Understanding the spatiotemporal evolution of opioid overdose events using a regionalized sequence alignment analysis

The latest paper from the Franklin County Opioid Crisis Activity Level (FOCAL) mapping project, led by my former student Dr. Yuchen Li, in collaboration with Dr. Ayaz Hyder from OSU College of Public Health.

Li, Y., Miller, H.J., Hyder, A. and Jia, P. (2023) “Understanding the spatiotemporal evolution of opioid overdose events using a regionalized sequence alignment analysis.” Social Science & Medicine, p.116188.

Abstract

Background.  Opioid overdose events and deaths have become a serious public health crisis in the United States, and understanding the spatiotemporal evolution of the disease occurrences is crucial for developing effective prevention strategies, informing health systems policy and planning, and guiding local responses. However, current research lacks the capability to observe the dynamics of the opioid crisis at a fine spatial-temporal resolution over a long period, leading to ineffective policies and interventions at the local level.

Methods. This paper proposes a novel regionalized sequential alignment analysis using opioid overdose events data to assess the spatiotemporal similarity of opioid overdose evolutionary trajectories within regions that share similar socioeconomic status. The model synthesizes the shape and correlation of space-time trajectories to assist space-time pattern mining in different neighborhoods, identifying trajectories that exhibit similar spatiotemporal characteristics for further analysis.

Results. By adopting this methodology, we can better understand the spatiotemporal evolution of opioid overdose events and identify regions with similar patterns of evolution. This enables policymakers and health researchers to develop effective interventions and policies to address the opioid crisis at the local level.

Conclusions. The proposed methodology provides a new framework for understanding the spatiotemporal evolution of opioid overdose events, enabling policymakers and health researchers to develop effective interventions and policies to address this growing public health crisis.

Keywords: Opioid overdose epidemic; Sequential analysis; Neighborhood context; Geographic information science; Spatiotemporal pattern mining

Turning old maps into 3D digital models of lost neighborhoods

New paper:  Lin Y, Li J, Porr A, Logan G, Xiao N, Miller HJ (2023) “Creating building-level, three-dimensional digital models of historic urban neighborhoods from Sanborn Fire Insurance maps using machine learning.” PLoS ONE 18(6): e0286340. https://doi.org/10.1371/journal.pone.0286340.

Abstract. Sanborn Fire Insurance maps contain a wealth of building-level information about U.S. cities dating back to the late 19th century. They are a valuable resource for studying changes in urban environments, such as the legacy of urban highway construction and urban renewal in the 20th century. However, it is a challenge to automatically extract the building-level information effectively and efficiently from Sanborn maps because of the large number of map entities and the lack of appropriate computational methods to detect these entities. This paper contributes to a scalable workflow that utilizes machine learning to identify building footprints and associated properties on Sanborn maps. This information can be effectively applied to create 3D visualization of historic urban neighborhoods and inform urban changes. We demonstrate our methods using Sanborn maps for two neighborhoods in Columbus, Ohio, USA that were bisected by highway construction in the 1960s. Quantitative and visual analysis of the results suggest high accuracy of the extracted building-level information, with an F-1 score of 0.9 for building footprints and construction materials, and over 0.7 for building utilizations and numbers of stories. We also illustrate how to visualize pre-highway neighborhoods.

 

Media

 

CURA receives award from Columbus Landmarks Foundation

The Center for Urban and Regional Analysis (CURA) received the 2023 Frederick J. Holdridge Outstanding Group Award from the Columbus Landmarks Foundation for the Ghost Neighborhoods of Columbus project. This award celebrates a team project that preserves the city’s cultural and architectural legacies.

Photo (L-R): Ningchuan Xiao (Associate Director), Harvey Miller (Director), Nicole Hall (Consulting Manager), Gerika Logan (Outreach Coordinator)