Extending the Autosegmental Input Strictly Local Framework: Metrical Dominance and Floating Tones

SCiL 2020, January 2, 2020

I. Overview

Subregular phonology and phonological locality

- Phonology is subregular Strictly Local (Chandlee 2014, Chandlee & Heinz 2018, Chandlee & Jardine 2019)
- Basic observation: most, if not all, phonological processes operate on substrings of bounded length. Contexts and targets are local

Non-local phonology?

- Long-distance harmony, tonal processes (spreading, deletion, etc.)
- Solution: Autosegmental Phonology (Leben 1973, Goldsmith 1976) Non-local processes become local on relevant tiers (Odden 1994)

<u>Autosegmental Representation and Strictly Local Phonology</u>

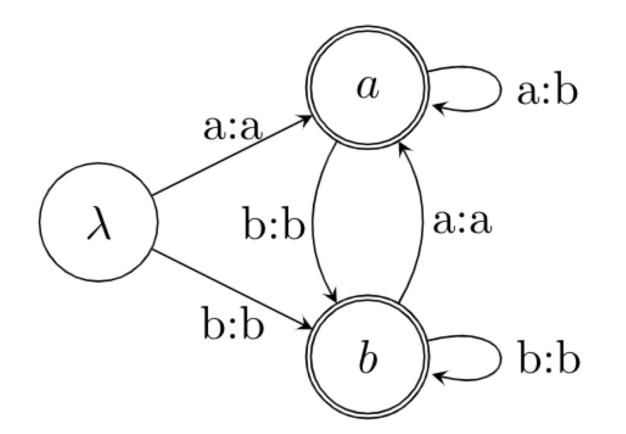
- Many tonal processes are indeed only Strictly Local over Autosegmental Representation (Koser et al. 2018, Chandlee & Jardine 2019)
- More interestingly, adopting Autosegmental Representation does not always contribute to achieving phonological locality (Chandlee & Jardine 2019)

Scope of the current paper

- Extend the empirical coverage of the Autosegmental Input Strictly Local (A-ISL) framework (Chandlee & Jardine 2019): More data on tones
- Provide some discussion on phonological locality: How much 'help' can Autosegmental Phonology offer?

II. Input Strictly Local (ISL) Functions

Input Strictly Local (ISL) Functions

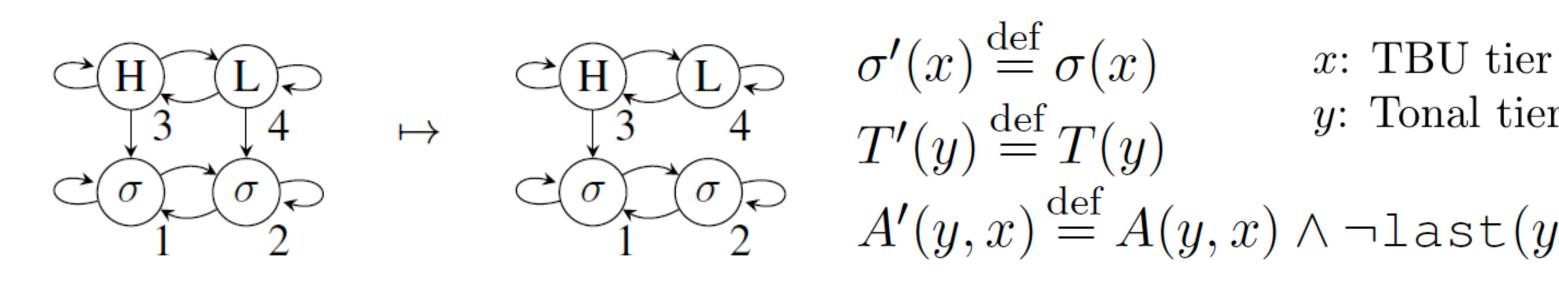

Mapping relations defined on contiguous substrings of bounded length in the input (Chandlee 2014)

Example: $aaaa \rightarrow abbb$

Rule: $\langle a \rangle \rightarrow [b] / a$

Substring length: 2 (permits #a, a#, #b, b#, ab, bb, ba, changes aa to ab)

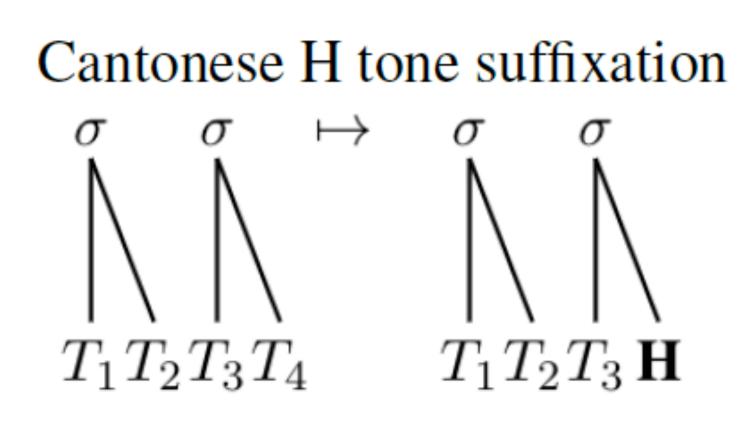
FSA Equivalent: Subsequential Finite State Transducer (Chandlee 2014)


Logical Equivalent: Quantifier-Free First-Order logic (Chandlee & Lindell in prep)

$$a'(x) \stackrel{\text{def}}{=} a(x) \land \neg a(p(x))$$
$$b'(x) \stackrel{\text{def}}{=} b(x) \lor (a(x) \land a(p(x)))$$

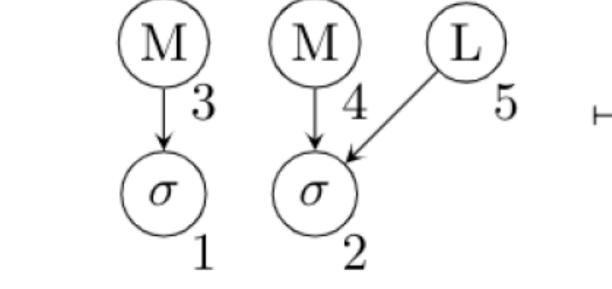
- "Output is a if input is a and not preceded by another a"
- "Output is b if input is b or input is a preceded by another a"

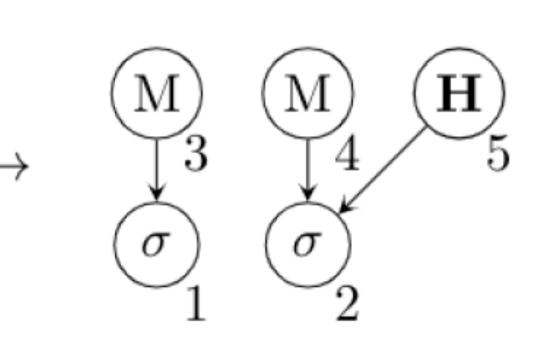
<u>Autosegmental Input Strictly Local (A-ISL) Functions</u>


- ISL mappings with Autosegmental Representations (Chandlee & Jardine 2019) · Association lines as binary relations -A(x,y)
- Example: $\langle \dot{\sigma}.\dot{\sigma} \rangle \rightarrow [\dot{\sigma}.\sigma]$

III. Floating tone representation and metrical dominance

Floating tone suffixation in Cantonese (Chen 2000, Yip 2002)

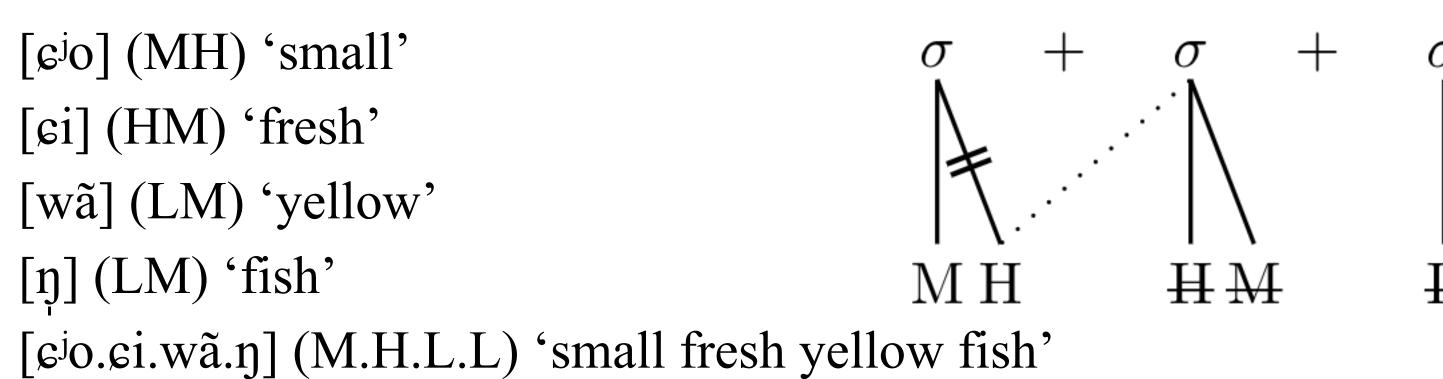

[a] (M) 'Old', a vocative prefix [tsæng] (HM) 'Zhang', a last name [tshan] (ML) 'Chen', a last name [a.tsæng] (M.HH) 'Old Zhang' [a.tshan] (M.MH) 'Old Chen'

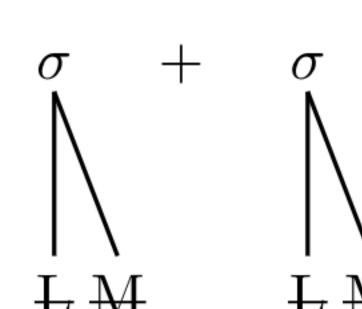


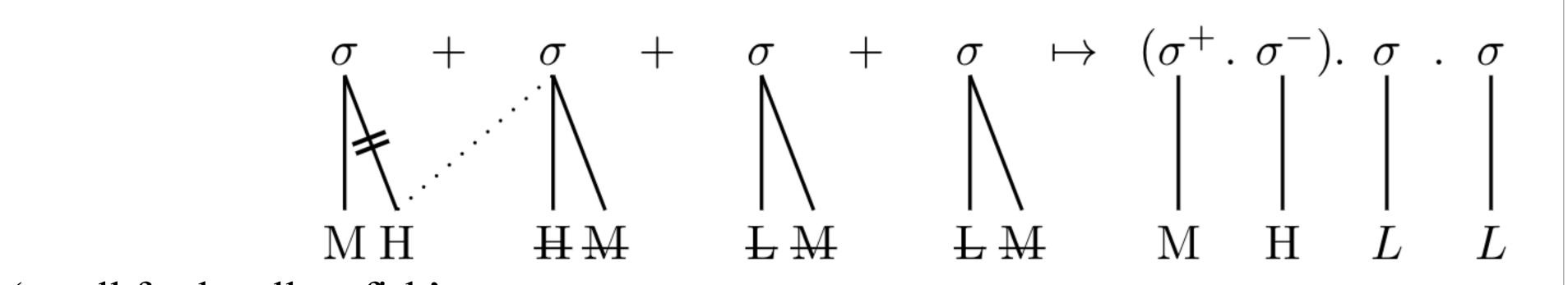
Vocative prefix = $\frac{a}{with}$ an associated M tone and a floating H suffix: Suffixation = H tone substitution

QF transduction

- a. $\sigma'(x) \stackrel{\text{def}}{=} \sigma(x)$
- b. $H'(y) \stackrel{\text{def}}{=} H(y) \vee \text{last}(y)$
- c. $M'(y) \stackrel{\text{def}}{=} M(y) \land \neg \text{last}(y)$
- $\mathrm{d.}\; L'(y) \stackrel{\mathrm{def}}{=} L(y) \land \neg \mathrm{last}(y)$ e. $A'(x,y) \stackrel{\text{def}}{=} A(x,y)$

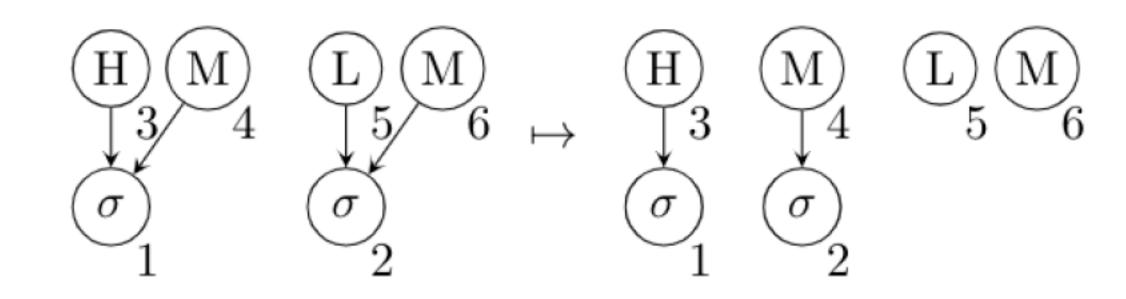





- Keep all TBUs (a) and all association lines (e)
- Map input tones faithfully to output except for the last tone (b-e); substitute the last tone with H (b)
- · Here, floating tone = a tone without segmental information / tone-TBU association

Metrical left dominance in Shanghai tone sandhi (Duanmu 1995, 1999)

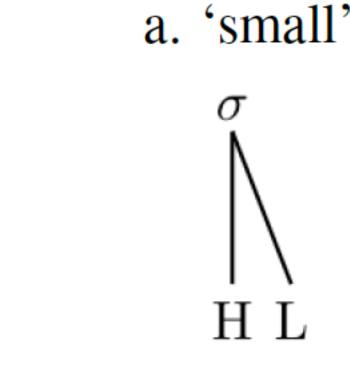
[sjo] (MH) 'small' [ci] (HM) 'fresh' [wã] (LM) 'yellow' [ŋ] (LM) 'fish'



- Left dominance: one left-aligned trochee (σ^+ . σ^-) per prosodic word; redistribute *leftmost* syllable tones within the foot; delete all tones after (toneless syllables realized as phonetic L)
- Not linearly ISL if leftmost syllable has indefinitely many tones $/T_1T_2...T_n.T.../ \rightarrow [T_1.T_2]$ "Hold the memory of T_1T_2 until encountering a syllable boundary"

QF Transduction

- a. $\sigma'(x) \stackrel{\text{def}}{=} \sigma(x)$
- b. $H'(y) \stackrel{\text{def}}{=} H(y)$
- c. $M'(y) \stackrel{\text{def}}{=} M(y)$
- d. $L'(y) \stackrel{\text{def}}{=} L(y)$
- e. $A'(y,x) \stackrel{\text{def}}{=} (A(y,x) \land \text{first}(x) \land \text{first}(y)) \lor (A(y,p(x)) \land \text{second}(x) \land \text{second}(y))$

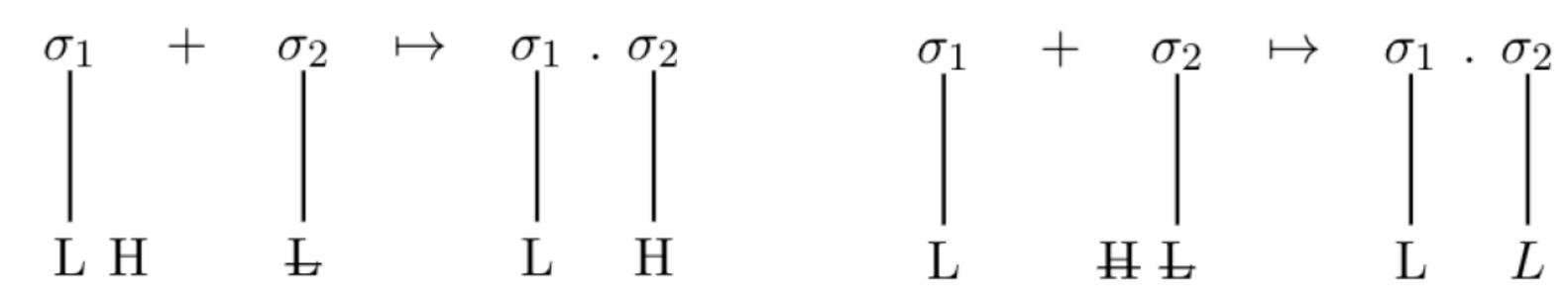

- Keep all TBUs (a) and all tones (b-d)
- Create only two association lines: first tone to first syllable (e, left disjunct), second tone to second syllable (e, right disjunct)
- Note: redistribution of tones is only possible when second tone belongs to first syllable in the input
- · Lexical tones are all associated to the TBUs: association lines = morphological affiliation (e.g. MH tones are affiliated with the morpheme 'small' by association lines)
- · Same sequence on the tonal tier + different associations \rightarrow different sandhi outcome Compare: $/MH.L/ \rightarrow [M.H]$ vs. $/M.HL/ \rightarrow [M.L]$

IV. Floating tones + metrical dominance

Suzhou tone sandhi (Shi & Jiang 2013, Zhu in prep)

· [s^jæ] (HL) 'small' [mã] (LH) 'blind' [nɪn] (LH) 'person' [s^jæ.nɪn] (HL.L) 'child'

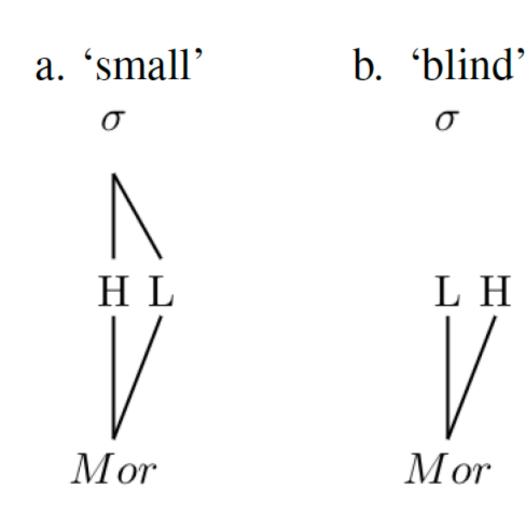
[mã.nɪn] (L.H) 'blind person'


b. 'blind'

ĹН

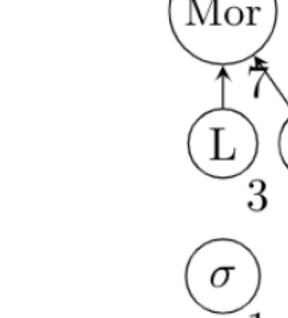
The /HL/ lexical tone always "stays in place", while /LH/ always redistributes · Hypothesis: lexical tones could be either associated or floating. Associated tones cannot be deleted in Suzhou, while floating tones can redistribute

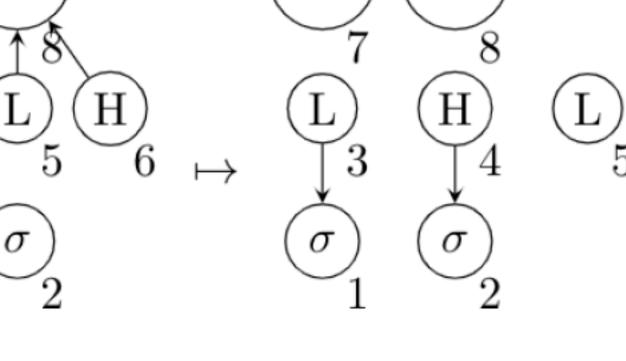
A representational problem


· How do we know if a certain tone "belongs" to the first/second syllable? A hypothetical minimal pair:

- Same sequence on the tonal tier (L H L) + same associations (first L–first syllable, second L−second syllable) → different sandhi outcome
- By using associated/floating status to represent tonal stability/displacement, we have lost the information on morphological affiliation

A morphophonological solution


· An additional autosegmental tier: Morpheme Morphological affiliation = Tone–Morpheme association



QF Transduction

d. $L'(y) \stackrel{\text{def}}{=} L(y)$

a. $\sigma'(x) \stackrel{\text{def}}{=} \sigma(x)$ b. $H'(y) \stackrel{\text{def}}{=} H(y)$ c. $M'(y) \stackrel{\text{def}}{=} M(y)$

(Mor) (Mor)

- e. $Mor'(z) \stackrel{\text{def}}{=} Mor(z)$ 1 f. $A'(x,y) \stackrel{\text{def}}{=} (A(x,y) \land \text{first}(x)) \lor (\text{first}(x) \land \text{first}(y))$
 - $\vee (\neg A(p(x), y) \land R_{Mor}(y, z) \land \texttt{first}(z) \land \texttt{second}(x) \land \texttt{second}(y))$

Tone-TBU associations conditioned by Tone-Morpheme associations

- Keep all associations to first syllable in the input (f, first disjunct)
- Associate first tone to first syllable if floating in the input (f, second disjunct)
- Associate second tone to second syllable, only when the second tone is associated with the first *Morpheme* in the input (f, third disjunct)
- Not a model-internal issue of A-ISL functions, but an underlying property of **Autosegmental Representations**
- Regardless of types formalism, one has to capture:
- 1. Some lexical tones always redistribute, some do not
- 2. Redistribution only operates on the leftmost lexical tone