Math 2177 recitation: Review

TA: Yu Zhang

November 202018
(You can find all my recitation handouts and their solutions on my homepage http://u.osu.edu/yuzhang/teaching/)

Exercise 1. Consider the function $f(x, y)=4 x^{2}+10 y^{2}$
(a) Find critical points of the given $f(x, y)$ and classify them. Compute the values of f at the critical points.
(b) Use the method of Lagrange multipliers to find the maximum and the minimum values of the given $f(x, y)$ on the circle $x^{2}+y^{2}=4$.
(c) Find the absolute maximum and the absolute minimum values of the given $f(x, y)$ on the disk $x^{2}+y^{2} \leqslant 4$. Use parts (a) and (b).

Solution 1. (a) $0=f_{x}=8 x, 0=f_{y}=20 y$ implies $x=y=0$. The only critical point is $(0,0)$.

Classify the type: We compute $f_{x x}(x, y)=8, f_{y y}(x, y)=20, f_{x y}(x, y)=$ $f_{y x}(x, y)=0$. Therefore, $D(x, y)=f_{x x}(x, y) f_{y y}(x, y)-\left(f_{x y}(x, y)\right)^{2}=160$. In particular, $D(0,0)=160>0$. Moreover, $f_{x x}(0,0)=8>0$. Therefore, f has a local minimum at $(0,0)$.

We have $f(0,0)=0$.
(b) Let $g(x, y)=x^{2}+y^{2}-4$. We need to find the maximum and the minimum values of the given $f(x, y)$ when $g(x, y)=0$. We solve the following system

$$
\left\{\begin{array} { l }
{ f _ { x } (x , y) = \lambda g _ { x } (x , y) } \\
{ f _ { y } (x , y) = \lambda g _ { y } (x , y) } \\
{ g (x , y) = 0 }
\end{array} \rightarrow \left\{\begin{array}{l}
8 x=2 \lambda x \\
20 y=2 \lambda y \\
x^{2}+y^{2}=4
\end{array}\right.\right.
$$

From the first equation we get $2 x(4-\lambda)=0$. So $x=0$ or $\lambda=4$.
Case 1: $x=0$, then $y= \pm 2$.
Case 2: $\lambda=4$, then $y=0$. Therefore $x= \pm 2$.
Now we compute the values of $f(x, y)$ at these points

$$
f(0,2)=40=f(0,-2), f(2,0)=16=f(-2,0)
$$

Therefore, the minimum values of f on $x^{2}+y^{2}=4$ is $f(2,0)=f(-2,0)=16$ and the maximum value of f on $x^{2}+y^{2}=4$ is $f(0,2)=f(0,-2)=40$.
(c) By (a) and (b), the absolute minimum of $f(x, y)$ on the disk $x^{2}+y^{2} \leqslant 4$ is $f(0,0)=0$ and the absolute maximum of $f(x, y)$ on the disk $x^{2}+y^{2} \leqslant 4$ is $f(0,2)=f(0,-2)=40$.

Exercise 2. Evaluate the following integral by first converting to polar coordinates.

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{0} \cos \left(x^{2}+y^{2}\right) d y d x
$$

Solution 2.

$$
\int_{-1}^{1} \int_{-\sqrt{1-x^{2}}}^{0} \cos \left(x^{2}+y^{2}\right) d y d x=\int_{\pi}^{2 \pi} \int_{0}^{1} r \cos \left(r^{2}\right) d r d \theta=\int_{\pi}^{2 \pi} \frac{1}{2} \sin (1) d \theta=\frac{\pi}{2} \sin (1)
$$

Exercise 3. Determine if the following vector fields are conservative and find a potential function for the vector field if it is conservative.

$$
\bar{F}=\left(2 x^{3} y^{4}+x\right) \bar{i}+\left(2 x^{4} y^{3}+y\right) \bar{j}
$$

Solution 3. Let $P=2 x^{3} y^{4}+x, Q=2 x^{4} y^{3}+y$. Then $P_{y}=8 x^{3} y^{3}=Q_{x}$ So, the vector field is conservative.

Now let's find the potential function. We want a function $f(x, y)$ such that $f_{x}=P=2 x^{3} y^{4}+x$ and $f_{y}=Q=2 x^{4} y^{3}+y$. Integrating P with respect to x, we get $f(x, y)=\frac{1}{2} x^{4} y^{4}+\frac{1}{2} x^{2}+h(y)$. Differentiating with respect to y gives $2 x^{4} y^{3}+h^{\prime}(y)=Q=2 x^{4} y^{3}+y$ so $h^{\prime}(y)=y$. Thus, $h(y)=\frac{1}{2} y^{2}+C$ and we can take it to be $\frac{1}{2} y^{2}$ as we are just looking for one potential.

We get $f(x, y)=\frac{1}{2} x^{4} y^{4}+\frac{1}{2} x^{2}+\frac{1}{2} y^{2}$.
Exercise 4. A $=\left[\begin{array}{cccc}2 & 3 & -1 & -9 \\ 0 & 1 & 1 & 1 \\ -1 & 2 & 3 & 4\end{array}\right]$.
(1) Find all solutions to $\mathbf{A} \bar{x}=0$
(2) Find all solutions to $\mathbf{A} \bar{x}=\bar{b}$ given that $\bar{p}=\left[\begin{array}{c}3 \\ -5 \\ 7 \\ 0\end{array}\right]$ is a solution to $\mathbf{A} \bar{x}=\bar{b}$.

Describe the solutions in parametric vector form, and give a geometric description of the solution sets.

Solutions to $\mathbf{A} \bar{x}=0$ are $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}-2 t \\ 3 t \\ -4 t \\ t\end{array}\right]$, where t is any real number.
(2)Notice \bar{p} is a particular solution. All solutions to $\mathbf{A} \bar{x}=\bar{b}$ are
$\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=t\left[\begin{array}{c}-2 \\ 3 \\ -4 \\ 1\end{array}\right]+\left[\begin{array}{c}3 \\ -5 \\ 7 \\ 0\end{array}\right]$, where t is any real number.

Geometrically, it is a line in R^{4} passing through $\left[\begin{array}{c}3 \\ -5 \\ 7 \\ 0\end{array}\right]$. Exercise 5. (1) Let $v_{1}=\left[\begin{array}{c}2 \\ -1 \\ 3 \\ 4\end{array}\right], v_{2}=\left[\begin{array}{c}3 \\ 2 \\ -2 \\ 1\end{array}\right], w=\left[\begin{array}{c}5 \\ 8 \\ -12 \\ -5\end{array}\right]$. Determine whether w is a linear combination of v_{1} and v_{2}.
(2) Determine whether v_{1}, v_{2} and w are linearly dependent.

Solution 5. (1) Consider the equation $x_{1} v_{1}+x_{2} v_{2}=w$. This equation has corresponding augmented matrix $\left[\begin{array}{ccc}2 & 3 & 5 \\ -1 & 2 & 8 \\ 3 & -2 & -12 \\ 4 & 1 & -5\end{array}\right] \sim\left[\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$. This shows $w=$ $-2 v_{1}+3 v_{2}$ is a linear combination of v_{1} and v_{2}.
(2) From (1), we know $w=-2 v_{1}+3 v_{2}$. Therefore $-2 v_{1}+3 v_{2}-w=w-w=0$ is a nonzero solution to $x_{1} v_{1}+x_{2} v_{2}+x_{3} w=0 . v_{1}, v_{2}$ and w are linearly dependent.

