Dehn surgery on links vs the Thurston norm

Maggie Miller (Princeton University)

Abstract: David Gabai showed that a minimum-genus surface in a knot complement remains minimum-genus when capped off into the zero-surgery on that knot, implying that surgery on a nontrivial knot can never yield S^1\times S^2 (thus proving the Property R conjecture). I study this problem for links. In particular, I show that if L is a 2-component link with nonzero linking number and nondegenerate Thurston norm on its complement, then there exists a finite set E\subset H_2(S^3\setminus\nu(L),\partial;\mathbb{R}) so that if S is norm-minimizing and not in E up to scalar multiplication, then \hat{S} is norm-minimizing in the 3-manifold obtained from S^3 by doing Dehn surgery on L according to \partial S. (The result generally holds for n>1-component links with E (n-2)-dimensional.) The proof involves constructing a taut foliation on S^3\setminus\nu(L) with nice boundary properties, motivated by Gabai’s proof of the Property R conjecture.

References:

Miller, M., The effect of link Dehn surgery on the Thurston norm. https://arxiv.org/abs/1906.08458