra, A. Y. (2011). The green, blue and grey water footprint of crops and derived crop products. Hydrology and Earth System Sciences, 15(5), 1577–1600.
  • Morton, D. C., DeFries, R. S., Shimabukuro, Y. E., Anderson, L. O., Arai, E., Del Bon Espirito-Santo, F., Freitas, R., & Morisette, J. (2006). Cropland expansion changes deforestation dynamics in the southern Brazilian Amazon. Proceedings of the National Academy of Sciences of the United States of America, 103(39), 14637–14641.

 

[i] https://www.pbs.org/newshour/world/world-july-dec11-food_09-07

[ii] https://www.brookings.edu/blog/future-development/2020/07/14/middle-east-food-security-amid-the-covid-19-pandemic/

Leave a Reply

Your email address will not be published. Required fields are marked *