Math 2177 recitation: Review of midterm 1, 2

TA: Yu Zhang

November 202018
(You can find all my recitation handouts and their solutions on my homepage http://u.osu.edu/yuzhang/teaching/)

Exercise 1. Consider the function $f(x, y)=4 x^{2}+10 y^{2}$
(a) Find critical points of the given $f(x, y)$ and classify them. Compute the values of f at the critical points.
(b) Use the method of Lagrange multipliers to find the maximum and the minimum values of the given $f(x, y)$ on the circle $x^{2}+y^{2}=4$.
(c) Find the absolute maximum and the absolute minimum values of the given $f(x, y)$ on the disk $x^{2}+y^{2} \leqslant 4$. Use parts (a) and (b).

Exercise 2. Evaluate the following integral by first converting to polar coordinates.

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{0} \cos \left(x^{2}+y^{2}\right) d y d x
$$

Exercise 3. Determine if the following vector fields are conservative and find a potential function for the vector field if it is conservative.

$$
\bar{F}=\left(2 x^{3} y^{4}+x\right) \bar{i}+\left(2 x^{4} y^{3}+y\right) \bar{j}
$$

Exercise 4. A $=\left[\begin{array}{cccc}2 & 3 & -1 & -9 \\ 0 & 1 & 1 & 1 \\ -1 & 2 & 3 & 4\end{array}\right]$.
(1) Find all solutions to $\mathbf{A} \bar{x}=0$
(2) Find all solutions to $\mathbf{A} \bar{x}=\bar{b}$ given that $\bar{p}=\left[\begin{array}{c}3 \\ -5 \\ 7 \\ 0\end{array}\right]$ is a solution to $\mathbf{A} \bar{x}=\bar{b}$.

Describe the solutions in parametric vector form, and give a geometric description of the solution sets.

Exercise 5. (1) Let $v_{1}=\left[\begin{array}{c}2 \\ -1 \\ 3 \\ 4\end{array}\right], v_{2}=\left[\begin{array}{c}3 \\ 2 \\ -2 \\ 1\end{array}\right], w=\left[\begin{array}{c}5 \\ 8 \\ -12 \\ -5\end{array}\right]$. Determine whether w is a linear combination of v_{1} and v_{2}.
(2) Determine whether v_{1}, v_{2} and w are linearly dependent.

