Lower volumes, higher speeds: Changes to crash type, timing, and severity on urban roads from COVID-19 stay-at-home policies

New publication: Stiles, J., Kar, A., Lee, J. and Miller, H.J. (2021) “Lower volumes, higher speeds: Changes to crash type, timing, and severity on urban roads from COVID-19 stay-at-home policies,” Transportation Research Record (online first)

Abstract: Stay-at-home policies in response to COVID-19 transformed high-volume arterials and highways into lower-volume roads, and reduced congestion during peak travel times. To learn from the effects of this transformation on traffic safety, an analysis of crash data in Ohio’s Franklin County, U.S., from February to May 2020 is presented, augmented by speed and network data. Crash characteristics such as type and time of day are analyzed during a period of stay-at-home guidelines, and two models are estimated: (i) a multinomial logistic regression that relates daily volume to crash severity; and (ii) a Bayesian hierarchical logistic regression model that relates increases in average road speeds to increased severity and the likelihood of a crash being fatal. The findings confirm that lower volumes are associated with higher severity. The opportunity of the pandemic response is taken to explore the mechanisms of this effect. It is shown that higher speeds were associated with more severe crashes, a lower proportion of crashes were observed during morning peaks, and there was a reduction in types of crashes that occur in congestion. It is also noted that there was an increase in the proportion of crashes related to intoxication and speeding. The importance of the findings lay in the risk to essential workers who were required to use the road system while others could telework from home. Possibilities of similar shocks to travel demand in the future, and that traffic volumes may not recover to previous levels, are discussed, and policies are recommended that could reduce the risk of incapacitating and fatal crashes for continuing road users.

Media

Opioid treatment deserts

The latest outcome from our opioid overdose mapping project: we find disparities across neighborhoods and racial groups in access to opioid treatment providers:

Hyder A, Lee J, Dundon A, Southerland LT, All D, Hammond G, and Miller, H.J. (2021) Opioid Treatment Deserts: Concept development and application in a US Midwestern urban county. PLoS ONE 16(5): e0250324. https://doi.org/10.1371/journal.pone.0250324

Abstract

Objectives.  An Opioid Treatment Desert is an area with limited accessibility to medication-assisted treatment and recovery facilities for Opioid Use Disorder. We explored the concept of Opioid Treatment Deserts including racial differences in potential spatial accessibility and applied it to one Midwestern urban county using high resolution spatiotemporal data.
Methods

We obtained individual-level data from one Emergency Medical Services (EMS) agency (Columbus Fire Department) in Franklin County, Ohio. Opioid overdose events were based on EMS runs where naloxone was administered from 1/1/2013 to 12/31/2017. Potential spatial accessibility was measured as the time (in minutes) it would take an individual, who may decide to seek treatment after an opioid overdose, to travel from where they had the overdose event, which was a proxy measure of their residential location, to the nearest opioid use disorder (OUD) treatment provider that provided medically-assisted treatment (MAT). We estimated accessibility measures overall, by race and by four types of treatment providers (any type of MAT for OUD, Buprenorphine, Methadone, or Naltrexone). Areas were classified as an Opioid Treatment Desert if the estimate travel time to treatment provider (any type of MAT for OUD) was greater than a given threshold. We performed sensitivity analysis using a range of threshold values based on multiple modes of transportation (car and public transit) and using only EMS runs to home/residential location types.

Results. A total of 6,929 geocoded opioid overdose events based on data from EMS agencies were used in the final analysis. Most events occurred among 26–35 years old (34%), identified as White adults (56%) and male (62%). Median travel times and interquartile range (IQR) to closest treatment provider by car and public transit was 2 minutes (IQR: 3 minutes) and 17 minutes (IQR: 17 minutes), respectively. Several neighborhoods in the study area had limited accessibility to OUD treatment facilities and were classified as Opioid Treatment Deserts. Travel time by public transit for most treatment provider types and by car for Methadone-based treatment was significantly different between individuals who were identified as Black adults and White adults based on their race.

Conclusions.  Disparities in access to opioid treatment exist at the sub-county level in specific neighborhoods and across racial groups in Columbus, Ohio and can be quantified and visualized using local public safety data (e.g., EMS runs). Identification of Opioid Treatment Deserts can aid multiple stakeholders better plan and allocate resources for more equitable access to MAT for OUD and, therefore, reduce the burden of the opioid epidemic while making better use of real-time public safety data to address a public health epidemic that has turned into a public safety crisis.

Trends that will shape us: Transportation

On April 7, I participated in a panel discussion at the Columbus Metropolitan Club; topic: Trends that Will Shape Us: Transportation. Other guests include Jack Marchbanks (Director, Ohio Department of Transportation) and Kevin Chambers (Managing Director – Logistics, Distribution and Supply Chain, JobsOhio).

It was an interesting and lively conversation: spanning public transit, the impact of COVID on cities, social equity, infrastructure, freight and logistics.  Check it out!

Link to recording