Math 2177 recitation: PDE 1

TA: Yu Zhang

November 272018
(You can find all my recitation handouts and their solutions on my homepage http://u.osu.edu/yuzhang/teaching/)

As an example, we look at the following partial differential equation (PDE):
$\begin{cases}u_{t}=\beta u_{x x}, \quad 0<x<L, \quad t>0 & \text { (PDE) } \\ u(0, t)=u(L, t)=0, \quad t>0 & \text { (Boundary Condition) } \\ u(x, 0)=f(x), \quad 0<x<L & \text { (Initial Condition) }\end{cases}$
By separating variables, we can solve this PDE in 4 steps:
Step 1. Write $u(x, t)=X(x) T(t)$ to turn the PDE into two ordinary differential equations (with boundary conditions)

Let $u(x, t)=X(x) T(t)$. Then $u_{t}=X(x) T^{\prime}(t), u_{x x}=X^{\prime \prime}(x) T(t)$. Plugging into $u_{t}=\beta u_{x x}$ we get $X(x) T^{\prime}(t)=\beta X^{\prime \prime}(x) T(t)$. Therefore

$$
\frac{T^{\prime}(t)}{\beta T(t)}=\frac{X^{\prime \prime}(x)}{X(x)}
$$

In this case, they must be the same constant function, denote by $-\lambda$. Therefore

$$
X^{\prime \prime}(x)=-\lambda X(x) \text { and } T^{\prime}(t)=-\lambda \beta T(t)
$$

Now $u(0, t)=u(L, t)=0$ implies $X(0) T(t)=0$ and $X(L) T(t)=0$ for $t>0$. Hence either $T(t)=0$ for all $t>0$, which implies $u(x, t) \equiv 0$, or $X(0)=X(L)=0$. Ignoring the trivial solution $u(x, t) \equiv 0$ we obtain the boundary value problem

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X(0)=X(L)=0
\end{array}\right.
$$

and $T^{\prime}(t)=-\lambda \beta T(t)$
Exercise 1. Separate the following partial differential equations into two ordinary differential equations using $u(x, t)=X(x) T(t)$
(a) $u_{t}=k u_{x x} . \quad u_{x}(0, t)=u_{x}(L, t)=0$
(b) $u_{t}=k u_{x x} . u(-L, t)=u(L, t), u_{x}(-L, t)=u_{x}(L, t)$
(c) $u_{t t}=c^{2} u_{x x} . u(0, t)=u(L, t)=0$
(d) $u_{t}=k u_{x x}-u \cdot u(0, t)=0,-u_{x}(L, t)=u(L, t)$

Solution 1. (a)

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X^{\prime}(0)=X^{\prime}(L)=0
\end{array} \quad \text { and } T^{\prime}(t)=-k \lambda T(t)\right.
$$

(b)

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X(-L)=X(L) \\
X^{\prime}(-L)=X^{\prime}(L)
\end{array} \text { and } T^{\prime}(t)=-k \lambda T(t)\right.
$$

(c)

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X(0)=X(L)=0
\end{array} \quad \text { and } T^{\prime \prime}(t)=-c^{2} \lambda T(t)\right.
$$

(d)

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X(0)=0 \\
X^{\prime}(L)+X(L)=0
\end{array} \quad \text { and } T^{\prime}(t)=-(k \lambda+1) T(t)\right.
$$

Step 2. Find all eigenvalues λ_{n} and their corresponding eigenfunctions X_{n} of the boundary value problem in step 1.

Depending on the value of λ, the boundary value problem

$$
\left\{\begin{array}{l}
X^{\prime \prime}(x)+\lambda X(x)=0 \\
X(0)=X(L)=0
\end{array}\right.
$$

may only have zero solution $X(x) \equiv 0$. We want to determine those values of λ for which the boundary value problem has nontrivial solutions. These solutions are called the eigenfunctions of the problem, the eigenvalues are those special values of λ.

Case 1: $\lambda<0$. General solution is $X(x)=c_{1} e^{\sqrt{-\lambda} x}+c_{2} e^{-\sqrt{-\lambda} x} . X(0)=X(L)=0$ implies $c_{1}=c_{2}=0$. Hence $X(x)=0$.

Case 2: $\lambda=0$. General solution is $X(x)=c_{1}+c_{2} x . X(0)=X(L)=0$ implies $c_{1}=c_{2}=0$. Hence $X(x)=0$.

Case 3: $\lambda>0$. General solution is $X(x)=c_{1} \cos (\sqrt{\lambda} x)+c_{2} \sin (\sqrt{\lambda} x) . \quad X(0)=$ $X(L)=0$ implies $c_{1}=0, c_{2} \sin (\sqrt{\lambda} L)=0$. To obtain nontrivial solutions, we need $\sin (\sqrt{\lambda} L)=0$. Then $\sqrt{\lambda} L=n \pi$ where n is an integer. Therefore $\lambda_{n}=\left(\frac{n \pi}{L}\right)^{2}$ are eigenvalues. Eigenfunctions are $X_{n}(x)=C \sin \left(\frac{n \pi}{L} x\right)$.
Exercise 2. Consider the second order equation

$$
y^{\prime \prime}+\lambda y=0
$$

Decide whether the following statements are True or False:
(a)For any value of λ, there is a unique solution satisfying boundary conditions $y(0)=0$ and $y^{\prime}(2 \pi)=0$
(b)For any value of λ, there is a unique solution satisfying boundary conditions $y(\pi)=0$ and $y^{\prime}(\pi)=32$
(c)For any value of λ, there exists a solution satisfying $y(0)=0$ and $y^{\prime}(0)=2$
(d)For any value of λ, there exists a solution satisfying $y(0)=0$ and $y(\pi)=2$

Solution 2. (a)F
(b) T
(c) T
(d) F

Step 3. Use λ_{n} to find corresponding T_{n}. Then find the general solution $u(x, t)=c_{n} X_{n}(x) T_{n}(t)$ satisfying both the PDE and boundary condition.

To be discussed next time...
Step 4. Use the initial condition to determine the coefficients c_{n} then get final answer $u(x, t)$.

To be discussed next time..

