Math 2177 recitation: PDE 2

TA: Yu Zhang

December 42018
(You can find all my recitation handouts and their solutions on my homepage http://u.osu.edu/yuzhang/teaching/)

1 Solving heat equation

As an example, we look at the following partial differential equation (PDE):

$$
\begin{cases}u_{t}=\beta u_{x x}, \quad 0<x<L, \quad t>0 & (\text { PDE }) \\ u(0, t)=u(L, t)=0, \quad t>0 & \text { (Boundary Condition) } \\ u(x, 0)=f(x), \quad 0<x<L & \text { (Initial Condition) }\end{cases}
$$

By separating variables, we can solve this PDE in 4 steps:
Step 1. Write $u(x, t)=X(x) T(t)$ to turn the PDE into two ordinary differential equations (with boundary conditions)

Let $u(x, t)=X(x) T(t)$, we obtain the boundary value problem

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X(0)=X(L)=0
\end{array} \quad \text { and } T^{\prime}(t)=-\lambda \beta T(t)\right.
$$

Step 2. Find all eigenvalues λ_{n} and their corresponding eigenfunctions X_{n} of the boundary value problem in step 1.

Depending on the value of λ, the boundary value problem

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X(0)=X(L)=0
\end{array}\right.
$$

may only have zero solution $X(x) \equiv 0$. We want to determine those values of λ for which the boundary value problem has nontrivial solutions. These nontrivial solutions are called the eigenfunctions of the problem, the eigenvalues are those corresponding values of λ.

By computations we conclude eigenvalues are $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}$ and corresponding eigenfunctions are $X_{n}(x)=\sin \left(\frac{n \pi}{L} x\right)$.

Step 3. Use λ_{n} to find corresponding T_{n}. Then find the general solution $u(x, t)=\sum_{n=1}^{\infty} c_{n} X_{n}(x) T_{n}(t)$ satisfying both the PDE and boundary condition.

For $\lambda=\left(\frac{n \pi}{L}\right)^{2}$, general solution of $T^{\prime}(t)=-\beta \lambda T(t)$ is

$$
T_{n}(t)=c e^{-\beta \lambda t}=c e^{-\beta\left(\frac{n \pi}{L}\right)^{2} t}
$$

Now general solution for $u(x, t)$ is

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} X_{n}(x) T_{n}(t)=\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi}{L} x\right) e^{-\beta\left(\frac{n \pi}{L}\right)^{2} t}
$$

Step 4. Use the initial condition to determine the coefficients c_{n} then get final answer $u(x, t)$.

From the initial condition $u(x, 0)=f(x)$ we know $\sum_{n=1}^{\infty} c_{n} \sin \left(\frac{n \pi}{L} x\right)=f(x)$. When $f(x)$ is already a linear combination of $\sin \left(\frac{n \pi}{L} x\right)$, we can directly read the coefficients c_{n} and get final answer $u(x, t)$

Exercise 1. Find the solution to the heat flow problem

$$
\left\{\begin{array}{l}
u_{t}=7 u_{x x}, \quad 0<x<\pi, \quad t>0 \\
u(0, t)=u(\pi, t)=0, \quad t>0 \\
u(x, 0)=3 \sin (2 x)-6 \sin (5 x), \quad 0<x<\pi
\end{array}\right.
$$

Solution 1. In this case, $\beta=7, L=\pi$. Hence general solution is

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \sin (n x) e^{-7 n^{2} t}
$$

Initial condition implies $\sum_{n=1}^{\infty} c_{n} \sin (n x)=3 \sin (2 x)-6 \sin (5 x)$. Hence $c_{2}=3$, $c_{5}=-6$. All other coefficients vanish. Therefore

$$
u(x, t)=3 \sin (2 x) e^{-28 t}-6 \sin (5 x) e^{-175 t}
$$

Exercise 2. Find the solution to the heat flow problem

$$
\left\{\begin{array}{l}
u_{t}=2 u_{x x}, \quad 0<x<1, \quad t>0 \\
u(0, t)=u(1, t)=0, \quad t>0 \\
u(x, 0)=3 \sin (3 \pi x)+5 \sin (5 \pi x)+\sin (9 \pi x), \quad 0<x<1
\end{array}\right.
$$

Solution 2. In this case, $\beta=2, L=1$. Hence general solution is

$$
u(x, t)=\sum_{n=1}^{\infty} c_{n} \sin (n \pi x) e^{-2 n^{2} \pi^{2} t}
$$

Initial condition implies $\sum_{n=1}^{\infty} c_{n} \sin (n \pi x)=3 \sin (3 \pi x)+5 \sin (5 \pi x)+\sin (9 \pi x)$. Hence $c_{3}=3, c_{5}=5, c_{9}=1$. All other coefficients vanish. Therefore

$$
u(x, t)=3 \sin (3 \pi x) e^{-18 \pi^{2} t}+5 \sin (5 \pi x) e^{-50 \pi^{2} t}+\sin (9 \pi x) e^{-162 \pi^{2} t}
$$

2 Fourier series

Let $f(x)$ be a continuous periodic function with period $2 L$. Then $f(x)$ has a Fourier series

$$
F(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos \left(\frac{n \pi x}{L}\right)+b_{n} \sin \left(\frac{n \pi x}{L}\right)\right)
$$

where

$$
a_{0}=\frac{1}{L} \int_{-L}^{L} f(x) d x
$$

$$
\begin{aligned}
& a_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \cos \left(\frac{n \pi x}{L}\right) d x \\
& b_{n}=\frac{1}{L} \int_{-L}^{L} f(x) \sin \left(\frac{n \pi x}{L}\right) d x
\end{aligned}
$$

Moreover when $f(x)$ and $f^{\prime}(x)$ are piecewise continuous, $F(x)=f(x)$ for all x.
Special cases:
(1) If $f(x)$ is an even function meaning $f(x)=f(-x)$, then all $b_{n}=0$.

$$
F(x)=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos \left(\frac{n \pi x}{L}\right)
$$

(2) If $f(x)$ is an odd function meaning $f(x)=-f(-x)$, then all $a_{n}=0$.

$$
F(x)=\sum_{n=1}^{\infty} b_{n} \sin \left(\frac{n \pi x}{L}\right)
$$

Exercise 3. Consider the following function

$$
f(x)=\pi^{2}-x^{2},-\pi \leqslant x \leqslant \pi, f(x+2 \pi)=f(x)
$$

(a) Is $f(x)$ even, odd, or neither?
(b) Find the Fourier series $F(x)$ of the given $f(x)$ with period $T=2 \pi$. You may use the information you obtain in (a).
(c) What is $F(\pi)$ and $F(4 \pi)$?
(d) Evaluate $\sum_{n=1}^{\infty} \frac{1}{n^{2}}$ using parts (b) and (c), i.e., the expression of $F(\pi)$ as a series when $x=\pi$ and the value of $F(\pi)$ from the convergence theorem.

Solution 3. (a) Notice that $f(x)=\pi^{2}-x^{2}$ on $-\pi \leqslant x \leqslant \pi$ and $-\pi \leqslant x \leqslant \pi$ is an interval symmetric with respect to 0 . On $-\pi \leqslant x \leqslant \pi$, we have $f(-x)=$ $\pi^{2}-(-x)^{2}=\pi^{2}-x^{2}=f(x)$, i.e., $f(x)$ is even on $-\pi \leqslant x \leqslant \pi$. Also, $f(x)$ is 2π-periodic, therefore, it is even.
(b) In part (a) we saw that $\mathrm{f}(\mathrm{x})$ is an even function, therefore, the sine coefficients b_{n} in its Fourier series are 0 for all n. We now compute the other coefficients. We have

$$
\left.a_{0}=\frac{1}{\pi} \int_{-\pi}^{\pi}\left(\pi^{2}-x^{2}\right) d x=\frac{1}{\pi}\left(\pi^{2} x-\frac{x^{3}}{3}\right)\right)_{\substack{x=\pi \\ x=-\pi}}=\frac{4}{3} \pi^{2}
$$

By using integration by parts

$$
\begin{aligned}
a_{n} & =\frac{1}{\pi} \int_{-\pi}^{\pi}\left(\pi^{2}-x^{2}\right) \cos (n x) d x=\left.\frac{1}{\pi}\left(\left(\pi^{2}-x^{2}\right) \frac{\sin (n x)}{n}-2 x \frac{\cos (n x)}{n^{2}}+2 \frac{\sin (n x)}{n^{3}}\right)\right|_{x=-\pi} ^{x=\pi} \\
& =\frac{1}{\pi}\left(-4 \pi \frac{\cos (n \pi)}{n^{2}}\right)=-\frac{4}{n^{2}} \cos (n \pi)=-\frac{4}{n^{2}}(-1)^{n}=(-1)^{n+1} \frac{4}{n^{2}}
\end{aligned}
$$

So the Fourier series of $f(x)$ is

$$
F(x)=\frac{2}{3} \pi^{2}+\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4}{n^{2}} \cos (n x)
$$

(c) Notice that $f(x)$ and $f^{\prime}(x)$ are piecewise continuous,

$$
\begin{gathered}
F(\pi)=f(\pi)=\pi^{2}-\pi^{2}=0 \\
F(4 \pi)=f(4 \pi)=f(2 \pi)=f(0)=\pi^{2}
\end{gathered}
$$

(d) We have

$$
\begin{aligned}
0 & =F(\pi)=\frac{2}{3} \pi^{2}+\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4}{n^{2}} \cos (n \pi)=\frac{2}{3} \pi^{2}+\sum_{n=1}^{\infty}(-1)^{n+1} \frac{4}{n^{2}}(-1)^{n} \\
& =\frac{2}{3} \pi^{2}+\sum_{n=1}^{\infty}(-1)^{2 n+1} \frac{4}{n^{2}}=\frac{2}{3} \pi^{2}-\sum_{n=1}^{\infty} \frac{4}{n^{2}}=\frac{2}{3} \pi^{2}-4\left(\sum_{n=1}^{\infty} \frac{1}{n^{2}}\right)
\end{aligned}
$$

It follows

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}
$$

