Math 2177 recitation: Matrix and vectors

TA: Yu Zhang

October 162018

1 Different forms of equations and matrix operations

Given a system of linear equations, for example:

$$
\begin{gathered}
2 x_{1}+3 x_{2}-x_{3}=4 \\
5 x_{1}-3 x_{2}-4 x_{3}=1 \\
2 x_{1}+x_{2}+7 x_{3}=10
\end{gathered}
$$

There's three other different ways of presenting this system:
By augmented matrix: $\left[\begin{array}{cccc}2 & 3 & -1 & 4 \\ 5 & -3 & -4 & 1 \\ 2 & 1 & 7 & 10\end{array}\right]$
By vector equation: $x_{1}\left[\begin{array}{l}2 \\ 5 \\ 2\end{array}\right]+x_{2}\left[\begin{array}{c}3 \\ -3 \\ 1\end{array}\right]+x_{3}\left[\begin{array}{c}-1 \\ -4 \\ 7\end{array}\right]=\left[\begin{array}{c}4 \\ 1 \\ 10\end{array}\right]$
By matrix equation: $\left[\begin{array}{ccc}2 & 3 & -1 \\ 5 & -3 & -4 \\ 2 & 1 & 7\end{array}\right] \cdot\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{c}4 \\ 1 \\ 10\end{array}\right]$, here on left hand side we are taking product of two matrices.

Recall for matrices \mathbf{A} and \mathbf{B}. The (i, j) entry of their product $\mathbf{A B}$ (if defined) is the dot product $(i$ th row of $\mathbf{A}) \cdot(j$ th column of $\mathbf{B})$

Example :
$\left[\begin{array}{ll}0 & 1 \\ 2 & 3\end{array}\right]\left[\begin{array}{ll}4 & 5 \\ 6 & 7\end{array}\right]=\left[\begin{array}{ll}0 * 4+1 * 6 & 0 * 5+1 * 7 \\ 2 * 4+3 * 6 & 2 * 5+3 * 7\end{array}\right]=\left[\begin{array}{cc}6 & 7 \\ 26 & 31\end{array}\right]$
Exercise1: Compute the following matrix operations. Write "undefined" for expressions that are undefined.
(1)
$3\left[\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right]$
(2) $\left[\begin{array}{lll}10 & 20 & 30\end{array}\right]-\left[\begin{array}{lll}1 & 2 & 3\end{array}\right]$
(3)

$$
\left[\begin{array}{cc}
3 & 1 \\
-3 & -4
\end{array}\right]\left[\begin{array}{cc}
1 & -3 \\
-4 & -1
\end{array}\right]
$$

(4) $\left[\begin{array}{cc}1 & -3 \\ -4 & -1\end{array}\right]\left[\begin{array}{cc}3 & 1 \\ -3 & -4\end{array}\right]$
(5) $\left[\begin{array}{cc}3 & 2 \\ 2 & 1 \\ 3 & 4 \\ -1 & -1\end{array}\right]\left[\begin{array}{cc}0 & 0 \\ 2 & -6\end{array}\right]\left[\begin{array}{cc}-2 & 6 \\ 0 & 0\end{array}\right]$

$$
\left[\begin{array}{cc}
3 & 2 \\
2 & 1 \\
3 & 4 \\
-1 & -1
\end{array}\right]\left[\begin{array}{cc}
0 & 0 \\
2 & -6
\end{array}\right]\left[\begin{array}{cc}
-2 & 6 \\
0 & 0
\end{array}\right]
$$

(6)

$$
\left[\begin{array}{cccc}
4 & -5 & 4 & 0 \\
6 & 3 & 0 & -3
\end{array}\right]\left[\begin{array}{cc}
2 & 0 \\
-6 & -1
\end{array}\right]
$$

3 Linear combination and linearly dependence

Say vector \bar{u} is a linear combination of vectors $\overline{v_{1}}, \overline{v_{2}}, \cdots, \overline{v_{k}}$ if the equation

$$
x_{1} \overline{v_{1}}+x_{2} \overline{v_{2}}+\cdots+x_{k} \overline{v_{k}}=\bar{u}
$$

has solutions.
Say vectors $\overline{v_{1}}, \overline{v_{2}}, \cdots, \overline{v_{k}}$ are linearly dependent if the equation

$$
x_{1} \overline{v_{1}}+x_{2} \overline{v_{2}}+\cdots+x_{k} \overline{v_{k}}=0
$$

has nonzero solutions. Otherwise $\overline{v_{1}}, \overline{v_{2}}, \cdots, \overline{v_{k}}$ are called linearly independent
Exercise3 : Determine which of the following lists of vectors are linearly independent:
(1) $\overline{v_{1}}=\left[\begin{array}{c}1 \\ 2 \\ 0 \\ -1 \\ 5\end{array}\right], \overline{v_{2}}=\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 0 \\ 0\end{array}\right], \overline{v_{3}}=\left[\begin{array}{c}16 \\ 6 \\ 2 \\ -7 \\ 0\end{array}\right]$,
(2) $\overline{v_{1}}=\left[\begin{array}{l}5 \\ 7\end{array}\right]$
(3) $\overline{v_{1}}=\left[\begin{array}{l}3 \\ 1 \\ 4\end{array}\right], \overline{v_{2}}=\left[\begin{array}{c}-2 \\ 2 \\ 5\end{array}\right], \overline{v_{3}}=\left[\begin{array}{l}3 \\ 0 \\ 4\end{array}\right], \overline{v_{4}}=\left[\begin{array}{c}2 \\ -1 \\ -2\end{array}\right]$
(4) $\overline{v_{1}}=\left[\begin{array}{l}1 \\ 0 \\ 0 \\ 0\end{array}\right], \overline{v_{2}}=\left[\begin{array}{l}1 \\ 1 \\ 0 \\ 0\end{array}\right], \overline{v_{3}}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 0\end{array}\right], \overline{v_{4}}=\left[\begin{array}{l}1 \\ 1 \\ 1 \\ 1\end{array}\right]$
(5) $\overline{v_{1}}=\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right], \overline{v_{2}}=\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right], \overline{v_{3}}=\left[\begin{array}{l}2 \\ 1 \\ 3\end{array}\right]$

