Understanding the spatiotemporal evolution of opioid overdose events using a regionalized sequence alignment analysis

The latest paper from the Franklin County Opioid Crisis Activity Level (FOCAL) mapping project, led by my former student Dr. Yuchen Li, in collaboration with Dr. Ayaz Hyder from OSU College of Public Health.

Li, Y., Miller, H.J., Hyder, A. and Jia, P. (2023) “Understanding the spatiotemporal evolution of opioid overdose events using a regionalized sequence alignment analysis.” Social Science & Medicine, p.116188.

Abstract

Background.  Opioid overdose events and deaths have become a serious public health crisis in the United States, and understanding the spatiotemporal evolution of the disease occurrences is crucial for developing effective prevention strategies, informing health systems policy and planning, and guiding local responses. However, current research lacks the capability to observe the dynamics of the opioid crisis at a fine spatial-temporal resolution over a long period, leading to ineffective policies and interventions at the local level.

Methods. This paper proposes a novel regionalized sequential alignment analysis using opioid overdose events data to assess the spatiotemporal similarity of opioid overdose evolutionary trajectories within regions that share similar socioeconomic status. The model synthesizes the shape and correlation of space-time trajectories to assist space-time pattern mining in different neighborhoods, identifying trajectories that exhibit similar spatiotemporal characteristics for further analysis.

Results. By adopting this methodology, we can better understand the spatiotemporal evolution of opioid overdose events and identify regions with similar patterns of evolution. This enables policymakers and health researchers to develop effective interventions and policies to address the opioid crisis at the local level.

Conclusions. The proposed methodology provides a new framework for understanding the spatiotemporal evolution of opioid overdose events, enabling policymakers and health researchers to develop effective interventions and policies to address this growing public health crisis.

Keywords: Opioid overdose epidemic; Sequential analysis; Neighborhood context; Geographic information science; Spatiotemporal pattern mining

Understanding the role of urban social and physical environment in opioid overdose events using found geospatial data

New paper:  Li, Y., Miller, H.J., Root, E.D., Hyder, A. and Liu, D. “Understanding the role of urban social and physical environment in opioid overdose events using found geospatial data,” Health and Place, 75, 102792.

Abstract: Opioid use disorder is a serious public health crisis in the United States. Manifestations such as opioid overdose events (OOEs) vary within and across communities and there is growing evidence that this variation is partially rooted in community-level social and economic conditions. The lack of high spatial resolution, timely data has hampered research into the associations between OOEs and social and physical environments. We explore the use of non-traditional, “found” geospatial data collected for other purposes as indicators of urban social-environmental conditions and their relationships with OOEs at the neighborhood level. We evaluate the use of Google Street View images and non-emergency “311” service requests, along with US Census data as indicators of social and physical conditions in community neighborhoods. We estimate negative binomial regression models with OOE data from first responders in Columbus, Ohio, USA between January 1, 2016, and December 31, 2017. Higher numbers of OOEs were positively associated with service request indicators of neighborhood physical and social disorder and street view imagery rated as boring or depressing based on a pre-trained random forest regression model. Perceived safety, wealth, and liveliness measures from the street view imagery were negatively associated with risk of an OOE. Age group 50–64 was positively associated with risk of an OOE but age 35–49 was negative. White population, percentage of individuals living in poverty, and percentage of vacant housing units were also found significantly positive however, median income and percentage of people with a bachelor’s degree or higher were found negative. Our result shows neighborhood social and physical environment characteristics are associated with likelihood of OOEs. Our study adds to the scientific evidence that the opioid epidemic crisis is partially rooted in social inequality, distress and underinvestment. It also shows the previously underutilized data sources hold promise for providing insights into this complex problem to help inform the development of population-level interventions and harm reduction policies.

Opioid treatment deserts

The latest outcome from our opioid overdose mapping project: we find disparities across neighborhoods and racial groups in access to opioid treatment providers:

Hyder A, Lee J, Dundon A, Southerland LT, All D, Hammond G, and Miller, H.J. (2021) Opioid Treatment Deserts: Concept development and application in a US Midwestern urban county. PLoS ONE 16(5): e0250324. https://doi.org/10.1371/journal.pone.0250324

Abstract

Objectives.  An Opioid Treatment Desert is an area with limited accessibility to medication-assisted treatment and recovery facilities for Opioid Use Disorder. We explored the concept of Opioid Treatment Deserts including racial differences in potential spatial accessibility and applied it to one Midwestern urban county using high resolution spatiotemporal data.
Methods

We obtained individual-level data from one Emergency Medical Services (EMS) agency (Columbus Fire Department) in Franklin County, Ohio. Opioid overdose events were based on EMS runs where naloxone was administered from 1/1/2013 to 12/31/2017. Potential spatial accessibility was measured as the time (in minutes) it would take an individual, who may decide to seek treatment after an opioid overdose, to travel from where they had the overdose event, which was a proxy measure of their residential location, to the nearest opioid use disorder (OUD) treatment provider that provided medically-assisted treatment (MAT). We estimated accessibility measures overall, by race and by four types of treatment providers (any type of MAT for OUD, Buprenorphine, Methadone, or Naltrexone). Areas were classified as an Opioid Treatment Desert if the estimate travel time to treatment provider (any type of MAT for OUD) was greater than a given threshold. We performed sensitivity analysis using a range of threshold values based on multiple modes of transportation (car and public transit) and using only EMS runs to home/residential location types.

Results. A total of 6,929 geocoded opioid overdose events based on data from EMS agencies were used in the final analysis. Most events occurred among 26–35 years old (34%), identified as White adults (56%) and male (62%). Median travel times and interquartile range (IQR) to closest treatment provider by car and public transit was 2 minutes (IQR: 3 minutes) and 17 minutes (IQR: 17 minutes), respectively. Several neighborhoods in the study area had limited accessibility to OUD treatment facilities and were classified as Opioid Treatment Deserts. Travel time by public transit for most treatment provider types and by car for Methadone-based treatment was significantly different between individuals who were identified as Black adults and White adults based on their race.

Conclusions.  Disparities in access to opioid treatment exist at the sub-county level in specific neighborhoods and across racial groups in Columbus, Ohio and can be quantified and visualized using local public safety data (e.g., EMS runs). Identification of Opioid Treatment Deserts can aid multiple stakeholders better plan and allocate resources for more equitable access to MAT for OUD and, therefore, reduce the burden of the opioid epidemic while making better use of real-time public safety data to address a public health epidemic that has turned into a public safety crisis.