Math 2177 midterm 2 review exercises

TA: Yu Zhang

October 232018

1 Solve systems of equations

Exercise1: Solve the following systems of linear equations:
(1) $\left\{\begin{array}{l}x_{1}+x_{2}-2 x_{3}=1 \\ 2 x_{1}-3 x_{2}+x_{3}=-8 \\ 3 x_{1}+x_{2}+4 x_{3}=7\end{array}\right.$
(2) $\left\{\begin{array}{l}x_{1}-x_{2}+x_{3}-x_{4}=2 \\ x_{1}-x_{2}+x_{3}+x_{4}=0 \\ 4 x_{1}-4 x_{2}+4 x_{3}=4 \\ -2 x_{1}+2 x_{2}-2 x_{3}+x_{4}=-3\end{array}\right.$

Solution : (1) $\left\{\begin{array}{l}x_{1}=0 \\ x_{2}=3 \\ x_{3}=1\end{array}\right.$
(2) $\left\{\begin{array}{l}x_{1}=1+s-t \\ x_{2}=s \\ x_{3}=t \\ x_{4}=-1\end{array} \quad\right.$ where s, t are any real numbers.

2 Connection between homogeneous and non homogeneous equations

Exercise 2 : Let $\mathbf{A}=\left[\begin{array}{cccc}2 & 3 & -1 & -9 \\ 0 & 1 & 1 & 1 \\ -1 & 2 & 3 & 4\end{array}\right]$.
(1) Find all solutions to $\mathbf{A} \bar{x}=0$
(2) Find all solutions to $\mathbf{A} \bar{x}=\bar{b}$ given that $\bar{p}=\left[\begin{array}{c}3 \\ -5 \\ 7 \\ 0\end{array}\right]$ is a solution to $\mathbf{A} \bar{x}=\bar{b}$.

Describe the solutions in parametric vector form, and give a geometric description of the solution sets

Solution : (1) $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}-2 t \\ 3 t \\ -4 t \\ t\end{array}\right]$, where t is any real number.
(2) $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}3 \\ -5 \\ 7 \\ 0\end{array}\right]+t\left[\begin{array}{c}-2 \\ 3 \\ -4 \\ 1\end{array}\right]$, where t is any real number.

Geometrically, it is a line in R^{4} passing through $\left[\begin{array}{c}3 \\ -5 \\ 7 \\ 0\end{array}\right]$.
Exercise3 : Let $\mathbf{A}=\left[\begin{array}{cccc}2 & 1 & 7 & -2 \\ 3 & -2 & 0 & 11 \\ 1 & 1 & 5 & -3\end{array}\right]$.
(1) Find all solutions to $\mathbf{A} \bar{x}=0$
(2) Find all solutions to $\mathbf{A} \bar{x}=\bar{b}$ given that $\bar{p}=\left[\begin{array}{c}3 \\ -2 \\ 0 \\ 0\end{array}\right]$ is a solution to $\mathbf{A} \bar{x}=\bar{b}$. Describe the solutions in parametric vector form, and give a geometric description of the solution sets.

Solution : (1) $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}-2 s-t \\ -3 s+4 t \\ s \\ t\end{array}\right]$, where s, t are any real numbers.
(2) $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{c}3 \\ -2 \\ 0 \\ 0\end{array}\right]+s\left[\begin{array}{c}-2 \\ -3 \\ 1 \\ 0\end{array}\right]+t\left[\begin{array}{c}-1 \\ 4 \\ 0 \\ 1\end{array}\right]$, where s, t are any real numbers.
Geometrically, it is a plane in R^{4} passing through $\left[\begin{array}{c}3 \\ -2 \\ 0 \\ 0\end{array}\right]$.

3 Matrix operations

Exercise4 : Compute $\left[\begin{array}{cc}2 & 5 \\ -1 & 3 \\ 2 & -2\end{array}\right]\left[\begin{array}{cccc}1 & 5 & -3 & 4 \\ 2 & 0 & 2 & -3\end{array}\right]$
Solution : $\left[\begin{array}{cccc}12 & 10 & 4 & -7 \\ 5 & -5 & 9 & -13 \\ -2 & 10 & -10 & 14\end{array}\right]$
Exercise5 : Let $A=\left[\begin{array}{cccc}1 & 2 & 3 & -2 \\ 0 & 1 & -2 & -1 \\ 1 & 1 & 3 & 1\end{array}\right], B=\left[\begin{array}{c}-7 \\ 3 \\ 1 \\ 1\end{array}\right]$ Compute the following matrix operations. Write "undefined" for expressions that are undefined.
(1) A^{T}
(2) B^{T}
(3) AB
(4) $A^{T} B$
(5) $A B^{T}$
(6) $A^{T} B^{T}$

Solution : (1) $A^{T}=\left[\begin{array}{ccc}1 & 0 & 1 \\ 2 & 1 & 1 \\ 3 & -2 & 3 \\ -2 & -1 & 1\end{array}\right]$ (2) $B^{T}=\left[\begin{array}{llll}-7 & 3 & 1 & 1\end{array}\right]$
(3) $A B=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ (4)Undefined (5) Undefined (6)Undefined

Exercise6 : Let $A=\left[\begin{array}{ll}1 & 2 \\ 0 & 1\end{array}\right]$. Compute $A^{2}, A^{3}, A^{4}, A^{5}$.
Solution : $A^{2}=\left[\begin{array}{ll}1 & 4 \\ 0 & 1\end{array}\right], A^{3}=\left[\begin{array}{ll}1 & 6 \\ 0 & 1\end{array}\right], A^{4}=\left[\begin{array}{ll}1 & 8 \\ 0 & 1\end{array}\right], A^{5}=\left[\begin{array}{cc}1 & 10 \\ 0 & 1\end{array}\right]$.

4 Linear combination, linearly dependence and singular matrix

Exercise7 : (1) Let $v_{1}=\left[\begin{array}{c}2 \\ -1 \\ 3 \\ 4\end{array}\right], v_{2}=\left[\begin{array}{c}3 \\ 2 \\ -2 \\ 1\end{array}\right], w=\left[\begin{array}{c}5 \\ 8 \\ -12 \\ -5\end{array}\right]$. Determine whether w is a linear combination of v_{1} and v_{2}.
(2) Determine whether v_{1}, v_{2} and w are linearly dependent.

Solution :
(1) $\left[\begin{array}{ccc}2 & 3 & 5 \\ -1 & 2 & 8 \\ 3 & -2 & -12 \\ 4 & 1 & -5\end{array}\right] \sim\left[\begin{array}{ccc}1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$.
$w=-2 v_{1}+3 v_{2}$ is a linear combination of v_{1} and v_{2}.
(2) From (1), we know $w=-2 v_{1}+3 v_{2}$. Therefore $-2 v_{1}+3 v_{2}-w=w-w=0$ is a nonzero solution to $x_{1} v_{1}+x_{2} v_{2}+x_{3} w=0 . v_{1}, v_{2}$ and w are linearly dependent.

Exercise8 : (1) Let $A=\left[\begin{array}{cccc}2 & 1 & 3 & 1 \\ -1 & 1 & -1 & 1 \\ 3 & 2 & 0 & 5 \\ 0 & -1 & -2 & 1\end{array}\right]$ Determine whether A is singular.
(2) Let $v_{1}=\left[\begin{array}{c}2 \\ -1 \\ 3 \\ 0\end{array}\right], v_{2}=\left[\begin{array}{c}1 \\ 1 \\ 2 \\ -1\end{array}\right], v_{3}=\left[\begin{array}{c}3 \\ -1 \\ 0 \\ -2\end{array}\right], v_{4}=\left[\begin{array}{l}1 \\ 1 \\ 5 \\ 1\end{array}\right]$. Determine whether v_{1}, v_{2}, v_{3} and v_{4} are linearly dependent.

Solution :

(1) $A \sim\left[\begin{array}{llll}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1\end{array}\right]$ has pivot in each column. A is non singular.
(2) From (1) A has pivots in each column so $x_{1} v_{1}+x_{2} v_{2}+x_{3} v_{3}+x_{4} v_{4}=0$ only has zero solution. v_{1}, v_{2}, v_{3} and v_{4} are linearly independent.

Exercise9 : Let $\left\{v_{1}, v_{2}, v_{3}\right\}$ be linearly independent vectors. Determine whether $\left\{2 v_{1}+3 v_{2}+v_{3}, v_{1}-v_{2}+2 v_{3}, 2 v_{1}+v_{2}-v_{3}\right\}$ is linearly dependent.

Solution :

Consider the equation

$$
x_{1}\left(2 v_{1}+3 v_{2}+v_{3}\right)+x_{2}\left(v_{1}-v_{2}+2 v_{3}\right)+x_{3}\left(2 v_{1}+v_{2}-v_{3}\right)=0
$$

We can rearrange this equation to

$$
\left(2 x_{1}+x_{2}+2 x_{3}\right) v_{1}+\left(3 x_{1}-x_{2}+x_{3}\right) v_{2}+\left(x_{1}+2 x_{2}-x_{3}\right) v_{3}=0
$$

Since $\left\{v_{1}, v_{2}, v_{3}\right\}$ is linearly independent, we must have $\left\{\begin{array}{l}2 x_{1}+x_{2}+2 x_{3}=0 \\ 3 x_{1}-x_{2}+x_{3}=0 \\ x_{1}+2 x_{2}-x_{3}=0\end{array}\right.$
Solving this system of equations shows $x_{1}=x_{2}=x_{3}=0$. Therefore $\left\{2 v_{1}+3 v_{2}+\right.$ $\left.v_{3}, v_{1}-v_{2}+2 v_{3}, 2 v_{1}+v_{2}-v_{3}\right\}$ is linearly independent.

