Explaining Science – plant genomics

Brandon Sinn performing molecular lab work

Brandon Sinn performing molecular lab work

Brandon Sinn, PhD graduate from the OSU herbarium, now a postdoctoral fellow at West Virginia University, recently published a paper on molecular work he did to better understand the evolution of genomes in Asarum (Aristolochiaceae), commonly known as wild ginger. The work was done in collaboration with Dylan Sedmak, an OSU undergraduate student, Lawrence Kelly, Associate VP of Science, New York Botanical Garden and John Freudenstein, Professor and Chair of EEOB and Brandon’s PhD advisor.

We interviewed Brandon to get a better understanding of his research findings:

Brandon: “Evolutionary relationships in the flowering plant genus Asarum served as the focus of my dissertation research, and I continue to study the group.  In this particular project we studied six Asarum species, which each represent one of the six major evolutionary lineages within the genus.

Flowers of some Asarum species found in southern Appalachians

Flowers of some Asarum species found in the southern Appalachians

Asarum is a poorly-understood genus of approximately 115 species found in temperate forests across Asia and North America. Some Asarum species are common and widespread across the continents where they are found, while the majority have highly restricted ranges – for example, one species is known only from a single gorge in North Carolina and others are found in only a few counties in the southeastern United States.

During the course of sequencing DNA for my dissertation research, I realized that the genes of some Asarum species were not in the expected order. This departure from expectation was surprising, since the clade, or evolutionary neighborhood, that Asarum belongs to is very old and had been partially characterized as having slowly-evolving and highly conserved genomes. For example, the genome of another member of the same clade has been called a “fossil” genome. It was because of this unexpected observation that we decided to sequence complete genomes from one species from each of Asarum lineage. ”

This lead to the following research questions: Note: A plastome is the genome of a plastid, the organelle responsible for photosynthesis in plants.

1) Have the plastomes of all Asarum species been destabilized and their gene order rearranged?

2) Is the plastome of Saruma henryi (commonly called upright wild ginger), the closest relative of Asarum, of typical arrangement or is it more like that of Asarum?

3) Can we understand how the ordinarily highly conserved and stable plastomes become destabilized by comparing the plastomes of many Asarum species to that of Saruma henryi?

Saruma henryi, a flowering plant in the family Aristolochiaceae, endemic to China

What should we know to understand this research?

Brandon: “Each plant cell contains at least one copy of three distinct genomes. It is easy to imagine that each cell has a copy of the plant’s genome, but many people forget that two types of plant organelles, mitochondria and plastids, also have their own genomes. Plastids, from which chloroplasts develop, have a very small genome that is relatively easy to completely sequence and the sequence of more than 2,000 are publicly available today. The sequencing of thousands of plastomes has resulted in several general trends: 1) plastomes change more slowly than the plant’s own genome; 2) the plastome is made up of three functional regions, the small single copy, large single copy, and inverted repeat regions; 3) the physical order of genes is highly conserved across even distantly related species; 4) there is very strong selective pressure on the preservation of photosynthesis, which most likely constrains the evolution of plastomes in green plants. Our knowledge of the typical layout of the plastid genome, or plastome, has long been relied upon to sequence DNA in order to study plant evolutionary relationships. Traditional DNA sequencing techniques require prior knowledge of the order of genes or regions of a genome. If this order is not as predicted, then the DNA sequencing will fail.”

What method did you use to study your research question?

Brandon: “For this study, we sequenced entire plastomes from six Asarum species and that of Saruma henryi, the closest relative of Asarum. Since traditional DNA sequencing is not useful in destabilized and dynamically rearranged genomes, and we wanted to sequence entire plastomes that we hypothesized were rearranged, we needed to use a technology called massively parallel sequencing. A major advantage of massively parallel sequencing is that a researcher can extract DNA from a tissue, break the DNA into short pieces, and simultaneously sequence all of these fragments without prior knowledge of their physical relationship to one another. The resulting millions of DNA sequences are then assembled, much like a puzzle, using specialized software. The assembled  plastomes can then be compared.”

Brandon explains one of the key figures in his manuscript:

A cruciform DNA structure that has likely destabilized a region of the plastome in Asarum species. Structure courtesy of Eric Knox.

A cruciform DNA structure that has likely destabilized a region of the plastome in Asarum species. The end of the ndhF gene is shown in red. Structure courtesy of Eric Knox.

DNA is made of only four chemicals (which we abbreviate as the letters A, T, C and G) and is not entirely unlike a spiral staircase, where each handrail is a string of these letters. Holding this structure together are bonds that form between certain letters – A-T and G-C. We call these letters nucleotides. Sometimes the nucleotides making up DNA cause the molecule to form complex shapes, such as the cruciform structure shown here. Cruciform, or cross shaped, DNA structures form when the same nucleotides are repeated very close to one another, which is depicted in the vertical “stems”.

plastomes

Cruciform DNA structures can be difficult for the molecular machinery in cells to work with. For example, sometimes molecules that interact with DNA get stuck on the stems, and these structures compromise the integrity of the DNA molecule. When these structures break, which you can imagine by separating the red and black halves of DNA for Saruma henryi, the cell tries to put them back together. But, repairing DNA does not always work perfectly. The results of our research suggest that faulty repairs made to this DNA structure throughout the plastomes of Asarum species have resulted in varying degrees of DNA duplication. Notice that the ndhF gene (shown in red) is typically at one end of the small single copy region, as shown on the Saruma henryi plastome. In Asarum, this gene often has a long stretch of nucleotides that can be “pasted before or after it. In other Asarum plastomes, such as Asarum canadense, we find that all of the small single copy region has been duplicated. The duplication of the formerly single copy region is most likely due to faulty repair of the cruciform DNA structure, where identical strings of nucleotides close to one another led to bonding of two identical DNA regions (as seen in the Asarum canadense cruciform structure).”

Why is this research important?

Brandon: “When you learn about DNA in high school science classes, everything sounds very concrete and well understood, but even gene function in humans is not exhaustively understood. Our basic knowledge about how genes and genomes evolve is in a constant state of improvement. This knowledge is necessary for future breakthroughs in genome engineering, evolutionary and conservation biology, and improving genome stability.  Just as it is important to understand biodiversity at the level of species, it is equally important to understand genomic diversity – the content and structure of genomes, in order to understand how mutations in particular regions of genomes can lead to genome-scale changes over deep time and how these changes affect evolutionary lineages.”

What should you take away from these findings?

1) Just because a species is a member of a very old evolutionary lineage, we should not expect that it is a living fossil and that its genome has changed little.

2) A plastome can function even when gene order is changed and more than half of its genes are present more than once.

3) Small, likely randomly generated repetitive motifs in DNA sequence that is not part of a gene can decrease genome stability, and lead to genome rearrangement and gene duplication.

*******************************************************

Wow, we are now certainly asking questions and getting answers with new techniques that we could not have imagined decades ago. If you want to follow Brandon’s further research, click here.

About the Authors: Brandon Sinn photoBrandon Sinn earned his Ph.D. in 2015 from the Department of Evolution, Ecology and Organismal Biology, where he was a member of the Freudenstein Lab in the Museum of Biological Diversity. Brandon has held a postdoctoral research position at the Pfizer Plant Research Laboratory of the New York Botanical Garden, where he worked on the Planteome Project. He is currently a postdoctoral fellow in the Department of Biology of West Virginia University where he studies orchid genome evolution as a member of the Barrett Lab.

Angelika Nelson is the curator of the Borror Laboratory of Bioacoustics and the social media manager for the museum.

Follow us also on Facebook.

 

 

Reference:
Sinn, B. T., Sedmak, D. D., Kelly, L. M., & Freudenstein, J. V. (2018). Total duplication of the small single copy region in the angiosperm plastome: Rearrangement and inverted repeat instability in AsarumAmerican journal of botany105(1), 71-84.

A Snapshot of Ohio Lichen Diversity 125 Years Ago

The Kellerman Displays for the 1903 Chicago Exposition

Most of the specimens at the Ohio State University Herbarium (OS) are tucked neatly into cabinets, not on display. But adorning one long wall are what at first glance look like pictures. Artfully arranged, with wood frames and a glass front, a close look reveals they are not paintings but are in fact real, once-living, plants and fungi.

Framed specimens at The Ohio State University Herbarium

The displays are quite pretty and they’re obviously rather old, but I never stopped to consider just how old they are, or how they came to be. A modern interpretive sign explains that they, along with four larger, more intricate panels of Ohio trees, were assembled for display at the World’s Columbian Exposition, a big world’s fair held in Chicago for six months in mid-1893.

write-up by Ronald L Stuckey about Kellerman's Columbian exposition mounts

Write-up by Ronald L Stuckey about Kellerman’s Columbian exposition mounts

At the top of each 18 x 22-inch panel is a printed heading “Flora of Ohio,” and beneath that, in ornate old-style penmanship, are the words “Prepared by Professor and Mrs. W. A. Kellerman.” William A. Kellerman was remarkably energetic and wide-ranging in his botanical interests. Making these panels was an appropriate hobby for a person whose life revolved around plants and fungi. An Ohio native born in 1840, he attended Cornell University for undergraduate studies and later received his Ph.D. from the University of Zurich, Switzerland. He taught at schools in several nearby US states before returning home to become OSU’s first botany professor and Chairman of the Department of Botany when it was formed in 1891. That same year, he established the Herbarium in a building aptly named “Botany Hall” that unfortunately no longer exists on OSU’s oval. Since then the Herbarium has moved twice, first to the also aptly named “Botany and Zoology” building (now Jennings Hall) and then to its present location as part of the Museum of Biological Diversity on West Campus (1315 Kinnear Rd.). While his principal research interest was rust fungus diseases of crops, Kellerman’s numerous works on the flora of the regions where he lived reveal an extraordinary breadth of knowledge. He wrote a guide intended principally for use by teachers entitled “Spring Flora of Ohio” (1895) and co-authored, beginning in 1894 and subsequently updated several times, “A catalogue of Ohio Plants.” Sadly, while Kellerman was on a research trip to study fungi in Guatemala, he contracted a fever (most likely malaria) from which he died in 1907.

Photo of WA Kellerman in the Journal of Mycology

Photo of W.A. Kellerman in the Journal of Mycology

The panels are an interesting snapshot of the flora of Ohio. While aesthetics and enthusiasm for particular plants may have played a major role in their selection by the Kellermans, the panels were indeed portrayed to fairgoers as indigenous representatives of our flora. As there have been substantial changes in the composition of our vegetation, especially for such pollution and disturbance-sensitive organisms as lichens, they arouse curiosity about the past versus present status of these organisms.

Lichens are dual organisms consisting of fungus plus alga. The algae are single-celled photosynthetic organisms. The fungus, which constitutes most of the body of a lichen, provides a home for the algae, usually in a layer just beneath the surface. Most lichens fall into one of three growth-form categories: (1) usually small “crustose” lichens that are tightly attached to the substrate and so don’t have a discernable lower surface; (2) small to medium-sized “foliose” lichens that are flattened and can usually be separated from the substrate, and (3) “fruticose” lichens that have a bushy shape, either standing upright from the surface they are growing on, or dangling off a tree branch or trunk. Most of the lichens in the panels are foliose species.

Illustration of three growth-form categories of lichens

Three growth-form categories of lichens

There doesn’t seem to be a strict organization scheme for the lichen panels; they’re not in alphabetical or taxonomic order, except that one panel consists mostly of crustose species, while the few fruticose ones represented are grouped together, sharing space with some foliose ones. I suspect that the paucity of fruticose types is attributable to the display method only being suitable for flat or readily flattened specimens.

Each panel includes 9 specimens, with handwritten labels. The classification of lichens has undergone substantial change in the past century and a quarter, hence many of the names written by the Kellermans are not in use today. Fortunately, an on-line database called “Consortium of North American Lichen Herbaria” lists specimen records for lichens residing in collections spanning the continent, and the site lists all the names by which a species has been known in the past.

The present distribution of lichens in Ohio is well described in The Macrolichens of Ohio by Ray E. Showman and Don G. Flenniken, published in 2004 by the Ohio Biological Survey, and distribution maps presented on the web site of the Ohio Moss and Lichen Association. The status of the lichens more broadly is set forth in a monumental book, Lichens of North America by Irwin M. Brodo, Sylvia D. Sharnoff and Stephen Sharnoff, published in 2001 by Yale University Press, along with an updated companion volume by Brodo published in 2016 by the Canadian Museum of Nature, Keys to Lichens of North America: Revised and Expanded.

One panel caught my eye. This is a group of mostly rather large foliose lichens, including several “lungworts,” members of the Lobaria –robust broad-lobed species found on bark.

Display of a group of mostly rather large foliose lichens

A group of mostly rather large foliose lichens

Among the most easily recognized of all lichens, lung lichen, Lobaria pulmonaria, was once widely distributed across Ohio, but no more. All but one of the 14 county records for lungwort are pre-1945, with the other one record being sometime between 1945 and 1965. Extensive searching has failed to find lung lichen today.

Why is it lung lichen gone from Ohio? It’s probably due to a multiplicity of factors that prevailed during the late 19th, and early 20th centuries: air pollution and disturbance of old-growth forests. Now that conditions are better for it to grow, perhaps a lack of propagules is keeping it from reestablishing itself. While eventually a warbler or vireo might fly in from some north woods with a little piece of lungwort on its foot, this might be a good candidate for a deliberate reintroduction.

Photo of lungwort growing on a tree in Maine

Lungwort growing on a tree in Maine

This is what lungwort looks like, growing on a tree in Maine. It’s a beautiful lichen and that just might still be growing in in a bottomland forest somewhere in Ohio, or it might soon return. Keep an eye out for it the next time you go hiking!

About the Author: Bob Klips is Associate Professor Emeritus in the department of EEOBiology at The Ohio State University. He currently assists with moss and lichen databasing in the OSU herbarium. His research focuses on bryophyte ecology.

Playing the role of a bee

Mid-spring through mid-summer is a good time to see our native orchids in flower here in Ohio.  One of the showiest groups is the Lady’s Slippers, which have a distinctive pouch-shaped lip.  We have four species of Lady’s Slippers (Cypripedium) in Ohio and one of the more frequent ones is the Yellow Lady’s Slipper (C. parviflorum).  There are two varieties of this species – Large and Small.  The Large (var. pubescens) tends to be a plant of rich woods in more upland situations, while the Small (var. parviflorum) is a plant of wet and often more open situations.  In addition, there are floral differences, including overall flower size and coloration of petals.  In many places they are quite distinct, but in others there seem to be intermediates, which is the main reason that they are not called distinct species.

The Small Yellow Lady’s Slipper in flower at Cedar Bog.

The Small Yellow is the less common one in Ohio, given that there are fewer instances of its habitat than for the Large.  One place that the Small occurs is Cedar Bog in Champaign County.  Cedar Bog is really less of a “bog” and more of a “fen” or swamp, because it is not a lake that has been filled in with Sphagnum moss, creating an acidic habitat, but is rather an alkaline wetland that has water flowing through it.  Cedar Bog is owned by the Ohio History Connection and the Ohio Department of Natural Resources.

Pollinating a flower.

Unfortunately, the numbers of Small Yellow Lady’s Slippers at Cedar Bog have been declining recently, so the preserve managers wanted to have the flowers hand-pollinated to increase the changes of seed set, rather than depending on bees to do the job.  They called on me as an orchid specialist to perform the pollination, since orchids have a rather specialized floral morphology.  Two weeks ago my colleague, Richard Gardner, from the ODNR Division of Natural Areas and Preserves, picked me up and we headed out to Cedar Bog.  Once there, we put on rubber boots because we needed to hike off the boardwalk to the orchids.  We made our way to the plants, which had been surrounded by plastic fencing to keep the deer from browsing them.  We opened the enclosures and I set to pollinating, removing the pollen masses (pollinia) from one plant with forceps and transferring them to another.  There were only five stems up this year, and only three of those were in flower, so each pollinium was fairly precious.  I did my best, but we won’t know for a few weeks if the pollination was successful – hopefully we will soon see capsules beginning to swell that will be filled with mature seeds by the end of the summer.

You can learn more about Cedar Bog at this website.

About the Author: Dr. John Freudenstein is Director of the OSU Herbarium and Professor of EEOB.  Photographs by Richard Gardner.

An 1892 Framed Plant Mount on display at the Thompson Library

The first director of The Ohio State University Herbarium and his wife, Dr. and Mrs. William Ashbrook Kellerman, prepared quite a large number of framed mounts of Ohio plants in 1892. According to the previous curator of the herbarium, Dr. Ronald L. Stuckey, these were “part of an exhibit of the Ohio flora displayed in the Ohio State Building … at the Columbian World’s Fair in Chicago in 1893. The total collection consisted of a display of mounted specimens of leaves, twigs, flowers, fruits, section of wood and bark of Ohio’s forest trees, and flowering plants, mosses, lichens, and algae.”

One of these framed mounts, twigs and wood section of the white oak tree, Quercus alba L., is currently on display at the Thompson Library until May 14, 2017. Dr. Florian Diekmann, head of the Food, Agricultural, and Environmental Sciences Library and Student Success Center, was in contact with the staff of the OSU herbarium early June last year seeking help in displaying specimens of white oak as many of the wooden structures of the main library were obtained from that plant.

Since the original twigs and leaves were not in good condition and the glass was chipped in a corner, Dr. Diekmann agreed to have it restored and refurbished. This is just one of the many framed, mounted but not displayed items in the Herbarium hitherto. The idea behind the gallery is to show the “unique connections and history shared between The Ohio State University and Ohio’s forests.” The Ohio State University Herbarium was glad to share its resources with the general public and has also made other items available for display at the gallery.

This slideshow requires JavaScript.

Mesfin Tadesse, curator OSU herbariumAbout the Author: Mesfin Tadesse is curator of vascular plants at The Ohio State University Herbarium.

*** We would like to hear from you, please leave a comment ***

The Story of the Ohio Buckeyes

In our previous postwe introduced the story of the Ohio Buckeye, the origin of the term ‘buckeye’, the tree’s scientific name (Aesculus glabra), its relationship with the OSU mascot, Brutus, and how it was introduced to football fans of Ohio in 1987. Here, we continue with the story of the buckeye, but with a different focus. We will show how the Ohio Buckeye is both similar and different from other buckeyes, discuss its habitat, flowers, fruits, and how you can grow your own buckeye in your backyard.

Flower and leaves of the Ohio Buckeye

Flower and leaves of the Ohio Buckeye  (c) John V. Freudenstein

Diversity

Currently, there are 13 species of buckeyes in North America, Europe and Asia. Six species are native to the United States. In Ohio you can find two native and several cultivated species. All buckeyes have large compound leaves made up of 5 to 7 leaflets per leaf that radiate from the same point at the end of a leaf stalk. They range from large trees to shrubs. The native species are the Ohio Buckeye (Aesculus glabra) and the Yellow or Sweet Buckeye (Aesculus octandra).

Ohio Buckeye leaf, bud, tree and fruit

Ohio Buckeye  (c) http://forestry.ohiodnr.gov/

Yellow Buckeye leaf, bud and fruits

Yellow Buckeye (c) http://forestry.ohiodnr.gov/

Non-native species cultivated in Ohio include the European Horse Chestnut (Aesculus hippocastanum), and the southeastern US Red Buckeye (Aesculus pavia). Most species of buckeyes are bee pollinated; the Red Buckeye is hummingbird pollinated and its flowers are red and tubular.  The hybrid between the Ohio Buckeye and the Sweet Buckeye, called Maryland Buckeye (Aesculus x marylandica), is also cultivated in Ohio.

Horse Chestnut fruits, flower and bark

Horse Chestnut (c) http://forestry.ohiodnr.gov/

Enjoy some photos of buckeye specimens in our collection:

This slideshow requires JavaScript.

Habitat

All buckeyes are found in woodlands and forests of various types, along riverbanks and floodplains. The introduced species and the hybrid plants make attractive trees in lawns, gardens, parks and on roadsides.

Flowers

flower of Ohio Buckeye close-up

Flowers of Ohio Buckeye

Flowers of the Red Buckeye

 

 

 

 

 

 

 

 

The flowers are clustered together forming a cone-shaped panicle, a loosely branched inflorescence. They range in color from white (Horse Chestnut), to pale greenish yellow (Ohio Buckeyes), yellow or reddish (Sweet or Yellow Buckeye) to red (Red Buckeye).

Fruits

Fruit of Ohio Buckeye

Fruit of Ohio Buckeye

The fruits are leathery and open from the top when fully mature. In Ohio Buckeyes and Horse Chestnuts, the fruits are prickly due to short spiny outgrowths while in Sweet Buckeye, they are not. Despite similar fruits, Horse Chestnuts can easily be differentiated from Ohio Buckeyes based on the leaflets, which are mostly 7.

Properties

In the past, the seeds of the Ohio Buckeye were used as a source of oil for lamps, as an insecticide and as a paste for book binding. The wood was used in making bowls, spoons, handles and boxes. Since the wood is easy to carve, it was also used in making artificial limbs. Extracts from the bark were also used to dye leather. Today, the seeds are carried by some people as a good luck charm and they are treated in much the same way as a four-leafed clover. Some people also associate curative properties to the seeds, particularly for rheumatism.

Grow your own Buckeye

Buckeyes may be cultivated and propagated and can easily be propagated from seeds. Collect the seeds and do not allow them to dry out. Simply place several, fresh seeds, since not all may germinate, in shallow soil, about an inch deep. Gently press the soil down and keep them moist. Some seedlings will develop the next spring. If several seedlings come up, remove all except one so that this will develop into a tree. The seeds require three or more months of cold treatment (34-40 F) for good sprouting.

According to records, the Ohio Buckeye is not widely cultivated because “nurseries tend to emphasize the showier horse-chestnut, and perhaps also because of its poisonous properties (a few communities have even enacted ordinances prohibiting its cultivation). However, buckeyes make attractive and interesting landscape plants and are not hard to grow. One disadvantage is that the leaves tend to fall a bit earlier than [those of] other trees, especially in a dry summer, and, of course, the fruits and seeds drop to the ground below after they ripen. But they are not particularly difficult to remove from a lawn”.

This slideshow requires JavaScript.

References:

Cooperrider, T. S., A. W. Cusick, and J. T. Kartesz, (eds.), 2001. Seventh Catalog of the Vascular Plants of Ohio. Ohio State University Press, Columbus.

Furlow, John J.  1991. What is a Buckeye? The Story of the Ohio Buckeye Tree. The Ohio State University Herbarium. Unpublished ms.

Weishaupt, C. G. 1971. Vascular Plants of Ohio. Ed. 3. Kendall/Hunt Publishing Co., Dubuque, Iowa.

 

Mesfin Tadesse, curator OSU herbariumAbout the Author: Mesfin Tadesse is Curator of Vascular Plants in the OSU Herbarium.

 

*** We would like to hear from you – please leave a comment ***

What is a buckeye?

During the football season, we are accustomed to seeing Brutus Buckeye dancing on the sidelines, shaking his enlarged head, and helping to stimulate enthusiasm for our team on the gridiron. Opposing teams usually have mascots that are more easily recognizable, such as a lion, or badger, or valiant soldier. What, then, is a buckeye?

The term “buckeye” originated from indigenous peoples noticing that European immigrants coming into Ohio had larger eyes, similar to those of the male (buck) deer. The settlers, therefore, were called buckeyes.

Seed of the Ohio buckeye.

Seed of the Ohio buckeye.

One of the native trees in Ohio, which we now call the Ohio buckeye, has large seeds that also resemble large buck eyes, which led to application of the name as the buckeye tree. This common name was applied to the entire tree and any of its parts. Our mascot, Brutus, represents one seed of the Ohio buckeye tree, attached, obviously, to a human body. This is a most unusual mascot. Most institutions use fierce animals or symbols of strength; very few have a plant. A seed in flowering plants is always formed within a fruit, which in the case of the Ohio buckeye is large, leathery, and slightly prickly. One to several seeds are formed inside. The tree can be up to 30 feet tall, and the leaves are divided into segments.

Leaves and fruits of the Ohio buckeye tree.

Leaves and fruits of the Ohio buckeye tree.

One of the attractive aspects of the buckeye tree is the colorful display of yellow flower clusters (inflorescences) that appears in late Spring throughout the state. The buckeye is used by The Ohio State University as part of the University seal, showing a leaf with two fruits (Fig. 3).

A pennant containing the official seal of The Ohio State University.

A pennant containing the official seal of The Ohio State University.

The Ohio buckeye came into the scientific world as a new species, under the name Aesculus glabra, described by Professor Carl Ludwig Willdenow, Director of the Botanical Garden in Berlin, Germany. Seeds were collected about 1803 from some unknown locality in Ohio or neighboring state and sent to Berlin for germination. It grew successfully in the garden, and when the small tree flowered, a specimen was prepared, with Prof. Willdenow describing it as new to science in 1809.  This specimen is called the nomenclatural type (holotype) and is forever associated with its scientific name.  In a certain sense, this can be regarded as the original buckeye.

The original specimen (holotype) of Aesculus glabra Willdenow.

The original specimen (holotype) of Aesculus glabra Willdenow.

Because of the importance of Aesculus glabra to the state of Ohio and The Ohio State University, a campaign was initiated in 1985 to bring the original buckeye to campus. This was not an easy endeavor, because the Berlin Botanical Garden and Museum had never loaned any of the historically important Willdenow specimens to another institution.  After serious negotiations, and in recognition of the help that the United States had made through the Marshall Plan to reconstruction of Germany after World War II, the holotype of the Ohio buckeye was loaned to Ohio State in the summer of 1987 for several months. It was hand carried from Berlin to Columbus. Thanks to financing from the office of the President at OSU, a special mount was made for the specimen, which allowed it to be placed on an easel for display.  Housed in the Herbarium of the University, at that time still in the Botany and Zoology building at 12th and Neil Avenue (now Jennings Hall), it was taken on tour to alumni clubs in the state. Most exciting, however, was the presentation of the holotype on 14 November 1987 on the 50-yard line during the Ohio State-University of Iowa home game to the assembled fans. President Jennings formally received the specimen for the University, assisted by me and Prof. Daniel Crawford, the Chair of the Department of Botany.  Even Brutus had the opportunity to get to know his scientific origins.

Different parts of the buckeye tree are used as memorabilia or symbols. Very popular are necklaces made of actual seeds, which can be worn in the stadium to help cheer on the players. Also popular, especially to folks with a sweet-tooth, are the buckeye candies resembling seeds, with peanut butter centers bathed in chocolate.

Socks bearing Buckeye symbols from a local souvenir shop.

Socks bearing Buckeye symbols from a local souvenir shop.

In addition to these obvious symbols, there are countless items in souvenir shops that have images of buckeye seeds and/or leaves, ranging from socks to hats, and including underwear and toilet seats!  The football players even receive a buckeye leaf on their helmets, a badge of honor, after completing an outstanding play during the game.

The Ohio buckeye, therefore, is an important part of the fiber of life at Ohio State University. It is satisfying that the center of all the attention is a plant. We in the Herbarium are delighted that all members of the university community are continually reminded of the importance of the botanical sciences, especially in the Autumn season during each football game!

 

od Stuessy, professor emeritus at EEOBAbout the Author: Tod F. Stuessy is Professor Emeritus at the OSU Herbarium.

 

 

*** We would like to hear from you – please leave a comment ***

Impacts of Rain Gardens on Urban Bird Diversity

Rain gardens have proven to be a useful tool to mitigate stormwater run-off in cities. They are depressions on the side of the road or sidewalk with plants that absorb rainfall and prevent water from picking up pollutants and carrying them to the nearest stream. The plants and soil also filter the water. But this is not the only service rain gardens provide, the diversity of plants used in them increases habitat for many animals. Many insects and spiders are drawn to the local plants and they in return attract birds and small mammals. Rain gardens can provide nice shelter for these animals too.

As part of project “BluePrint” the City of Columbus plans to install some 500 rain gardens in the Clintonville area to manage stormwater runoff. Dr. Jay Martin, Professor of Ecological Engineering at OSU joined the project to holistically quantify the impacts of stormwater green infrastructure on societal services such as stormwater management, public health, community behavior, economics, and wildlife habitat. Dr. Martin’s PhD student David Wituszynski focuses on the animal aspect and recently contacted the Borror lab to discuss his research idea. David wants to test the hypothesis that implementation of such a large network of rain gardens will increase the diversity of urban bird species.

SongMeter mounted (https://www.wildlifeacoustics.com)

SongMeter mounted (https://www.wildlifeacoustics.com)

Specifically, he wants to develop automated acoustic methods to track urban bird populations. He will deploy SongMeters, automated recordings units, and program them to record surrounding sounds at certain times of the day. It is easy to record thousands of hours of bird and insect sound, but one needs to analyze them afterwards and identify vocalizing species.

This takes us back to the problem of automated sound recognition raised in Monday’s post. Dr. Martin and David are collaborating with Don Hayford from Columbus Innovation Group who will develop techniques to filter out background noise (such as human voices, machinery, cars, barking dogs – all familiar sounds to our neighborhoods) and produce files of target sounds that can then be analyzed with existing software.

My role will be to provide reference sounds for the software as we need to train the software to recognize known vocalizations of local bird species. This is not an easy task because some bird species have quite varied vocalizations. Our large and diverse archive of sound recordings will come in handy, we have many recordings of local Ohio species. These should cover most of their diverse vocalizations. Our goal is to build classifiers that automatically recognize and label species in the recordings.

map of Clintonville area with proposed rain gardens (project BluePrint, Columbus OH)

Will you get a rain garden on your street? check this map

We have just submitted a grant application to help us fund some of this research. The first SongMeters will be deployed this fall and we will start monitoring the areas to get a baseline level of bird activity. Come spring the city will install rain gardens in the neighborhood and we can compare our recordings before and after the installation. This certainly is a multi-year project. We will keep you updated.

Should you see a rain garden in your neighborhood, take a picture and share it on social media #BLB #raingarden #songmeter!

 

Further resources:

The project BluePrint was featured in the Columbus Dispatch last January!

Learn more about rain gardens in Central Ohio!

 

About the Author: Angelika Nelson is the curator of the Borror Laboratory of Bioacoustics at OSU and Co-PI on the project “Determining Impacts of Rain Gardens on Urban Bird Diversity” with Dr. Jay Martin, David Wituszynski and collaborator Don Hayford.

Impressions of Volunteers working in the Herbarium

Two of our long-time volunteers working in the herbarium

Two of our long-time volunteers are busily processing plant specimens in the herbarium prep room

You may have read the “impressions” of an OSU student who works in the herbarium on a part-time basis. Today, we present the views of two volunteers who have been extremely helpful in the maintenance of The Ohio State University Herbarium.

Donna Schenk cheerfully arranges some plant specimens

Donna Schenk cheerfully arranges some plant specimens

Donna Schenk reflects: “I worked part-time in the herbarium when I joined the work force in 1999 after a 20 year stint as a stay-at-home mom.  My interest in plants has lasted my whole life.  My family raised hot-house tomatoes in Northeast Ohio and we worked as a family in the greenhouse.  After getting a Biology degree in college and marriage, my husband and I had a garden and started seeds each year.  I am also a Life Member of the Herb Society of America, which emphasizes the scientific aspects of plants. So my love of plants is genuine.

The work in the herbarium gave me an opportunity to learn more botany.  I always tell people I learned botany by osmosis in the herbarium.  It was a natural thing for me to return to the herbarium as a volunteer after my retirement from the Ohio State University.   I enjoy my hours in the herbarium where I continue to learn botany. Mounting the many different types of specimens also allows me to create things that are as beautiful as they are educational.”

 

Marty Marlatt glues some plant specimens

Marty Marlatt glues plant specimens

Marty Marlatt‘s story is quite different: “I retired, after almost 34 years, from the Computer Science and Engineering Department at The Ohio State University. I was scouting around for activities to get involved in after retirement when I learned of the Ohio Certified Volunteer Naturalist program.  The Dublin Parks and Recreation office was managing the program for Franklin County, so I contacted them and obtained the application form.  There were only 20 people selected to participate and I was one of the 20. I was excited as I love all things outdoors!

We spent several Saturdays in class at venues around Columbus with various instructors. For example, we learned of the prairie garden at COSI, the wetlands and vernal pools at Darfee Park, and the Museum of Biological Diversity. Most classes were several hours in length, so we spent an entire afternoon with John Wenzel at the Museum as he explained what the Museum provided in the way of research and then he gave us a tour of the facility. I was hooked. I walked out of there thinking “This is the best collection of dead things I’ve ever seen!”

As part of the Naturalist program, we agreed to volunteer for a specified amount of time. I volunteered several hours mapping locations of bluebird houses for the Dublin Parks and Rec office. My territory was about a third of the Dublin City limits and I was given a map and a handheld GPS to log in the houses I found. But that wasn’t enough hours. I remembered Dr. Wenzel saying the Museum held an open house once a year and they always needed help. So I emailed him. He promptly forwarded my email to Cynthia Dassler, who was in charge of volunteers that year. Cynthia was happy to have me on board and gave me many interesting things to do – mounting skulls, making posters, arranging the exhibit items from Peary’s polar expedition, etc. Cynthia indicated that I did a fine job and if I wanted to further volunteer to contact her.

I waited a few weeks and finally emailed Cynthia saying I’d like to come talk about volunteering at the Museum.  When I arrived, Cynthia introduced me to Mesfin Tadesse and said Mesfin could use help here in the Herbarium or we can find other work for you to do. Mesfin was quick to say “yes, we have many thousands of specimens that need mounted and no one to do it.”  That was all it took. I am a sucker when it comes to people needing help, and thousands of specimens and no one to mount them seemed like a person in serious need!

I knew absolutely nothing about mounting plant specimens, but I agreed to give it a try, even though I had told myself that I wanted to volunteer with something other than plants. It’s not that I don’t like plants. I have dirt in my veins, a Master Gardener certificate, and an insane need to plant something each spring. But Mesfin had a huge need. So here I am, after 8 years, still mounting plants. I love working with the students, faculty and the other Herbarium volunteer, Donna. Volunteering in the Herbarium has brought more than just a volunteer activity – it brought me new friends and acquaintances. Thank you Cynthia and Mesfin!”

 

About the Authors: Donna Schenk and Marty Marlatt are long-time volunteers in the herbarium.

Impressions of working in the Herbarium

I have been working at The Ohio State University Herbarium in the Department of Evolution, Ecology, and Organismal Biology (EEOB) since May 2015. This particular unit is known for its vast collection of botanical specimens. A quick stroll through the herbarium paints a picture of its deep reserve of information. This stroll both begins and ends with my workplace, the herbarium preparation room, where my co-workers and I mount pressed plants as our student job.

Workplace to process plant specimens in the herbarium

Workplace to process plant specimens in the herbarium

For us, a typical work day starts by preparing all the necessary utensils or equipment. First I lay out a sheet of plexiglass as the working surface. Then I prepare a suitable ratio of Elmer’s glue (used for wood, paper, etc.) with water, and the brushes that I’ll need for the day. There’s a cabinet that includes the specimens that I and other assistants work from. One day we work with simpler, more sturdy specimens with wide leaves, like those of the Asteraceae (the daisy family) or Solanaceae (the potato family) – families of plants that I learned well while working here. Other days we work with grasses, the Poaceae, that are harder to mount as there are many thin surfaces to attach to the mounting paper. This will then be kept in a bin for up to 48 hours to dry, after which it will be taken out, sorted out, and given an accession number.  Additional work such as taping and sewing is done by volunteers. Finally the specimens are stored for posterity in the herbarium’s collection.

This slideshow requires JavaScript.

What is interesting about these dry plants is that each specimen was brought to the herbarium for a particular purpose. Each specimen has its own story. Although the action of mounting the plants requires attentive handling and an affinity for aesthetics and composition, the heart of the process really lies in the plant’s journey to the OSU herbarium. Some of the plants we mount are fifty or even hundred years older than us. Others come from remote parts of the world that we had never heard of and, at times, we resort to a discussion of geography and history with the herbarium staff to satisfy our curiosity.

To think that many of these plants crossed oceans to be stored for dozens or hundreds of years is quite humbling. They are the fruits of botanists who travel the world to catalogue and annotate their findings on a piece of archival paper. The information contained in the collected specimen is crucial to the progress of research. That’s why scientists go through such lengths to collect more data.

A small perk of working with old specimens is that they often come wrapped in a newspaper from their time of collection. It’s interesting to see the age of the dried plants and to gain an appreciation of their historical context. Once, I opened a bundle wrapped in a Ugandan newspaper so old that the images were added manually before being printed, instead of being inserted digitally. I then wondered how far technology has progressed. The newspapers also tell other stories, for example the news items, prices of products, etc., 50 or even 100 years ago. So, there is another kind of history in a herbarium collection.

Quirks aside, there are some more serious undertones to the practice of mounting plants. Truthfully, I feel like it is a declining practice. With the growing emphasis on molecular biology in research facilities, the value placed on plant preservation or mounting is dwindling. Although understandable, as genetic analyses can be more lucrative, it’s a shame that plant collecting and mounting is losing attention.

There will always be demand for mounted specimens as they are reflections of botanical history. They give researchers eyes-on contact with their subject of botanical research. Familiarity with the plant of study is paramount to creating quality research. Furthermore, the practice of plant collecting underlies botanical methods laid out by the famous Swedish naturalist, Carl Linnaeus, from the start.

Plant mounting connects the botanical community. It’s a reliable way of building relationships between universities while building on the communal body of knowledge. We just have to make sure not to lose sight of its importance. Students like me who work in such facilities have also built up relationships with one another and with the staff of the unit as well as the volunteers who come once a week to help in this process of preserving biodiversity.

Plant mounting makes the botanical community grow tighter. It’s a practice that has been used for hundreds of years, and will continue to be used well into the future.

I learned a lot not only about botany but also history and geography while working in The Ohio State University Herbarium.

 

About the Author: Martin Stuessy is an undergraduate senior at The Ohio State University, majoring in Philosophy.

Pre-Asian Carp Invasion: Muskingum River Survey

zano1_dsfrmybrdg

Photo of the Muskingum River from the National Weather Service

A little over two years ago a test of the Muskingum River using eDNA techniques showed positive results for Bighead Carp, one of several Asian carp species, and Northern Snakehead.  Although the Ohio Division of Natural Resources (ODNR) and U.S. Fish and Wildlife Service sampled the Muskingum River extensively neither of these invasive species was actually caught.  It may be that the highly sensitive eDNA technique picked up genetic material from bird feet or boat bottoms that traveled from areas where the invasive species were well established, but that has yet to be proven conclusively.

The OSUM Fish Division is currently carrying out a project to survey the Muskingum River watershed from top to bottom under the supervision of project leader Brian Zimmerman, with a grant from the Ohio DNR Division of Fish and Wildlife, overseen by Associate Professor and MBD director Meg Daly. Fifty-five sites above, below and in each of the nine pools between the locks and dams of the mainstem, and 5 each along the two major tributaries of the Muskingum River, Muskingum River lock and dam Photo from the Ohio Canal Society, the Walhonding and the Tuscarawas Rivers, will be sampled.

Muskingum River lock and dam, Photo from the Ohio Canal Society

Muskingum River lock and dam, Photo from the Ohio Canal Society

The sampling techniques will include

  1. Electroshocking: as the name implies, this technique involves the application of electrical current to stun fish, causing them to remain immobile for crew members with pole nets to retrieve them and place them in a large tub in the boat.
  2. Seining: The use of 6’ tall x 8’ wide seine nets by two or three people in this project to sample shallow areas.
  3. Benthic Trawling: We take an 18’ flat bottomed John boat with two 25 horsepower outboard motors and drag a small “otter” trawl net along the bottom of the river.
  4. Hoop Netting: This method uses 3 sets of large mesh nets supported by iron hoops. The hoop nets are left out for two days after which we return and remove the fish from the nets. Read more about this technique on our fish blog.

With all of the methods the catch is identified, counted, measured and weighed, and returned except for any invasive species we may catch (fortunately no Silver or Bighead Carp have been caught!…yet…). We see a very high rate of survival of the captured fish and these are returned to the river.

The project will extend over two years, from July to September of 2016 and 2017, and will culminate in a final report providing an assessment of the Muskingum River fish community.  This information will provide a baseline for use in potential remediation efforts should the silver and/or bighead carp become established above the Devola Dam.

Technically all carp (Silver, Bighead, Grass, Common, Black, and Prussian carp, and Goldfish are the species currently established in the United States but there are at least four more – Crucian, Catlan, Mrigal and Mud Carp- are recognized as valid species) are Asian in origin.  Common Carp, by the way, are believed to have originally come from the Caspian Sea.  Back in the 1880’s the U.S. Commission of Fish and Fisheries intentionally distributed Common Carp in rail cars across much of the United States to serve as a food fish, but the idea never caught on as extensively as hoped due to the habit of wild carp to scavenge the bottom of water bodies.

Common Carp are invasive, but are considered naturalized.  They can be deleterious to stream and lake bottoms, and do impact other fish, bird, and mollusk species as well as plants, but at this point the damage has been done, so to speak.  After nearly 140 years native fish and other animals have adapted to Common Carp.  Some fishermen and environmental agents prefer to kill Common Carp whenever they are caught, in many cases simply throwing them on the stream bank to suffocate, but in truth this has little if any effect on the population since their recruitment rate is extremely high.

Silver and Bighead Carp were brought to the United States during the 1970’s and 1980’s, and escaped into the Mississippi River watershed from their state, federal and privately run facilities following extensive rains that overflowed the hatcheries.  In the Mississippi River and many tributaries they are securely established in abundances that impact native fish species and interfere with local trawling concerns.

Adult fish species that are known to be adversely affected by Silver and Bighead Carp are Gizzard Shad and Bigmouth Buffalo.  The dietary overlap of the carp with these native fishes has been shown to reduce the adults’ size and health.  In addition the high volume planktonic grazing employed by these carp is likely to compete for that food source with larvae and young-of-the-year of most other native fishes, ultimately causing a reduction in native populations.

Grass Carp are established in lakes and rivers across the State of Ohio.  Deleterious effects from this invader include removal of macrophytes (large aquatic plants) from stream bottoms with concurrent increases in turbidity.  The macrophytes provide cover and spawning habitat for many native organisms.  The carp only digest about 1/2 of the plants they eat, so the large amounts of fecal matter cause algal blooms.  The OSUM crew has caught several Grass Carp already, euthanizing and saving samples from them.

It is not known at this point what the remediation would consist of if Bighead or Silver Carp do invade the Muskingum River.  Similar to many other invasive species it would be extremely difficult if not impossible to completely eradicate them from waterways like the Muskingum River that have connections to other rivers that contain the species.  Short of completely damming the river (which carries its own set of ecological problems), or installing an electric barrier as has been done between the Illinois River and Lake Michigan, eradication would be short-lived.  It may be that the best approach would be to simply utilize the pests as a food source as has been done in Kentucky and other states, since their flesh is much more palatable than that of common carp.  If we catch any Bighead or Silver Carp (electroshocking works well for larger Silver Carp, while hoop netting is one of the best methods for Bigheads) they will be euthanized with samples taken for DNA analysis, but we really do hope that is not the case.

 

About the Author: Marc Kibbey is Associate Curator of the Fish Division at the Museum of Biological Diversity.