David Freund (Harvard University)
Flat virtual links are generalizations of curves on surfaces that have come out of Kauffman’s virtual knot theory. In particular, we consider the curves up to homotopy and allow the supporting surface to change via the addition or removal of empty handles. Under this equivalence, a flat virtual link obtains a completely combinatorial structure. Analogous to the classical problem of finding the minimal number of intersection points between two curves, we can ask for the minimal number of intersection points between components of a flat virtual link. By moving between geometric and combinatorial models, we develop generalizations of the Andersen-Mattes-Reshetikhin Poisson bracket and compute it for infinite families of two-component flat virtual links using a generalization of Henrich’s singular based matrix for flat virtual knots. Throughout the talk, we emphasize the motivation behind different constructions.
Great talk! Thank you Dr. Freund! If you would like to ask a question of Dr. Freund, please respond to this comment below.