Joshua Edge (Denison University)
A skein theory for the virtual Jones polynomial can be obtained from its original version with the addition of a virtual crossing that satisfies the virtual Reidemeister moves as well as a naturality condition. In general, though, knot polynomials will not have virtual counterparts. In this talk, we classify all skein-theoretic virtual knot polynomials with certain smallness conditions. In particular, we classify all virtual knot polynomials giving non-trivial invariants strictly smaller than the one given by the Higman-Sims spin model by classifying the planar algebras associated with them. This classification includes a family of skein theories coming from with an interesting braiding. This talk is given in memory of Vaughan Jones.