Field ornithology

A recent post on Cool Green Science about Margaret Morse Nice “How a Scientific Outsider Changed How We Study Birds” inspired me to think more generally about how researchers study bird behavior in the field and how acoustic recordings can help us understand bird behavior. By the way, here “field” does not refer to a type of habitat rather it encompasses any natural habitat (rivers, lakes, meadows, forests etc.) in which animals live.

Margaret Morse Nice portrait

Margaret Morse Nice looking into a nest of baby sparrows, 1956 (Wikipedia)

Margaret Morse Nice’s most important contributions to ornithological research were probably in the advancement of techniques in studying birds. She was one of the few American women ornithologists in the 1930s and the first to make detailed observations of individual birds. She followed Song Sparrows through their lives, took notes on their life history and published her observations in over 200 papers and books. Most of her publications are listed in her autobiography “Research is a passion with me“.

cover of Margaret Morse Nice's book Research is a passion with me

Book by Margaret Morse Nice “Research is a passion with me”

Interestingly, Nice who was born in Massachusetts in 1883 studied Song Sparrows in Columbus, OH where she and her family lived in 1927-1936. During these eight years she closely followed birds on their property off Patterson Ave, a floodplain on the east-side of the Olentangy river just north of Lane Ave, what is today Tuttle park. Even though the habitat has changed from the shrubs, weeds and gardens in Nice’s time you can still find open areas especially along the river which Song Sparrows to this day use to build their nests and raise their young.

To follow individual birds closely, identify them repeatedly and note their behavior and interactions with each other, it was clear to Nice that she needed to mark the birds. Over the years she trapped some 870 Song Sparrows which she marked with unique combinations of plastic color bands on their legs. We still use the same technique today.

color-banded Song Sparrow

“Red-black / yellow-metal” banded Song Sparrow (c) K. Whittaker

Bird banding actually started in Europe as an aid to follow migrating birds and still is used for this purpose: Researchers put a metal band with an engraved unique number on a bird’s leg – just like your social security number. They report this number as well as where and when the bird was caught and banded to a central lab, here in the USA the central bird banding lab in Maryland. When somebody then recaptures or finds a banded bird, they can access this information through the bird banding lab and relate it to data they collect about the bird.

Colored leg bands help researchers to follow individual birds. Sounds easy? It can be once you have the colored leg bands on the bird. First you have to catch the bird and that can prove tricky. We primarily use two established bird trapping techniques: walk-in traps and mist-nets.

Just as the name implies, wire-mesh traps are placed on the ground, seeded with some tasty morsels and when the bird in search of food walks into the trap a door closes behind it and traps it within.

Collared Dove in a Potter Trap

Collared Dove in a Potter Trap (c) Third Wheel Ringing Supplies

For a mist-net imagine a volleyball net strapped between two poles but with finer mesh and all the way to the ground. These nets work best in foggy weather conditions when they are nearly invisible and when placed strategically in a bird’s flight path, the subject will fly into the mesh, bounce and fall into a fold at the bottom of the net and get entangled. We then “extract” the bird from the net and band it. – By the way not everybody can trap and band birds because they are highly protected under the Migratory Bird Treaty Act dating back to 1918. Through training with a master bird bander researchers can obtain a U. S. Federal Bird Banding and Marking Permit.

So what role does sound play in this? Sometimes we lure birds to the mist-net by playing calls or songs of its species. Why does this attract a bird? Most songbirds are territorial, i.e. they defend an area that they use exclusively for feeding or breeding and song keeps every other bird of the same species out of this territory. Some researchers have actually done clever experiments to prove this keep-out function of birdsong, but that is a story for another post.

Doug Nelson holding up a loudspeaker playing bird song in front of a mist net

Doug Nelson holding up a loudspeaker playing bird song in front of a mist-net in Oregon (c) Angelika Nelson

So, birds do not produce their most beautiful songs to please us, rather one function is to repel a male contender. If the opponent does not take this warning, a bird will switch to physical attack. Exactly this behavior can get them trapped in a mist-net as they search intently for the invisible opponent, aka loudspeaker, and eventually dive at in attack.

This brings me back to Nice’s contributions to field ornithology: Nice studied closely the territorial behavior of “her” birds. Once all males were banded she made close observations of where they sang, how they interacted with neighbors and whether they were able to attract a mate. She described patterns of invaders and defenders during territorial encounters and described the role that song played in these. To this day this is a prominent research topic in our lab where we have studied territorial singing behavior in the White-crowned Sparrow and other species over the last decades.

Following in the footsteps of Margaret Morse Nice, Dr. Chris Tonra, Assistant Professor in the School of Environmental and Natural Resources at Ohio State, has started a project to continue work on behavior of the Song Sparrow. He and his students regularly band today’s local Song Sparrow population at Ohio State’s Wilma H. Schiermeier Olentangy River Wetland Research Park, less than one km upstream from Nice’s former home, and follow them throughout the year. He uses some of the techniques from Nice’s days, others have advanced – read more about the project here!

 

About the author: Angelika Nelson is the curator of the Borror Laboratory of Bioacoustics. Her recent research has focused on song and behavioral ecology of the White-crowned Sparrow in Oregon; each spring Angelika teaches the OSU course “Ohio Birds” where students learn about the life of birds and how to identify them in the field – by sight and sound.

 

References:

“Nice, Margaret Morse.” Complete Dictionary of Scientific Biography. 2008. Encyclopedia.com. (August 17, 2016).

Dead clams walking – Part I

 

Freshwater mussels are the most imperiled animals in North America according to the US Fish & Wildlife Service. Habitat destruction, pollution, dams, and a litany of other problems have driven many to the verge of extinction. Alas, many are already there. Perhaps the poster children of extinct or soon-to-be-extinct mussels are members of the genus Epioblasma. Once widespread in eastern North America, perhaps no other group has been so decimated by the activities of mankind. And “decimated” is an understatement. Technically, “decimated” means to kill every tenth member of something. For Epioblasma, every species is either extinct or endangered to the point of becoming extinct. And we, mankind, did this to them.

Because so many species of Epioblasma are extinct, the habits of very few have ever been studied. But those that have been investigated reveal a unique (if perhaps somewhat shocking) lifestyle. Like most freshwater mussels, members of Epioblasma have a parasitic larval stage, the glochidium, that uses fishes as hosts. Most mussels have evolved some means of efficiently putting their babies on the proper host. This usually entails luring the host to the mussel to be parasitized. But Epioblasma goes one step further – they actually catch the fish and hold onto it until it has been covered with thousands of parasitic larvae. Mama mussel then releases the host. If all goes as planned, several weeks later the larvae will transform on the fish, fall to the bottom and start their life as juvenile mussels. For the few species for which the hosts are known, the victims are darters and sculpins. The fishes have no one but themselves to blame – they are caught by the mussel when they get too nosy and stick their heads in the mussel to investigate.

Below are some images of the federally endangered Northern Riffleshell and its unfortunate host. Members of the Division of Molluscs have been moving this rare species from the Allegheny River in Pennsylvania to Big Darby Creek in Ohio. The Allegheny population is the only reproducing one on earth but it is doing very well, with probably 100s of thousands of individuals. In partnership with the Columbus Zoo & Aquarium and Columbus Metro Parks, we have been relocating this species for nearly seven years with the permission and funding of the US Fish & Wildlife Service, the ODNR Division of Wildlife, and the Pennsylvania Fish & Boat Commission. To date nearly 10,000 individuals have been moved. In order to monitor these mussels, every one has been affixed with a $4 Passive Integrated Transponder (PIT) tag. All have been released into several of the Metro Parks on Big Darby where they can be protected and monitored. The goal is to start a reproducing population there with the ultimate hope of delisting the species as endangered. This is the largest introduction/augmentation of an endangered species in the history of Ohio.

Next time we will present a gallery of Epioblasma.

A female Northern Riffleshell, Epioblasma torulosa rangian

A female Northern Riffleshell, Epioblasma torulosa rangiana

A male Northern Riffleshell

A male Northern Riffleshell

A female Riffleshell awaiting a nosy darter

A female Riffleshell awaiting a nosy darter

A darter has been caught by the mussel's shells and held for parasitization

A darter has been caught by the mussel’s shells and held for parasitization

This darter did not survive the ordeal. Note the larval mussels attached to the fish's opercles and eyes.

This darter did not survive the ordeal. Note the larval mussels attached to the fish’s opercles and eyes.

PIT tags, about the size of a large grain of rice

PIT tags, about the size of a large grain of rice

PIT tags are glued to the outside of the shell with an underwater epoxy

PIT tags are glued to the outside of the shell with an underwater epoxy

Release of tagged individuals to a site on Big Darby Creek

Release of tagged individuals to a site on Big Darby Creek

Dr. Ieva Roznere (OSU) monitoring the mussels with a PIT tag reader

Dr. Ieva Roznere (OSU) monitoring the mussels with a PIT tag reader

A pair of recovered individuals

A pair of recovered individuals

 

 

 

 

About the Author: Dr. G. Thomas Watters is Curator of Molluscs at the Museum of Biological Diversity.

Liggers, snails and the Everglades

 

Among the most beautiful snails are the Florida Tree Snails of the genus Liguus. Few groups of molluscs have such a storied past. Liguus, or Ligs, are arboreal snails occurring in southern Florida, Cuba, with a single species in western-most Haiti. The number of species involved depends on the people asked and the amount of beer consumed. Most people agree that Cuba, with an abundance of named species, was the ancestral home of the group. It was probably only a short hop for Guantánamo’s snails to the Haitian shore via hurricane-driven foliage. And many, including this writer, believe that Ligs were also the original Cuban refugees to Florida – rafted from Cuba to the Keys and the Gold Coast. And from there, all heck broke loose.

Delicatus form

Delicatus form

The situation is this: the snails live in hammocks, which are islands of trees surrounded by sawgrass and other soggy vegetation. To the tree-hugging snails this intervening area might as well be the ocean. They cannot, by themselves, get from Hammock A to Hammock B unless they are blown there on vegetation during hurricanes or perhaps rafted during floods. It is what happens next that is important. In all likelihood only a very few snails will make it to the next hammock. Should they survive and there are enough individuals to mate (they are hermaphrodites) or they are already pregnant, that next generation, now isolated, will have only a small fraction of the genetic variation of the original populations. The result is an enormous variety in shell coloration where specific patterns only occur in a single hammock or group of hammocks. Fifty-nine patterns have been named.

 

Barbouri form

Barbouri form

In Florida the Ligs occurred in three general areas: the Keys, the Gold Coast, and the Everglades. Collecting them, particularly in the Everglades, could be an adventure. And those adventurers called themselves Liggers. On foot, on horseback, in Model As, some of America’s most famous malacologists ventured into the chigger-infested, cotton-mouth crawling, gater guarded, sawgrass cutting landscape in the early 1900s. Long before GPS or even decent maps, these intrepid collectors produced hand-drawn maps and named and numbered hundreds of hammocks and cataloged the Ligs they found there. Archie Jones, perhaps the most experienced of the Liggers, once remarked that a Ligger needed two qualities: high stamina and low IQ.

 

 

Lignumvitae form

Lignumvitae form

These were not just shell collectors. They were conservationists. They quickly realized that many of the hammocks were being destroyed and others would inevitably be lost as well. The Keys were being cut-over for houses. The Gold Coast was being paved in concrete for posh hotels. The hammocks, and their unique snails, would soon be lost forever. But by 1957 snails were being transplanted out of harm’s way into the newly formed Everglades National Park where they would be protected. Most of the 59 “forms” still exist today but perhaps not in their original location. That’s where the Division of Molluscs comes into the picture.

 

 

We have one of the largest collections of Florida Liguus in the world, much of it purchased directly from Archie Jones. We were interested in zoogeographic patterns between the color forms. We used the powerful but complicated mapping software ArcIMS to plot the various distributions. But first we had to georeference the hundreds of Liguus hammocks – whose location you may remember was in the form of hand-drawn maps nearly a hundred years old. With the invaluable aid of several students we found and plotted the hammocks. Using a layer for each color form it was possible to compare distributions with each other and other environmental factors such as land type. The effort is available on line through our Division website. It is the first of its kind to map these snails (and the only one as far as I know). Go here and select “Maps:”

http://www.biosci.ohio-state.edu/~molluscs/OSUM2/

Septentrionalis form

Septentrionalis form

Original range

Original range

Original range under concrete

Original range under concrete

Castaneozonatus form

Castaneozonatus form

Original range

Original range

Besides being beautiful shells the Ligs beg several very interesting ecological and phylogenetic questions. The elephant in the malacological room is: “Are they all the same species, just local variations, the product of a single Cuban introduction?” I suspect not. My pet hypothesis, lacking any data whatsoever, is that our Floridian Ligs are the product of several introductions of several species. “Are they color forms, species, subspecies, or something else?” I suspect something else. I think this is a fantastic opportunity for some student to investigate this complicated problem using emerging phylogenetic methods.

As a parting word, the Olde Tyme Liggers were not averse to a little ad hoc experimentation. “I wonder what would happen if we took this snail from Hammock A and this snail from Hammock B and put them in a snail-less Hammock C? Whaddaya think?” Well, they form hybrid color patterns, all dutifully named after colleagues and wives.

About the Author: Dr. G. Thomas Watters is Curator of Molluscs at the Museum of Biological Diversity.

Digitizing your Mussels

 

Museum accessibility has proceeded by leaps and bounds in a relatively short span of time. When I was working on chitons for my Masters Thesis I routinely made the pilgrimage to the National Museum, the Academy of Natural Sciences, the Museum of Comparative Zoology, and many others to examine material. Outside of the occasional loan or (God forbid!) an actual letter, there was no other way to get information out of a collection. This quickly changed with the advent of the world-wide web. Coupled with electronic databases, it was now possible for scientists to view catalog data without ever leaving the office. While in some ways this is unfortunate (every systematist should at some point visit these historical collections), the result was millions of records available at the touch of a keyboard. The OSU Division of Molluscs joined this effort early on by placing their freshwater mussel collection catalog online. The freshwater gastropod collection will be next to be uploaded for an estimated total approaching 2 million specimens – the largest freshwater mollusc collection in the world.

But still, these are only records. How do you know the specimen behind the record is correctly identified? What color is it? In what condition is the specimen? Is there some unusual feature that might be of interest? Enter the next phase – the creation and uploading of digital images of the specimens, and associated labels. With the image(s) available online, now a worker can see nearly everything he/she would ever want to know about the specimen – again without ever leaving the office. Sounds great. But to the people who actually curate the collections this is a quantum leap in effort. Specimens must be retrieved, set up for imaging, photographed, incorporated into the database, and uploaded.

The freshwater bivalve collection is in this laborious phase of producing digital images of specimens. With over 90,000 lots to image, this will not be a quick project. To speed up the effort we image not individual specimens, but individual lots. Scale bars are included in the photo to indicate approximate size. Labels are also imaged. These are incorporated into the catalog database so that all information may be viewed online – collection record, locality map, lot image, and label image. In our version, a button on the catalog screen will take the viewer to the images. The upload of this digitized catalog is some ways off, but stay tuned.

Proposed catalog with link to images

Proposed catalog with link to images

Digitized specimens and label

Digitized specimens and label

 

 

 

 

 

 

 

 

 

About the Author: Dr. G. Thomas Watters is Curator of Molluscs at the Museum of Biological Diversity.

 

Collecting the small plants

 

When told that a herbarium is a collection of plants, most people think of flowering plants or pine trees, or perhaps even ferns. The herbarium possesses these plants, but it also has other plants – an often, overlooked group of plants, the bryophytes that include mosses, liverworts and hornworts.

An example of a bryophyte, the ribbed bog moss, Aulacomnium palustre, with stalks of propagules that will be dispersed for asexual reproduction. From a wet meadow at Waldo, Marion County, Ohio. April 21, 2006. Photo by Bob Klips.

An example of a bryophyte, the ribbed bog moss, Aulacomnium palustre, with stalks of propagules that will be dispersed for asexual reproduction. From a wet meadow at Waldo, Marion County, Ohio. April 21, 2006. Photo by Bob Klips.

Bryophytes are small. As a result, the characters that distinguish bryophytes are small, microscopically so, but the array of beauty and intricacy displayed in flowering plants also are present in bryophytes. Those researchers that study bryophytes, bryologists, are privileged to observe this vibrant world of miniature plants.

An example of the complexity and elegance of the spore-producing structures of the small-mouthed thread moss, Bryum lisae var. cuspidatum, as observed by a bryologist. Alum Creek State Park, Waldo, Marion County. April 17, 2008. Photo by Bob Klips.

An example of the complexity and elegance of the spore-producing structures of the small-mouthed thread moss, Bryum lisae var. cuspidatum, as observed by a bryologist. Alum Creek State Park, Waldo, Marion County. April 17, 2008. Photo by Bob Klips.

 

Bryophytes are small plants and often require the use of dissecting and compound microscopes to view diagnostic characters. Here, bryologist, Diane Lucas, uses the compound microscope to view the shape and size of the leaf cells of a moss.

Bryophytes are small plants and often require the use of dissecting and compound microscopes to view diagnostic characters. Here bryologist Diane Lucas uses the compound microscope to view the shape and size of the leaf cells of a moss.

A leaf of the moss, Bryum flaccidum, showing hexagonal leaf cells. Moss and liverwort leaves are only one cell layer thick, thus each individual leaf cell is easily visible, as seen here viewed with the compound microscope. The shape and size of the leaf cells are often used to distinguish moss species.

A leaf of the moss, Bryum flaccidum, showing hexagonal leaf cells. Moss and liverwort leaves are only one cell layer thick, thus each individual leaf cell is easily visible, as seen here viewed with the compound microscope. The shape and size of the leaf cells are often used to distinguish moss species.

Bryophytes often grow in places where other plants cannot grow, such as on the sides of trees or on the surface of boulders. Bryophytes are able to grow on such substrates because they are able to survive after drying to conditions equal to the water content of the surrounding environment, conditions that would cause wilting and death in other plants. Poikilohydry, this ability to dry and then re-establish growth in the presence of moisture, is a character that flowering plants have evolutionarily lost. In herbaria, the poikilohydric nature of bryophytes has been observed in some specimens that are able to grow after five, ten or twenty years dried in a herbarium.

A  typical habitat of the rounded tongue moss, Anomodon minor, on limestone rock. From Duranceaux Park, Delaware County, Ohio. April 24, 2011. Photo by Bob Klips.

A typical habitat of the rounded tongue moss, Anomodon minor, on limestone rock. From Duranceaux Park, Delaware County, Ohio. April 24, 2011. Photo by Bob Klips.

Bryophyte specimens are easier to collect and to preserve compared to other plants because they do not require pressing, or mounting onto herbarium sheets. While in the field, bryophyte plants are assigned a collection number and placed into small paper bags or paper envelopes, where they are dried. In the herbarium, bryophytes are stored in envelope packets that are made from 100% cotton rag archival paper. Labels with species identification, collection location, habitat information, collection date and collector are printed onto the face of the envelope. The envelopes are stored in flat boxes specially designed to fit on the shelves of herbarium cabinets.

Bryophytes are collected in the field in paper bags or envelopes. The bag in the photo has a collection number at the top, followed by a tentative field identification and the substrate on which the moss (shown on top of bag) was collected.

Bryophytes are collected in the field in paper bags or envelopes. The bag in the photo has a collection number at the top, followed by a tentative field identification and the substrate on which the moss (shown on top of bag) was collected.

Typical information on face of a bryophyte packet, in this case, a packet of a moss from Crawford County, Ohio.

Typical information on face of a bryophyte packet, in this case, a packet of a moss from Crawford County, Ohio.

An open packet showing moss plants stored inside.

An open packet showing moss plants stored inside.

Flat boxes store bryophyte packets inside herbarium cases.

Flat boxes store bryophyte packets inside herbarium cases.

A herbarium case with two rows of boxes that contain packets of bryophyte specimens.

A herbarium case with two rows of boxes that contain packets of bryophyte specimens.

The Ohio State University Herbarium contains over 10,000 specimens of bryophytes – a bryologist’s delight.

From a bryologist's point of view -  delighting in the world of small plants: the moss, Fissidens subbasilaris, with stalks subtended by oblong sporangia that contain spores. From Christmas Rocks State Nature Preserve, Fairfield County, Ohio. September 7, 2014. Photo by Bob Klips.

From a bryologist’s point of view – delighting in the world of small plants: the moss, Fissidens subbasilaris, with stalks subtended by oblong sporangia that contain spores. From Christmas Rocks State Nature Preserve, Fairfield County, Ohio. September 7, 2014. Photo by Bob Klips.

 

 

About the Author: Dr. Cynthia Dassler is Curator of Cryptogams (small plants that produce spores) at The Ohio State Herbarium (OS) in the Department of Evolution, Ecology and Organismal Biology.

The Borror Laboratory of Bioacoustics: a non-traditional museum collection

 

It is common for natural history museums to house collections of plants, insects and other groups of animals. The Borror Laboratory of Bioacoustics (BLB hereafter) is a collection of animal sound recordings, one of only about 10 collections of animal sound recordings in the world. We preserve the behavior of an animal making sounds, rather than the animal itself. Why would a biodiversity museum contain a collection of animal sound recordings?

The BLB is named after Dr. Donald Borror (1907-1988), a professor of entomology and zoology at Ohio State who early on realized the biological significance of recording the sounds of insects and birds. About 15,000 of the 45,000 recordings in the BLB were made by Borror himself. Donald Borror was a systematic entomologist, a scientist who studies the evolutionary relationships of insects, and was trained in the museum methods involved in maintaining a “traditional” collection of physical specimens (see previous posts on this blog). Upon leaving the Navy after WWII, he was among the first biologists to use a tape recorder and a sound spectrograph (a machine for making “voice prints”). These tools enabled Borror and his students to record and describe the sounds of insects and birds.

Dr Donald Borror recording bird sounds with a sound parabola

Dr Donald Borror recording bird sounds with a sound parabola

To return to our original question: what is it about animal sounds that is important and merits their collection and archival storage? One of the primary tasks that museum scientists face is describing species. All of our estimates of earth’s biodiversity and much work in all of biology hinges upon being able to demarcate species differences. Traditionally, scientists relied on using anatomical characters that they could see to describe different species. In the 1960’s a common definition was adopted that defines a species as a group of individuals that can breed with one another. This definition recognized behavior as being important in drawing species boundaries. Why? Animals generally don’t mate at random; although there are exceptions, females typically are choosy and males advertise to attract females. Females prefer to mate with males of their own species (because hybrids are usually at a disadvantage), and frequently rely on sound signals to make their choice. This selective pairing leads, over time, to the accumulation of genetic differences between species.

Male birds, frogs and toads, some mammals and many insects use sound signals to attract females. In the 1950’s and 1960’s as sound recording in nature became practical, scientists documented many cases where what was thought to be one species was actually composed of two or more groups that produced different sounds and did not interbreed; that is, the groups met the definition of being different species. For example, after the first decade of sound recording and study, the number of recognized species of crickets in eastern North American more than doubled, as scientists, among them Borror and his students, described song differences. Many similar examples have accumulated in birds also, especially in the 5,000 or so species of song birds.

Of course, every bird watcher knows that a good way to recognize many species is by their song. But the scientific basis for this common knowledge derives from the recordings deposited in sound archives such as the BLB. In addition to being crucial in identifying species, animal sounds are also used to arrange species into higher categories (genera, families, etc.) and also play a role in the study of animal behavior. Many if not most songs of song birds vary geographically and over time. Collections like the BLB contain a rich array of recordings going back to 1948 allowing us to study how sounds vary between species and over time.

About the Author: Dr. Doug Nelson is Director of the Borror Laboratory of Bioacoustics.

 

Old collections, new tricks

 

Research collections are built through two primary avenues. Many specimens belonging to a single genus or family may be collected from a broad geographic area as part of a research project into the diversity, distribution, or biology of that lineage. Alternatively, specimens belonging to multiple lineages may be collected from a single place as part of studies into the diversity of a geographic region or drainage.

Field team leader Brian Zimmerman in his natural habitat: a boat!  His expertise with the diversity and distribution of fish is invaluable as we survey new habitats. Photo by Paul Larson

Field team leader Brian Zimmerman in his natural habitat: a boat! His expertise with the diversity and distribution of fish is invaluable as we survey new habitats. Photo by Paul Larson

Our collaboration with the Ohio Division of Wildlife (https://obcp.osu.edu/) to assess the diversity of fishes in Ohio has followed both of these paths, exploring the distribution and genetic diversity of species of particular conservation concern across Ohio and capturing the diversity of particular rivers or drainages.

One of the “tricks of the trade” for our surveys has been to use diverse techniques. To make sure we have sampled all of the microhabitats within a waterway, we use everything from electrofishing to seines to trawls to snorkels.

This week we demo’ed a new net system in the Muskingum River and were pleased with the biomass and diversity of fish and other animals that we caught, including some HUGE flathead catfish as well as bycatch of softshell and snapping turtles. This is a new sampling method to us but has long been used by commercial fisherman and fisheries professionals alike. These nets will be part of our arsenal of methods as we establish baselines for the species diversity of the Muskingum River.

Collections manager Marc Kibbey mans the nets. The snapping turtle (left) and spiny softshell turtle (top) are released back into the river.  The Northern Pike (middle) and Bowfin (bottom) are measured and recorded. Photo on left by Paul Larson; photos on right by Brian Zimmerman.

Collections manager Marc Kibbey mans the nets. The snapping turtle (left) and spiny softshell turtle (top) are released back into the river. The Northern Pike (middle) and Bowfin (bottom) are measured and recorded. Photo on left by Paul Larson; photos on right by Brian Zimmerman.

Our electronic database and tissue voucher collection means that we can record occurrence, size and abundance, and sample animals with the safest, most effective methods.

Most of the fish we catch are identified, measured, photographed, and released. Specimens belonging to species whose distribution, diversity, or identity are questioned and species not well represented in museum collections are brought back to the museum for further study.

A global database called “Fishnet” (http://www.fishnet2.net/aboutFishNet.html) integrates our database with those of other museums, making these collections visible, searchable, and accessible to scientists around the world.

 

About the AuthorDr. Marymegan Daly is an Associate Professor in the Department of Evolution, Ecology and Organismal Biology and Director of the OSU Fish Division.

Your yellow bowl is our YPT

 

Collecting insects is one of the many activities of staff and volunteers at the Triplehorn Insect Collection. Each time we go out in the field and collect we create a tiny snapshot of the insect fauna of that specific place and date.  It’s far from complete, but adds to our knowledge nonetheless. We do not need to go far to find insects that no one has ever studied before. Even in our own backyard, next door to the Museum of Biological Diversity, we find new or rare insect species and discover new facts about known species.

One of the methods we frequently use to collect small flying insects is the pan trap – a bowl with water and a drop of clear, unscented liquid soap.  The soap breaks the surface tension of the water and makes the insects sink.  The color yellow (bright yellow!) attracts many insects, including the parasitic wasps that several of us in the collection study.  Our yellow pan traps, (or YPTs for short) are simple plastic party bowls.  For best results we leave the YPTs out in the field for about 24 hours.  After that we remove the catch, and start the cycle again: fill the YPTs with water, add soap, leave for 24 hours, remove catch. We usually set up 25-50 YPTs in one spot and that’s one sample.

There are a couple of variations on how to empty the traps: scooping the specimens with a fine fish net, or pouring the content of the trap through the net. Either way the specimens get separated from the soapy water, and then are carefully washed with clean water to remove all the soap residue. Once washed, the specimens are preserved in 95% ethanol and placed in a freezer.  That slows the degradation of their DNA and allows for molecular level studies.  Later, we sort the specimens into groups (beetles, wasps, leafhoppers, etc.) and start the long process of specimen preparation for study.  The YPTs are washed and saved for the next collecting season.

Click or tap on the image to enlarge.

 

A heartfelt thanks to the people in these photos: Zach Hurley (collecting, adding soap, adding water, washing, sorting), Matt Elder (collecting), Norman Johnson (checking the catch, emptying YPT), Hans Clebsch (adding water to YPTs); and to the anonymous biker going by the Museum building.

 

About the Author: Dr. Luciana Musetti is the Curator of the Triplehorn Insect Collection at Ohio State University. All photos are courtesy of the author, except for the one of Hans Clebsch.