A metrical analysis of light-initial tone sandhi in Suzhou
LSA 2020 Annual Meeting, January 3, 2020
Yuhong Zhu

I. Main claims

1. 'Checked tones' as monomoraic syllables

Traditionally transcribed as closed syllables with /2/ codas (Qian 1992, Wang 2011) Contemporary status of $/ 2 /$ has not been studied phonetically
Based on my fieldwork acoustic data, they are plain short vowels in monomorai (open) syllables
First-time phonetic evidence of contrastive vowel length (monomoraic vs. bimoraic)
2. 'Exceptional' light-initial sandhi patterns

The second syllable can influence tone sandhi only when the initial syllable is light (traditionally 'checked') - I refer to this as 'light-initial sandh'
Counter to previous descriptions, where only the initial syllable determines the sandhi pitch pattern ('Left dominance')(Duanmu 1999, Shi \& Jiang 2013) I propose a more refined foot-based analysis for this novel light-initial pattern

II. Background

1. Lexical tones in Suzhou

A Northern Wu dialect with seven lexical tones

Checked tones. Monomoraic
[H] Bimoraic, T_{μ}

		Monomoraic, T_{μ}	
[HLH]	[LHL]	[H]	[LH]

2. Left dominance: the traditional tone-sandhi analysis

Assumed for many Wu dialects (Chan \& Ren 1989 for Wuxi, Duanmu 1999 for Shanghai, Chan 1995 for Danyang, Shi \& Jiang 2013 for Suzhou) Initial syllable determines the surface pitch; everything else is irrelevan
Captured by left-aligned, non-iterative syllabic trochees
A strong syllable (σ^{+}) retains its tonal material; a weak footed syllable (σ^{-}) can receive tone through re-association, but cannot retain its own tone; third \& fourth syllables are unfooted and are subject to phonetic implementation. (Shi \& Jiang 2013)

LH/ + T + T + T

3. Complications in Suzhou

Tone redistribution does not always happen: $\mathrm{LLH} /+\mathrm{T}+\mathrm{T}+\mathrm{T}=$ [L.H.L.L], but
/HL/ + T + T + T = [HL.L.L.L]
Complex contours (HLH, LHL) as initial syllables do not preserve everything HLH/ $+\mathrm{T}+\mathrm{T}+\mathrm{T}=$ [H.H.L.L]
$\mathrm{H} L+\mathrm{T}+\mathrm{T}+\mathrm{T}=[\mathrm{H} . \mathrm{H} . \mathrm{L} .\llcorner]$
III. Findings of the current study
\star All phonetic data come from my fieldwork, mainly consisting of disyllabic nouns elicited in a carrier sentence

1. No phonetic evidence for /P/

No coda stop closure for the 'checked tones' (a and b)
Intervocalic consonant durations are the same for 'checked'/ 'unchecked' tones (a vs. c)
'Unchecked' vowels ($\approx 250 \mathrm{~ms}$ in running speech) are more than twice as long as 'checked' ones ($\approx 100 \mathrm{~ms}$)

\star Conclusion: 'checked tones' are light monomoraic open syllables (e.g. [kə.sعi])
2. Second syllable plays a role in light-initial sandhi forms
\star What we would expect if the traditional analysis were true: $/ \mathbf{H}_{\mu}+\mathbf{T}=\left[H_{\mu} \cdot \mathrm{L}_{\mu \mu}\right]$ always; $/ \mathbf{L H} / \mu+\mathrm{T}=\left[\mathrm{L}_{\mu} \cdot \mathrm{H}_{\mu} \mathrm{L}_{\mu}\right]$ always - Pattern A: $\left[\mathrm{H}_{\mu} . \mathrm{L}_{\mu \mu}\right]$

Rows: initial toneColumns: second tone	$/ T / \mu+/ T / \mu$					$/ T / \mu+/ T / \mu$		Traditional Account	A: $\left[\mathrm{H}_{\mu} . \mathrm{L}, \mu_{\mu}\right]$ B: $\left[H_{\mu} . H_{\mu} L_{\mu}\right]$
	$1 \mathrm{H}_{\mu \mu}$	$/ \mathrm{LH} /{ }_{\mu \mu}$	$1 \mathrm{HL} /$ य	$/ \mathrm{HLH} / \mu$	/LHL/ $/{ }^{\text {u }}$	$/ H_{\mu}$	/LH/ $/$		
/ $\mathrm{H} /{ }^{\text {/ }}$	A	A	B	B	A	c	c	A	D: $\left[L_{\mu} \cdot H_{\mu} L_{\mu}\right]$
/LH/	D	D	D	D	D	E	E	D	$\mathrm{E}:\left[\mathrm{L}_{\mu} \cdot \mathrm{H}_{\mu}\right]$

© Conclusion: When the initial syllable is monomoraic/light, the second syllable influences the sandhi form

IV. Analysis for the light-initial sandhi

1. Tones

(T): underlyingly floating; [I]: short duration

Evidence for representations come from heavy-initial sandhi (not discussed here)

Bimoraic, T_{μ}					Monomoraic, T_{μ}	
/(HH)/ $/$	/(LH)/н	/ $/ \mathrm{HL} /$ /	$1 \mathrm{H}(\mathrm{L}) \mathrm{H} / \mu^{\prime}$	/(LHL)/ヶн	/ $\mathrm{H} /{ }^{\text {/ }}$	/(L)H/山
[H]	[LH]	[HL]	[HLH]	[LHLL]	[H]	[내]
$\begin{aligned} & \mu \mu \\ & \mathrm{H} \mathrm{H} \end{aligned}$	$\mu \mu$	${\underset{H}{\mu}}_{\mu}^{\mu}$		$\mu \mu$	$\begin{aligned} & {[} \\ & H \end{aligned}$	$\stackrel{\mu}{L}_{\mathrm{H}}$

2. Crucial observations

A unified syllabic trochee ($\sigma+\sigma$) does not account for light-initial sandhi $/(\mathrm{LH}))_{\mu \mu}+\mathrm{T}_{\mu \mu}=\left[\mathrm{L}_{\mu} \cdot \mathrm{H}_{\mu \mu}\right]$
(L) $\mathrm{H} / \mu+\mathrm{T}_{\mu \mu}=\left[\mathrm{L}_{\mu} \cdot \mathrm{H}_{\mu} \mathrm{L}_{\mu}\right]$ (but not $\left.{ }^{*}\left[L_{\mu} \cdot \mathrm{H}_{\mu \mu}\right]\right)$

Second σ, as the non-initial "dependent", demonstrates contradicting behaviors Initial σ is heavy: second σ cannot influence sandhi but hosts a bimoraic $[H]$ Initial σ is light: second σ can influence sandhi but cannot host a bimoraic [H]
If we list all possible light-initial sandhi pitch patterns

- [$\left.H_{\mu} . \mathrm{L}_{\mu}\right]$
$\left[H_{\mu} . \mathrm{H}_{\mu} \mathrm{L}_{\mu}\right]$
- $\left[\mathrm{H}_{\mu} . \mathrm{H}_{\mu}\right]$
[[L. $\left.\mathrm{H}_{\mu} \mathrm{L}_{\mu}\right]$
- $\left[L_{\mu} \cdot \mathrm{H}_{\mu}\right]$

The third mora in a light-initial sandhi never carries [H]. This looks a lot like unfooted third\&fourth syllables in a syllabic trochee. What kind of footing has a third unfooted mora?
\star Conclusion: light-initial sandhi has a different foot structure: left-aligned moraic trochees. (Kager 1993)

3. Alternating foot structures

Moraic trochees in light-heavy disyllables violates syllable integrity, but ensures that the head (monomoraic) is not lighter in quantity than the dependent (Head Dependent Asymmetries) (Kager \& Martínez-Paricio 2018, Dresher \& van der Hulst 1998)

Moraic rochee for a light-heavy disyliable Syllabic trochee for a light-light disyllable
(no difference if it's moraic) (no difference if it's moraic)

Footing in Suzhou serves two purposes
(a). It constrains syllable quantity relationship between head and dependent Heavy-heavy: syllabic Heavy-light: syllabic Light-light: syllabic Light-heavy:moraic
(b). It licenses tone-TBU association
$\left(\sigma^{+} . \sigma\right) . \varnothing$ in a syllabic foot; $\left(\mu^{+}, \mu\right) \varnothing$ in a moraic foot $(\varnothing=$ toneless $)$ Third syllable toneless vs. third mora toneless; perfect parallel
4. Demonstration of tone sandhi

$$
/(\mathrm{LH})_{\mu \mu}+\mathrm{T}_{\mu \mu}=\left[\mathrm{L}_{\mu \mu} \cdot \mathrm{H}_{\mu \mu}\right] \quad /(\mathrm{L}) \mathrm{H}_{/ \mu}+\mathrm{T}_{\mu \mu}=\left[\mathrm{L}_{\mu} \cdot \mathrm{H}_{\mu} \mathrm{L}_{\mu}\right]\left(\text { but not } *\left[\mathrm{~L}_{\mu} \cdot \mathrm{H}_{\mu \mu}\right]\right)
$$

