Math 2177 recitation: Differential equations 2

TA: Yu Zhang

November 62018
(You can find all my recitation handouts and their solutions on my homepage http://u.osu.edu/yuzhang/teaching/)

In this recitation we consider second order linear homogeneous equation with constant coefficients:

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

To solve this type of equations, we need to consider the corresponding characteristic equation

$$
a r^{2}+b r+c=0
$$

1 Case 1: $b^{2}-4 a c>0$

When $b^{2}-4 a c>0, a r^{2}+b r+c=0$ has two distinct real roots

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

Then the general solution for $a y^{\prime \prime}+b y^{\prime}+c y=0$ is $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}, c_{1}, c_{2}$ are arbitrary constants.
(This case has been discussed in last recitation.)

2 Case 2: $b^{2}-4 a c=0$

When $b^{2}-4 a c=0, a r^{2}+b r+c=0$ has repeated real roots

$$
r_{1}=r_{2}=r=-\frac{b}{2 a}
$$

Then the general solution for $a y^{\prime \prime}+b y^{\prime}+c y=0$ is $y=c_{1} e^{r t}+c_{2} t e^{r t}, c_{1}, c_{2}$ are arbitrary constants.

Exercise 1. Find the particular solution to

$$
y^{\prime \prime}-8 y^{\prime}+16 y=0, y(0)=3, y^{\prime}(0)=10
$$

Then decide $\lim _{t \rightarrow \infty} y(t)$

3 Case 3: $b^{2}-4 a c<0$

When $b^{2}-4 a c<0, a r^{2}+b r+c=0$ has two complex roots of the form

$$
r_{1,2}=\lambda \pm i \mu, \quad\left(r_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right)
$$

Then the general solution for $a y^{\prime \prime}+b y^{\prime}+c y=0$ is $y=c_{1} e^{\lambda t} \cos (\mu t)+c_{2} e^{\lambda t} \sin (\mu t)$, c_{1}, c_{2} are arbitrary constants.

Exercise 2. Find the particular solution to initial value problem

$$
y^{\prime \prime}-8 y^{\prime}+17 y=0, y(0)=-4, y^{\prime}(0)=-1
$$

Exercise 3. Find the particular solution to initial value problem

$$
y^{\prime \prime}+16 y=0, y\left(\frac{\pi}{2}\right)=-10, y^{\prime}\left(\frac{\pi}{2}\right)=3
$$

4 More exercises

Exercise 4. Construct a second order homogeneous linear equation with constant coefficients, such that $y_{1}=\frac{1}{\pi} e^{-t}$ and $y_{2}=-\pi e^{3 t}$ are two of its solutions.

Exercise 5. Let $y(t)$ be the solution of the initial value problem

$$
y^{\prime \prime}+3 y^{\prime}-10 y=0, y(0)=\alpha, y^{\prime}(0)=-2
$$

Suppose $\lim _{t \rightarrow \infty} y(t)=0$, find the value of α.

5 Bonus questions

Exercise 6. (1) Show that the boundary-value problem

$$
y^{\prime \prime}+\lambda y=0, y(0)=0, y(1)=0
$$

has only the trivial solution $y=0$ for the cases $\lambda=0$ and $\lambda<0$.
(2) For the case $\lambda>0$, find the values of λ for which this problem has a nontrivial solution and give the corresponding solution.

Exercise 7. Suppose a, b, and c are all positive constants. Let $y(t)$ be a solution of the differential equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Show that $\lim _{t \rightarrow \infty} y(t)=0$.

