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0. INTRODUCTION

It is not too difficult, as others are aware,
to prove that distal homeomorphisms of compact
metric spaces which preserve a normalized Borel
measure have zero entropy, if one uses Furstenberg's
deep structural theorem [1]. By means of this
theorem one obtains a distal minimal homeomorphism
as a transfinite inverse limit of isometric ex-
tensions of the trivial homeomorphism of a single
point. For each extension one verifies that the
entropy is zero and by a limit theorem the proof
is concluded.

The purpose of this note is to establish the

theorem by a direct simple argument and to comment

383



384 TOPOLOGICAL DYNAMICS

on a generalization which leads to a purely measure
theoretic class of transformations analogous to
distal homeomorphisms.

It should be noted that totally ergodic
transformations with quasidiscrete spectra are
representable as totally minimal affine transfor-
mations with quasidiscrete spectra, and these
latter are distal [2, 3]. Moreover, the nilflows
of [4] are distal. These two types of transfor-

mation are, in general, distinct [5].

1. THE MAIN THEOREM AND GENERALIZATIONS

Let (X, d) be a compact metric space and let
T be a distal homeomorphism of X onto itself, that
is, if inf d(T’x, T'y) = 0 then x =~ y. T is said
to be minimal if TK = K, and K closed implies

K = ¢ or X.

THEOREM 1. If T is distal and minimal and preserves
a normalized measure m, then the entropy of T with
respect to m is zero (h(T) = 0). (The minimality

condition will be dropped in Section 2.)

Proof. The case of an atomic m is dealt with

ZERO ENTROPY OF DISTAL TRANSFORMATIONS 385

easily. We assume m is nonatomic. Let X

=S,28, D ...,Qs8, ={z}, S, open, d(S) - 0,

n
m(S ) < r® where r < 1/e. Let § = (Ao, Ay,..l)
n
where A; = 8; - 8; 4, 121, A = {z} U (s - S,
Then ¢ is a partition of X. Suppose ™x, Ty € Ain
for some sequence (il, i2,...) then for each N

there exists n such that T'x € Sy, by the minimality
of T, and therefore T'y € Ain CSy (Aif N # 0. Im
other words, d(Tnx, T"y) has infinum zero; that is,
X =y by the distal property. Hence V;;OT-if = €,
the partition of X into one-point sets, and

o0

h(T) = h(T, §) < H(}) - .ZO -m(A;) log m(A;)
i=

< - on log mA  + E -nr™ log r

n=l (1.1)
<-log(l - 22 r?) - _“_E;—_TZ log r
n=1 (1 - r)
= Jlog d-r) _ r log r

(L - 2r) (1 - r)2

(Here we have used the monotonicity of -x log x on

(0, 1/e) and the relations Ai C Si.) Since (1.1)

is true for all r < 1/e we have hYT) = 0, (Actu-

ally this also follows from the fact that H(t) <
-i,

and Vi=oT & = ¢€.)

Only a weak form of the distal property was
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used in this proof. Let us call z a separating
My Ty
point for T if T "x 2 z and T "y - z implies x = y.

The above proof yields:

THEOREM 2. If T is a homeomorphism with a sepa-
rating point and if T preserves a normalized Borel
measure with respect to which T is ergodic, then
h(T) = 0,

A measure theoretic analogue of the above )
may be achieved as follows: Let X = SO 28y D v |
be a decreasing sequence of measurable sets of
positive measure such that m(Sn)-* 0. Such a

sequence will be called a separating sieve for a

measure preserving transformation T if there exists
a set M of measure zero with the following property:

if x, y € X -~ M and if for each N there exists n

such that Tnx, Tny < SN, then x y; equivalently,

AU (TxDE xS N X -Mx (X -0
N=0 n=0 N
(1.2) {
=diagX xX)N X -M x X - M

THEOREM 3. An ergodic transformation T of a
Lebesgue space with a separating sieve has zero

entropy and possesses a nonconstant eigenfunction
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(that is, T is not weakly mixing).

Proof. The first part is similar to the proof of
Theorem 1. By (1.2) we have

mxm U (TxT) P, x8S.)=>0

n=0 N N" N

since diag(X x X) cannot have positive measure.
Consequently the T x T invariant set
AZO (T x T)'n(SN X SN) is nontrivial for some N
and T x T is not ergodic, that is, T is not weakly
mixing.

The second part of this theorem was achieved
by Furstenberg [1] for minimal distal homeomorphisms.
For that case Furstenberg's method has the advantage

of producing a continuous eigenfunction.

2. A DISTAL HOMEOMORPHISM HAS ZERO ENTROPY

Ellis [6] has shown that a compact metric
space, on which a distal homeomorphism acts,
decomposes into minimal sets; that is, X = LQGA X
where X, N Xﬂ = ¢ if a # B and X, are closed minimal

sets. However, {Xa} is not always a Hausdorff

partition. Nevertheless, if Uy, Ugy, . . . is a
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countable basis for the open sets then Vi, Vg, . .

(V. = U TlUn) form a countable basis for this

n
partition in the sense that for a # 8 there exists

n such that either

Xe C Vy XB X - Vi or Xﬁ C Vn

Xg CX = V_

This is enough to ensure that;
(i) {X,} is a measurable partition; ,
(ii) there exists a canonical system of
measures m, [7].

By virtue of [7] we have

h (T) =./;§ h, (T,) dm (2.1)

¢

In (2.1) X? is the factor space of X with
respect to { = {Xa}, me is the factor measure on
X;, T, = TIXa, and h, is the entropy of T, with
respect to m,, which, by virtue of Theorem 1, is
Zero,

Consequently we have the following:

THEOREM 4. If T is a distal homeomorphism of a
compact metric space X preserving a normalized

Borel measure, then T has zero entropy.
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