Math 2177 recitation: Differential equations 2

TA: Yu Zhang

November 62018
(You can find all my recitation handouts and their solutions on my homepage http://u.osu.edu/yuzhang/teaching/)

In this recitation we consider second order linear homogeneous equation with constant coefficients:

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

To solve this type of equations, we need to consider the corresponding characteristic equation

$$
a r^{2}+b r+c=0
$$

1 Case 1: $b^{2}-4 a c>0$

When $b^{2}-4 a c>0, a r^{2}+b r+c=0$ has two distinct real roots

$$
r_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, r_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

Then the general solution for $a y^{\prime \prime}+b y^{\prime}+c y=0$ is $y=c_{1} e^{r_{1} t}+c_{2} e^{r_{2} t}, c_{1}, c_{2}$ are arbitrary constants.
(This case has been discussed in last recitation.)

2 Case 2: $b^{2}-4 a c=0$

When $b^{2}-4 a c=0, a r^{2}+b r+c=0$ has repeated real roots

$$
r_{1}=r_{2}=r=-\frac{b}{2 a}
$$

Then the general solution for $a y^{\prime \prime}+b y^{\prime}+c y=0$ is $y=c_{1} e^{r t}+c_{2} t e^{r t}, c_{1}, c_{2}$ are arbitrary constants.

Exercise 1. Find the particular solution to

$$
y^{\prime \prime}-8 y^{\prime}+16 y=0, y(0)=3, y^{\prime}(0)=10
$$

Then decide $\lim _{t \rightarrow \infty} y(t)$
Solution 1. The characteristic equation of $y^{\prime \prime}-8 y^{\prime}+16 y=0$ is $r^{2}-8 r+16=0$. We solve the equation and get $r=4$. So the general solution is $y=c_{1} e^{4 t}+c_{2} t e^{4 t}$. Then $y^{\prime}(t)=4 c_{1} e^{4 t}+c_{2} e^{4 t}+4 c_{2} t e^{4 t}$.

By the initial conditions, we get $y(0)=3=c_{1}, y^{\prime}(0)=10=4 c_{1}+c_{2}$. Then we have $c_{1}=3$ and $c_{2}=-2$. So the particular solution is $y=3 e^{4 t}-2 t e^{4 t}$.
$\lim _{t \rightarrow \infty} y(t)=\lim _{t \rightarrow \infty}\left(3 e^{4 t}-2 t e^{4 t}\right)=\lim _{t \rightarrow \infty}(3-2 t) e^{4 t}=-\infty$

3 Case 3: $b^{2}-4 a c<0$

When $b^{2}-4 a c<0, a r^{2}+b r+c=0$ has two complex roots of the form

$$
r_{1,2}=\lambda \pm i \mu, \quad\left(r_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\right)
$$

Then the general solution for $a y^{\prime \prime}+b y^{\prime}+c y=0$ is $y=c_{1} e^{\lambda t} \cos (\mu t)+c_{2} e^{\lambda t} \sin (\mu t)$, c_{1}, c_{2} are arbitrary constants.

Exercise 2. Find the particular solution to initial value problem

$$
y^{\prime \prime}-8 y^{\prime}+17 y=0, y(0)=-4, y^{\prime}(0)=-1
$$

Solution 2. The characteristic equation of $y^{\prime \prime}-8 y^{\prime}+17 y=0$ is $r^{2}-8 r+17=0$. We solve the equation and get $r_{1,2}=4 \pm i$. So the general solution is $y=c_{1} e^{4 t} \cos t+$ $c_{2} e^{4 t} \sin t$. Then $y^{\prime}(t)=4 c_{1} e^{4 t} \cos t-c_{1} e^{4 t} \sin t+4 c_{2} e^{4 t} \sin t+c_{2} e^{4 t} \cos t$.

By the initial conditions, we get $y(0)=-4=c_{1}, y^{\prime}(0)=-1=4 c_{1}+c_{2}$. Then we have $c_{1}=-4$ and $c_{2}=15$. So the particular solution is $y=-4 e^{4 t} \cos t+15 e^{4 t} \sin t$.

Exercise 3. Find the particular solution to initial value problem

$$
y^{\prime \prime}+16 y=0, y\left(\frac{\pi}{2}\right)=-10, y^{\prime}\left(\frac{\pi}{2}\right)=3
$$

Solution 3. The characteristic equation of $y^{\prime \prime}+16 y=0$ is $r^{2}+16=0$. We solve the equation and get $r_{1,2}= \pm 4 i$. So the general solution is $y=c_{1} \cos 4 t+c_{2} \sin 4 t$. Then $y^{\prime}(t)=-4 c_{1} \sin 4 t+4 c_{2} \cos 4 t$.

By the initial conditions, we get $y\left(\frac{\pi}{2}\right)=-10=c_{1}, y^{\prime}\left(\frac{\pi}{2}\right)=3=4 c_{2}$. Then we have $c_{1}=-10$ and $c_{2}=\frac{3}{4}$. So the particular solution is $y=-10 \cos 4 t+\frac{3}{4} \sin 4 t$.

4 More exercises

Exercise 4. Construct a second order homogeneous linear equation with constant coefficients, such that $y_{1}=\frac{1}{\pi} e^{-t}$ and $y_{2}=-\pi e^{3 t}$ are two of its solutions.

Solution 4. The characteristic equation should have -1 and 3 as two roots, so the characteristic equation should be $(r+1)(r-3)=0$, which is $r^{2}-2 r-3=0$. Thus the differential equation should be $y^{\prime \prime}-2 y^{\prime}-3 y=0$

Exercise 5. Let $y(t)$ be the solution of the initial value problem

$$
y^{\prime \prime}+3 y^{\prime}-10 y=0, y(0)=\alpha, y^{\prime}(0)=-2
$$

Suppose $\lim _{t \rightarrow \infty} y(t)=0$, find the value of α.
Solution 5. The characteristic equation is $r^{2}+3 r-10=0$. We solve the equation and get $r_{1}=2, r_{2}=-5$. So the general solution is $y=c_{1} e^{2 t}+c_{2} e^{-5 t}$. Then $y^{\prime}(t)=2 c_{1} e^{2 t}-5 c_{2} e^{-5 t}$.

By the initial conditions, we get $y(0)=\alpha=c_{1}+c_{2}, y^{\prime}(0)=-2=2 c_{1}-5 c_{2}$. Then we have $c_{1}=\frac{5 \alpha-2}{7}$ and $c_{2}=\frac{2 \alpha+2}{7}$.

To have $\lim _{t \rightarrow \infty} y(t)=0$, we need $c_{1}=0$. This implies $\alpha=\frac{2}{5}$.

5 Bonus questions

Exercise 6. (1) Show that the boundary-value problem

$$
y^{\prime \prime}+\lambda y=0, y(0)=0, y(1)=0
$$

has only the trivial solution $y=0$ for the cases $\lambda=0$ and $\lambda<0$.
(2) For the case $\lambda>0$, find the values of λ for which this problem has a nontrivial solution and give the corresponding solution.

Solution 6. (1) Case 1: $\lambda=0$. The differential equation has general solutions $y=c_{1}+c_{2} t . y(0)=0, y(1)=0$ implies $c_{1}=c_{2}=0$. Hence $y=0$.

Case 2: $\lambda<0$. The differential equation has general solutions $y=c_{1} e^{\sqrt{-\lambda t}}+$ $c_{2} e^{-\sqrt{-\lambda t}} . y(0)=0, y(1)=0$ implies $c_{1}=c_{2}=0$. Hence $y=0$.
(2) For the case $\lambda>0$, the differential equation has general solutions $y=$ $c_{1} \cos (\sqrt{\lambda} t)+c_{2} \sin (\sqrt{\lambda} t) . \quad y(0)=0, y(1)=0$ implies $c_{1}=0, c_{2} \sin (\sqrt{\lambda})=0$. To obtain nontrivial solutions, we need $\sin (\sqrt{\lambda})=0$. Then $\sqrt{\lambda}=n \pi$ where n is an integer. Therefore $\lambda=n^{2} \pi^{2}$ and $y=c_{2} \sin (n \pi t)$ where n is an integer.

Exercise 7. Suppose a, b, and c are all positive constants. Let $y(t)$ be a solution of the differential equation

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

Show that $\lim _{t \rightarrow \infty} y(t)=0$.
Solution 7. Case 1: $b^{2}-4 a c>0$. Show $r_{1}, r_{2}<0$.
Case 2: $b^{2}-4 a c=0$. Show $r<0$.
Case 3: $b^{2}-4 a c<0$. Show $\lambda<0$.

