# Introductory surveys

- Peter Sarnak. Three lectures on the Möbius function, randomness, and dynamics.
- Terry Tao. The Chowla conjecture and the Sarnak conjecture.

# Surveys from a dynamical point of view

- Sébastien Ferenczi, Joanna Kułaga-Przymus, and Mariusz Lemańczyk. Sarnak’s conjecture: what’s new.
- Handout summarizing important results about multiplicative functions appearing in Section 2 of the survey (compiled by Ethan Ackelsberg). [pdf]

# Möbius disjointness for special classes of functions

- Harold Davenport. On some infinite series involving arithmetical functions (II).
*The Quarterly Journal of Mathematics*, 8(1):313-320, 1937. - Jean Bourgain, Peter Sarnak, and Tamar Ziegler. Disjointness of Moebius from horocycle flows. In
*From Fourier analysis and number theory to Radon transforms and geometry*, Dev. Math. (Springer, New York) 67-83, 2013. - Ben Green and Terence Tao. The Möbius function is strongly orthogonal to nilsequences.
*Annals of Mathematics*, 175(2):541-566, 2012. *Fundamenta Mathematicae*, 255(3):309-336, 2021.

# Entropy

- Michael Brin and Garrett Stuck.
*Introduction to Dynamical Systems*. - Peter Walters.
*An Introduction to Ergodic Theory*. - William Parry. Zero entropy of distal and related transformations. In
*Topological Dynamics (Symposium, Colorado State Univ., Ft. Collins, Colo., 1967)*383-389, 1968. [pdf]

# Chowla conjecture

# Kátai’s orthogonality criterion

- Imre Kátai. A remark on a theorem of H. Daboussi.
*Acta Mathematica Hungarica*, 47:223-225, 1986. - Nikos Frantzikinakis and Bernard Host. Higher order Fourier analysis of multiplicative functions and application.
*Journal of the American Mathematical Society*, 30(1):67-157, 2017. - Vitaly Bergelson, Joanna Kułaga-Przymus, Mariusz Lemańczyk, and Florian K. Richter. A generalization of Kátai’s orthogonality criterion with applications.
*Discrete and Continuous Dynamical Systems*, 39(5):2581-2612, 2019.

# Relationship between the Sarnak conjecture, the Chowla conjecture, and the Riemann hypothesis

- Davit Karagulyan. On certain aspects of the Möbius randomness principle.
*Colloquium Mathematicum*, 157:231-250, 2019.- Slides by Sohail Farhangi. [pdf]