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Abstract

How does demand uncertainty affect firms’ investment decisions? We consider this

issue from the perspective of electricity-producing firms and their planned invest-

ments in new power plants. Using plausibly exogenous variations in temperature

predictions across scientific climate models to measure uncertainty about future

electricity demand, we find that uncertainty increases investments in plants with

flexible production technologies but depresses non-flexible investments. The net

effect of uncertainty on investments is positive if firms have access to flexible invest-

ment opportunities. These results are consistent with models in which the impact

of uncertainty on investments depends on the investments’ production flexibility.
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1. Introduction

Climate change has become one of the most important issues of our time, af-
fecting many aspects of human behavior. Corporations may be affected by climate
change in a number of ways, which will vary by industry, and also by the extent
to which the weather is likely to change in the particular location where the firm’s
production and consumers are located. Since changes in weather are expected to
become more significant over time, they can be particularly relevant for a firm’s
choices of long-term investments.

One industry for which the effect of climate on investments is likely to be substan-
tial is the electricity industry because demand for electricity is strongly influenced
by temperatures (Perez-Gonzalez and Yun, 2013). In making long-term investment
decisions, utilities should take into account the fact that temperatures are likely
to continue to rise, which will increase the use of air conditioning and decrease the
need for heating (Mideska and Kallbekken, 2010; Auffhammer, Baylis, and Hausman,
2017). Since electricity transmission over long distances is costly or often not pos-
sible at all and the severity of climate change varies across regions, location-specific
forecasts of the magnitude of future temperature increases can be very valuable to
firms. These forecasts enable firms to estimate future electricity demand and plan
their investments in new power plants.

However, there is substantial uncertainty in the future climate over the life cy-
cle of a newly planned power plant, which is typically 25 to 30 years. Scientific
state-of-the-art models from the Coupled Model Intercomparison Project (CMIP),
which form the backbone of the United Nations Intergovernmental Panel on Cli-
mate Change (IPCC) Assessment Reports, predict the Earth’s climate for the next
century. The temperature predictions from these models varies obviously across
locations, but even for the same location, the predictions from different modeling
groups1 and model specifications can have substantial heterogeneity. This uncer-
tainty about the future climate is something that firms could potentially take into
account when making their decisions about investments in new power plants.2

We evaluate the way in which this uncertainty about future temperatures and,
thus, the demand for electricity affects long-term investments of electricity-producing
firms in new power plants. Our setting provides an ideal place to evaluate the
impact of uncertainty on investment for two reasons. First, unlike most investments,

1Examples of modeling groups are the NASA Goddard Institute for Space Studies (U.S.), the
Max Planck Institute for Meteorology (Germany), and the Beijing Climate Center (China).

2An example showing that electricity-producing firms actually use those models is AES Corpo-
ration, which states that it relies on CMIP climate model data sets to stress test its portfolio in the
2021 Climate Scenario Report (AES, 2021).
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we observe new power plants at the planning stage and know their exact location
and production technology. Second, the forward-looking nature and high spatial
resolution of CMIP models enable us to measure location-specific uncertainty over
the expected life of a power plant.

When planning new plants, electricity-producing firms cannot engage in quality
differentiation because electricity is a homogeneous good. However, they can choose
between different production technologies that vary substantially in their flexibility
and cost structures. Plants with flexible production technologies tend to have low
start/stop and fixed costs, but high variable cost. They are typically shut down
whenever demand is low and prices fall below marginal cost, which enables them to
avoid operating losses and convexifies their profit function. In contrast, non-flexible
plants tend to operate most of the time because they have low variable cost, but
high start/stop and fixed cost.3 Empirically, we classify gas, oil, and pump storage
plants as flexible and all other plants as non-flexible.

Conceptually, the way in which uncertainty affects firms’ long-term investment
decisions is the subject of a long literature in economics. Early models that assume
that the stream of future profits is a convex function of the stochastic variable
predict that uncertainty leads to higher investments (Hartman, 1972; Abel, 1983;
Caballero, 1991; Pindyck, 1993).4 By contrast, models that assume irreversibility
of capital investments predict a negative effect of uncertainty on investment due to
the option value of waiting (Mcdonald and Siegel, 1986; Dixit and Pindyck, 1994).
In an attempt to combine those two views, Lee and Shin (2000) demonstrate that
the flexibility of the production factors determines the relative importance of the
convexity effect and the option value of waiting effect. Following their logic, we
hypothesize that the value of waiting effect dominates for non-flexible plants and
the convexity effect for flexible plants, leading to a positive effect of uncertainty on
flexible investments and a negative effect on non-flexible investments. The net effect
on total investment is ex ante unclear and likely depends on whether firms have the
opportunity to invest in plants with flexible production technology.

We estimate the way in which firms’ investments in new plants depend on the
uncertainty about the future climate and, thus, the demand for electricity using a
sample of 323 for-profit firms that operate in deregulated electricity markets from
2004 to 2022. Our data allow us to observe all of their current power plants as
well as their plans to invest in new plants, including the plants’ exact location and

3Stigler (1939), Hart (1951), and Mills (1984) argue that there is likely to be a tradeoff between
the static efficiency of non-flexible plants and the benefits of flexibility.

4Pindyck (1993) notes that “this convexity can result from the ability of the firm to vary output,
so that the marginal unit of capital need not be utilized at times when the output price is low or
input costs are high (p. 273).”
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production technology. Our sample firms operate a total of 57,787 power plant units
with a capacity of 4,148 gigawatts (GW) and plan to construct 7,961 new plant units
with a capacity of 1,614 GW. Among those, 2,031 plant units with a total capacity of
530 GW are classified as flexible. The power plants are located in 44 countries with
56 electricity markets and 128 submarkets that represent virtually all competitive
wholesale markets for electricity around the globe.

Our investment measure scales the capacity of a firm’s newly planned plants in a
submarket by the capacity of its existing plants in the same submarket. To measure
climate uncertainty, we calculate the standard deviation of abnormal temperature
predictions across all different CMIP models. The climate predictions come from
109 CMIP models with a total of 338 different future scenarios that were prepared by
42 modeling groups around the globe. We spatially match those publicly available
predictions to submarkets and use predictions from Phase 3 models for sample years
from 2004 to 2010, Phase 5 models from 2011 to 2017, and Phase 6 models from
2018 to 2022. Our forecast horizon is the 25-year period starting five years after
the respective sample year (see Appendix A). We rely on the plausibly exogenous
time-series variation of climate uncertainty across periods, which is mainly driven
by improvements in computing power and scientific advances in climate modeling.5

Our estimates indicate that newly planned power plants are more likely to use
flexible production technologies with lower fixed costs when climate uncertainty
is higher. Furthermore, uncertainty leads to more investments in flexible power
plants but depresses investments in non-flexible plants. The estimates imply that
the planned capacity of flexible plants, scaled by the total existing capacity, increases
by 3.7 percent relative to its mean when climate uncertainty increases by one per-
cent. The corresponding effect for non-flexible plants is a decrease of 2.2 percent.
These results are consistent with theoretical arguments suggesting that the impact
of uncertainty on investment depends on the investments’ flexibility.

We find no impact of climate change on total investments, which suggests that on
average, the lower investments in non-flexible plants outweigh the higher investments
in flexible plants. However, this net effect is heterogeneous across submarkets and
depends on the availability of flexible investment opportunities. We use the density
of gas pipeline networks in a submarket to measure regional variation in how easily
firms can invest in natural gas-fired power plants, which represent 89 percent of all

5The Intergovernmental Panel on Climate Change (IPCC, 2021) states that “models have become
increasingly sophisticated as computing power, observations and our understanding of the climate
system have advanced (p. 519).” Additionally, the modeling groups are located in various countries
(see Internet Appendix C), and each group predicts future temperatures for the entire globe. As a
consequence, local factors that are correlated with firms’ investments are unlikely to affect changes
in the modeling of Earth’s climate by those groups. Lastly, the forward-looking nature of the
measure makes it unlikely that it is correlated with contemporaneous omitted variables.
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flexible plants in terms of capacity. We find that investments in the top density
tercile increase by 5.4 percent relative to the sample mean when climate uncertainty
increases by one percent, whereas the coefficient estimate for the bottom tercile is
negative but statistically insignificant. These results suggest that uncertainty does
not need to depress investment but leads to a reallocation to flexible production
technologies if those are available.

The estimated increase in investments when flexible investment opportunities
are available does not vary meaningfully if we include market times year fixed ef-
fects that exploit time-series variation across submarkets within electricity markets,
firm times year fixed effects that exploit time-series variation in firms’ investments
in different submarkets, or both. These fixed effects control for all time-variant and
time-invariant factors on the country, market, and firm level. These factors include
changes in regulations, production costs, population growth, attitude toward cer-
tain technologies, fiscal incentives, and access to capital that vary on the country or
market level. Furthermore, our estimates are similar if we exclude firms with high
market power or use alternative definitions of climate uncertainty or investments.
However, we find some evidence that the effect is weaker or non-existent in monop-
olistic markets, which suggests that competition is an important requirement for
firms to consider uncertainty for their investment decisions.

The presumed mechanism about the way in which climate uncertainty can affect
investments in power plants relies on three assumptions. First, temperatures are a
meaningful driver of electricity demand, implying that demand uncertainty increases
with temperature uncertainty. Second, higher demand uncertainty increases price
uncertainty and the probability of market conditions that make the operation of
plants unprofitable. Third, plants with flexible technologies are less affected by
demand uncertainty and the higher probability of adverse market conditions because
they can be shut off, making their profit function more convex as compared to plants
with non-flexible technologies.

We provide empirical support for those three assumptions. Using data on hourly
temperatures and demand for electricity, we find that higher temperatures reduce
the electricity demand when temperatures are low but increase demand when tem-
peratures are high. This U-shape is in line with the view that people consume less
electricity for heating but more electricity for air conditioning when temperatures
increase. Most importantly for our study, we show that variation in temperatures
causes variation in the demand for electricity. In addition, we replace climate un-
certainty in our main estimation models with a more direct proxy for demand un-
certainty that is based on the submarket-specific elasticity of electricity demand to
temperatures and find similar results.

Second, we implicitly assume that higher demand uncertainty increases price

4



uncertainty and thus the probability of market conditions that make the operation of
plants unprofitable. Analyzing hourly wholesale prices for electricity yields evidence
for the validity of this assumption. We find that electricity prices are highly sensitive
to changes in demand and temperatures. Furthermore, we demonstrate that both
demand volatility and temperature volatility are strong predictors of price volatility.

The third assumption we make is that flexible production technologies have a
more convex profit function than non-flexible technologies. The idea is that firms
switch off plants with flexible production technologies if demand is low to avoid
operating losses Mauer and Triantis (1994). Non-flexible plants have lower vari-
able costs than flexible plants but higher fixed cost6, which makes it optimal for
firms to operate them most of the time.7 We evaluate this assumption using data
on monthly electricity generation from various technologies for the majority of the
electricity markets in our sample. We find that electricity generation from flexible
technologies is highly responsive to demand and price changes, which is in line with
our assumption that their profit function is more convex.

Our paper adds to the theoretical and empirical literature on the relationship
between uncertainty and investment. Our results confirm the theoretical predic-
tion by Lee and Shin (2000) that the flexibility of the production factor determines
whether the option value of waiting (Mcdonald and Siegel, 1986; Dixit and Pindyck,
1994) or the convexity effect (Abel, 1983; Caballero, 1991) dominates. The pre-
vious empirical literature has shown that firms reduce investments during election
years (Julio and Yook, 2012) and that uncertainty about future policies depresses
corporate investments (Baker, Bloom, and Davis, 2016; Gulen and Ion, 2016). For
the oil and gas industry, Kellogg (2014) observes that companies adjust their oil
drilling activities to changes in expected price volatility, Doshi, Kumar, and Yer-
ramilli (2018) document that smaller firms reduce their capital expenditures when
the output price risk increases, and Campello, Kankanhalli, and Kim (2021) find
that uncertainty affects orders and demolitions of vessels for firms in the shipping
industry.8 We complement the empirical literature by showing that uncertainty can
have opposite effects on investments in flexible and non-flexible production assets,
with the net effect depending on the availability of flexible investment opportunities.

6The average ratio of fixed cost to total cost is 32.1 percent for flexible technologies and 81.4
percent for non-flexible technologies (see Appendix B for technology-specific values).

7For this reason, operators of non-flexible plants often bid a price of zero in electricity market
auctions, which ensures that their plants keep running. Additionally, for many non-flexible tech-
nologies, stopping them and restarting them can take a long time and incur high costs (e.g., for
coal or nuclear), which makes firms willing to keep them running, even if prices are temporarily
low. This behavior partly explains why electricity prices can be zero or even negative, which is the
case for approximately 0.5 percent of the hourly electricity prices in our sample.

8See Campello and Kankanhalli (2023) for a review of the literature on corporate decision making
under uncertainty.
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We also contribute to the literature on weather, climate, and finance. In this
literature, Hirshleifer and Shumway (2003) find a positive relation between sunshine
and market returns, Perez-Gonzalez and Yun (2013) use energy utilities to measure
the value of risk management with weather derivatives, and Giroud et al. (2012) use
unexpected snow to study how debt restructuring affects firm performance. More
recently, Krueger, Sautner, and Starks (2020) have explored how climate change
affects institutional investors’ risk perception and Addoum, Ng, and Ortiz-Bobea
(2023) document that extreme temperatures affect earnings in over 40 percent of in-
dustries. Hong, Karolyi, and Scheinkman (2020) provide an overview of this emerg-
ing line of research. We provide evidence that climate uncertainty is likely to have
an impact on firms’ investment decisions, which shows that climate change affects
the decision-making of firms today.

Finally, we complement the finance and product market literature that has doc-
umented that product market characteristics affect plant closures (Kovenock and
Phillips, 1997), capital structure decisions (D’acunto et al., 2018), and payout pol-
icy (Hoberg, Phillips, and Prabhala, 2014). Lin, Schmid, and Weisbach (2021) also
focus on a sample of electricity-producing firms and show that higher volatility of
electricity prices leads to an increase in cash holdings, mainly in firms using inflexible
production technologies and those that cannot easily hedge electricity prices. We
document that future demand uncertainty for firms’ products is an important factor
for their investment decisions, particularly in terms of their choices of production
technologies.

2. Background and theory

2.1. The organization of electricity markets

Many electricity markets around the world have been deregulated in the last two
to three decades.9 In these markets, electricity is traded on competitive wholesale
markets. Similar to other products, the wholesale market price reflects the supply
and demand for electricity at a particular point in time. In this paper, we focus
on the investment decisions of electricity-generating firms in deregulated markets.
As deregulation is a stepwise process, we classify a market as deregulated if a com-
petitive wholesale market for electricity exists. The introduction of these markets
typically happens at later stages of the deregulation process.

The deregulation of electricity markets has occurred with slightly different struc-
tures and regulations in various regions of the world (see, among others, Peltzman

9The description of the deregulation process is based on Lin, Schmid, and Weisbach (2021).
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and Winston, 2000). In the United States, the deregulation process started in Febru-
ary 2000 with FERC order 2000. Based on this order, seven competitive markets
were created. However, these markets only cover parts of the U.S., with electricity
prices still set by regulators in other regions.10 In Europe, the deregulation process
and the introduction of wholesale markets for electricity goes back to the Euro-
pean Union (EU) Directive 96/92/EC in 1996. By the early 2000s, most markets in
Europe had been deregulated. Outside the U.S. and Europe, the deregulation pro-
cess varied substantially across countries, with some countries operating liberalized
markets (e.g., Australia) and others relying on regulated markets (e.g., China).

In deregulated markets, the price of electricity is influenced by various factors,
including fuel costs, available capacity, and demand. The design of electricity mar-
kets ensures that demand is virtually always fulfilled to avoid blackouts. The merit
order effect plays a crucial role in balancing supply and demand by organizing gen-
eration assets according to their variable production costs. The market clearing
price, paid to all producers, corresponds to the variable production cost of the most
expensive technology needed to meet demand. Consequently, changes in demand
directly impact the price in this market, given the relatively fixed nature of supply
in the short to medium term.

In the process of deregulation, it has been common for regulators to privatize
previously state-owned energy utilities. During the privatization process, fully inte-
grated energy utilities possessing generation, transmission, and distribution assets
were forced to divest and sell their generation assets in some markets, particularly
in the United States. As a consequence, electricity-producing firms in deregulated
markets are often privately owned, although it is possible that privately and pub-
licly owned firms operate in the same market. Privately owned electricity producers
compete with each other and strive to maximize their profits.11

In this paper, we focus exclusively on privately owned, profit-maximizing elec-
tricity producers operating in deregulated electricity markets. Although the vast
majority of our sample firms are traded on stock exchanges, some are privately held
(e.g., Talen Energy). We exclude electricity producers that operate on a not-for-
profit basis, such as electric cooperatives, those owned by state or local governments,
like municipal utilities, and regions that are not deregulated.

10Even some states located in regions with wholesale markets for electricity still maintain tradi-
tional rate regulation (e.g., most states in the Midwest ISO). See Cicala (2022) for more details.

11Please refer to Dewenter and Malatesta (1997) and Fabrizio, Rose, and Wolfram (2007) for
more details about the privatization of electricity-producing firms.
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2.2. Investment decisions of electricity-producing firms

Private electricity producers in deregulated markets plan and finance their in-
vestments in new power plants in a way that optimizes their profitability. With
deregulation, they can no longer pass on their costs to consumers as they can under
the “cost-plus” pricing schemes common in regulated markets. Instead, they sell
their product in wholesale markets with prices determined by the supply and de-
mand for electricity. Deregulation exposes electricity producers to price risk, making
it possible that they will not be able to recover their investment cost. This uncer-
tainty about future prices, which are largely driven by future demand, is a key risk
factor for investments in new power plants. The International Energy Agency (IEA,
2003) states that “[t]he most fundamental change affecting the value of investments
in liberalized markets is the inherent uncertainty about electricity prices in electricity
markets. The uncertain future level of prices from investment in generation creates
a risk for the investor” (p. 28). Of course, uncertainty about future demand and
prices is not the only risk factor for power plant investments. Electricity-producing
firms are also exposed to regulatory changes, changes in fuel prices, or changes in
debt refinancing conditions, among other risks (see pp. 28–34 of the report for a
detailed discussion of the various risks). Generally speaking, the types of risk asso-
ciated with investments in power plants in deregulated markets are conceptually not
very different from the risks of investment decisions in long-term production assets
in other manufacturing industries.

2.3. Climate change, demand uncertainty, and investments

Climate change and the related increase in temperatures will have profound ef-
fects on the demand for electricity over the next century. In general, changes in tem-
peratures represent key risk factor for electricity-producing firms (Perez-Gonzalez
and Yun, 2013). With regard to climate change, Mideska and Kallbekken (2010) pre-
dict higher electricity demand for cooling and lower demand for heating. Auffham-
mer, Baylis, and Hausman (2017) project that global warming will moderately in-
crease the average demand for electricity, while demand fluctuations will increase
substantially. Van Ruijven, De Cian, and Sue Wing (2019) also conclude that cli-
mate change will increase future electricity demand, but they highlight that the
exact magnitude of the change depends on many factors and is highly uncertain. As
a consequence, uncertainty over the future change in temperatures in a particular
region leads to uncertainty over that region’s future electricity demand.

For demand uncertainty, the theoretical literature provides conflicting predic-
tions on how it affects investment decisions of profit-maximizing firms. Models that
assume irreversibility of capital investments typically predict a negative effect of
uncertainty on investment due to an increased option value of waiting (Mcdonald
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and Siegel, 1986; Dixit and Pindyck, 1994).12 However, an alternative class of mod-
els predicts that uncertainty leads to higher investments when the stream of future
profits is a convex function of the stochastic variable (Hartman, 1972; Abel, 1983;
Caballero, 1991; Pindyck, 1993). This convexity can result from “the ability of the
firm to vary output, so that the marginal unit of capital need not be utilized at
times when the output price is low or input costs are high” (Pindyck, 1993, p. 273).

Thus, there are two potential effects of uncertainty on investments: an increase
in investment levels due to the convexity effect or a decrease in investment levels due
to the option value of waiting effect. One aspect that plays an important role in this
context is the irreversibility of investments or, more generally, investment adjustment
cost (Caballero, 1991). Generally, uncertainty has a positive impact on investments
for reversible investments because the convexity effect dominates and a negative
impact for non-reversible investments because the option value of waiting effect
dominates. Another relevant aspect here is the flexibility of the production factor.
Lee and Shin (2000) show that the option value effect dominates the convexity effect
if the share of the variable production factor, which is labor in their model, increases.

In our context, the flexibility of the production factor depends on the production
technologies of the power plants. Flexible production technologies tend to have
low start/stop and fixed cost, but high variable cost. They typically adjust their
production to prevailing market conditions and stop production when prices are too
low for profitable operation, which limits their operating losses and convexifies their
profit function. However, as Stigler (1939) and Hart (1951) argue, this flexibility
does not come for free as non-flexible plants are more cost efficient if demand is
deterministic.13 In fact, non-flexible power plants tend to have much lower variable
production cost, with fixed cost (including expenditures for maintenance and capital
cost) making up most of their cost.14 In addition, some non-flexible plants, such as
coal and nuclear, have high start/stop costs, while others, such as wind and solar,
are not actively dispatched at all (Reinartz and Schmid, 2016). As a consequence,
while plants with flexible technologies are typically stopped during adverse market
conditions, it is optimal to run non-flexible plants most of the time because of their
low variable cost and high start/stop cost, leading to a more linear profit function.

Based on these differences between flexible and non-flexible production technolo-
gies and the predictions by Lee and Shin (2000), we expect that uncertainty has a

12When the time-to-build is considered, this negative uncertainty-investment relation is weaker or
even reversed (Bar-Ilan and Strange, 1996; Bar-Ilan, Sulem, and Zanello, 2002; Aguerrevere, 2003).

13In this context, Stigler (1939) mentions that “a plant certain to operate at X units of output per
week will surely have lower costs at that output than will a plant designed to be passably efficient
from X/2 to 2X units per week” (p. 311).

14As shown in Appendix B, the average ratio of fixed to total cost for flexible technologies is 32.1
percent, while it is as high as 81.4 percent for non-flexible technologies.
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positive effect on investments in power plants with flexible production technologies
because for those the convexity effect dominates the option value of waiting effect.
For non-flexible power plants, we expect that higher uncertainty depresses invest-
ments because the option value of waiting dominates the convexity effect. The net
effect on total investment is ex ante unclear and likely heterogenous across regions.
We posit that in regions where firms can relatively easily invest in flexible power
plants, the net effect is likely to be positive, while it is more likely to be negative
for regions where flexible investment opportunities are less available.

There are also indications from practitioners that uncertainty about future de-
mand and, as a consequence, prices, is a factor for firms’ investment decisions in
different technologies. The IEA (2003) report states that “[t]echnologies which have
a higher specific investment for capacity even though they may have relatively low
fuel costs (wind, nuclear) are more greatly affected by this risk because there is less
they can do to respond. Thus, although high capital cost and low fuel cost technolo-
gies will likely be competitive in the short-run and therefore produce electricity, they
will be more exposed to cover capital employed” (pp. 28 and 29). Thus, from both
theoretical and practitioners’ perspectives, we expect that uncertainty has different
effects on investments in flexible and non-flexible power plants.

3. Data

3.1. Sample of electricity-generating firms

Our sample consists of for-profit firms from the electricity-producing industry.
We focus on for-profit firms because they are more comparable with firms in most
other industries in terms of their business models than, for instance, state-owned
utilities. To identify for-profit firms that produce electricity, we start by combining
lists of active and inactive companies from Thomson Reuters and S&P Market Intel-
ligence. To identify those companies for which electricity generation is the main or
at least a major business line, we rely on firms’ industry classification codes and their
business description and also conduct manual research on their business lines. Fur-
thermore, we require that all our sample firms be active in at least one deregulated
market.15

Most electricity markets cover exactly one country. However, sometimes several
markets exist within one country, which is the case for the United States (seven mar-
kets), Canada (two markets), and Australia (six markets). Furthermore, although
most electricity markets are a single bidding zone, 15 markets in our sample can be

15For firms that are active in regulated and deregulated markets, we consider only their investment
activities in deregulated markets. Because deregulation is a stepwise process, our requirement for
a deregulated market is that electricity is traded in a wholesale market.
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further divided into submarkets with separate bidding zones, leading to a total of
128 submarkets in our sample.16 Figure 1 provides an overview of the electricity
submarkets in our sample. Markets with multiple submarkets are shown in orange,
and those with only one submarket are shown in blue. Figure 2 presents Italy and
its surrounding countries as an example of a market that consists of different sub-
markets. Internet Appendix A shows all markets in our sample, which represent
virtually all competitive wholesale markets for electricity around the globe.

For the construction of our panel data set, we consider all firms with at least 100
megawatt (MW) of total production capacity and all submarkets in which the firms
operate power plants. We end up with a sample of 323 electricity-producing firms
that operate in 128 submarkets in 56 markets, which are located in 44 countries.
On average, a sample firm is active in nine (median: six) different submarkets in a
given year. They operate 57,787 unique power plant units with a total production
capacity of 4,148 GW. This capacity represents about two-thirds of the worldwide
electricity production capacity in 2020, which is 6,638 GW according to the Platts
World Electric Power Plant (WEPP) database; the remainder comes from plants
that are not matched to our sample because, for example, it is not operated by a
for-profit firm or it is located in a non-deregulated region.

The sample covers the period from 2004 to 2022, which is the period for which we
can obtain the necessary data on climate predictions and firms’ existing and planned
power plants. This sample construction leads to a firm-year-submarket panel data
set that includes, in every year, the existing and planned power plants of our sample
firms in each of the submarkets in which they are active. This structure enables us
to control for time-variant and time-invariant factors on the firm and market levels
by including firm times year and market times year fixed effects.

3.2. Measuring power plant investments

We obtain data on power plants from two sources. For all non-U.S. markets, we
use the Platts WEPP database. These data contain information on individual power
plant units around the globe, including their production technologies, capacities, ge-
ographic locations, start dates of commercial operation, and their owners/operators.
Using the annual version of this database for all years between 2004 and 2022, we
manually match each power plant unit to the sample of electricity-producing firms.17

For U.S. markets, we use data on existing and planned power plants from the annual

16The European Union Agency for the Cooperation of Energy Regulators (ACER) defines a
bidding zone as an area “within which physical electricity exchanges are unrestricted, whereas
exchanges between bidding zones require cross-zonal capacities which are limited in order to avoid
congestions [...]” (link).

17We use annual versions because historical owner/operator information is not included.

11

https://documents.acer.europa.eu/da/Electricity/MARKET-CODES/CAPACITY-ALLOCATION-AND-CONGESTION-MANAGEMENT


Energy Information Administration (EIA) Form 860 filings.18

Importantly for our purposes, these databases cover not only completed power
plants but also the planned construction of new plants.19 Detailed data on the pro-
duction technology of all planned power plant projects allow us to distinguish be-
tween flexible and non-flexible power plants. We classify power plants using natural
gas (combined-cycle gas turbines, gas turbines, and gas-fired reciprocating engines),
biogas, oil, or pump storage as flexible and all other plants as non flexible.20

Table 1 provides an overview of all planned power plant units. In total, there
are 7,961 planned power plant units in our sample with a combined capacity of
1,614 GW. Of those plant units, 2,031 with a total capacity of 530 GW are classified
as flexible. Most planned flexible plant units use natural gas combined-cycle gas
turbines (888), followed by simple cycle combustion gas turbines (459), pump storage
(217), gas-fired reciprocating engines (183), oil (133), and biogas (98). In terms of
capacity, natural-gas fired plants account for 1,583 GW, followed by pump storage
with 217 GW, oil with 133 GW, and biogas with 98 GW. For non-flexible plants,
there are 5,930 projects with a capacity of 1,084 GW. Most non-flexible planned
plants use wind as their energy source (2,128), followed by water (1,537), solar
(991), coal (739), and nuclear (103). If we rank non-flexible plants by planned
capacity, coal leads with 436 GW, followed by wind with 268 GW, water with 163
GW, nuclear with 115 GW, and solar with 60 GW.21

Internet Appendix B illustrates the location, technology, and capacity of all
planned plant projects in the United States in 2015. Rectangles indicate flexible
plants, and circles non-flexible plants. The size of the rectangle or circle indicates
the capacity of the planned plant, and the color shows its production technology.
The blue areas are regions with wholesale markets for electricity that are considered
in our analysis. For completeness, this illustration also includes planned U.S. plants
in regions without wholesale markets for electricity that are not included in our
sample. This illustration shows that there is substantial heterogeneity in terms of

18We use this database instead of Platts WEPP for U.S. markets because the Form 860 filings
contain the electricity market to which every generating facility is connected. Because electricity
markets are not always associated with states in the U.S. and the Platts WEPP does not include
the exact location coordinates but only states, counties, and, in some cases, cities, matching the
Platts WEPP data to markets is imprecise.

19In the WEPP database, we classify plants with the status code PLN (“planned”) as planned.
This status code is used to indicate that a plant is planned but no onsite work is known to have
started (Platts, 2015). In Form 860 filings, planned plants have the status codes P (“planned
for installation but regulatory approvals not initiated”), L (“regulatory approvals pending”), or T
(“regulatory approvals received”).

20See Reinartz and Schmid (2016) for more details on power plant flexibility.
21For comparison, C shows the corresponding numbers for firms’ existing power plants. In total,

our sample firms operate 57,787 power plants with a total capacity of 4,148 GW. Of those, 19,028
plants with a capacity of 1,613 GW are classified as flexible.
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the production technologies of planned power plants in different U.S. regions.
Based on these detailed data on planned power plant units, we construct various

investment-related measures. On the plant level, we construct flex technologyp

as dummy variable that indicates whether plant p uses a flexible production tech-
nology and fixed cost ratiop as the ratio of fixed to total cost of the plant p’s
production technology. To measure the overall investment level, we define the vari-
able total invi,sm

y as the capacity of all planned power plants (in MW) of firm
i in electricity submarket sm and year y, scaled by the capacity of existing power
plants (in MW) of firm i in submarket sm and year y. We set this variable to one
if planned capacity exceeds existing capacity. The variables flex invi,sm

y and non-
flex invi,sm

y are calculated in the same way, but only planned plants with flexible
or non-flexible technologies are considered.

Descriptive statistics for our investment measures are shown in Table 2. On
average, planned flexible power plants account for 32.0 percent of all planned plants
and the average fixed cost ratio is 69.3 percent. The average capacity of planned
flexible power plants equals 4.9 percent of their existing capacity in a submarket
and year. The corresponding numbers for non-flexible and total planned plants are
12.3 and 16.3 percent, respectively.22

3.3. Measuring climate uncertainty

Our climate data comes from CMIP models, which are scientific coupled atmosphere-
ocean general circulation models that aim to predict earth climate for the next cen-
tury. The history of the CMIP dates back to 1995 and has subsequently grown into
a program that standardizes and promotes the modeling of earth climate. In this
process, CMIP has developed “climate model experiment protocols, formats, stan-
dards, and distribution mechanisms to ensure model output availability to a wide
research community” (link). The first CMIP phase for which climate model output
is available on a large scale is CMIP3, which was conducted in the early 2000s. The
phase after CMIP3 was CMIP5 in the late 2000s and early 2010s—there was no
CMIP4. The current CMIP phase is CMIP6, which started in the mid-2010s.

The actual climate modeling of earth climate is performed by multiple modeling
group that participate in the CMIP. In total, our sample covers 109 models from
42 modeling groups that are located multiple countries (see Internet Appendix C
for a list of the modeling groups and Internet Appendix D for an overview on the
models). Of those 109 models, 46 were performed for CMIP6, 41 for CMIP5, and
22 for CMIP3. Each model can be estimated for multiple pre-defined scenarios that

22Please note that total investment is not exactly the sum of flexible and non-flexible investments
because the variables are set to one if the planned capacity exceeds existing capacity.
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share a set of assumptions, leading to a total of 338 different climate predictions in
our sample. For every model and scenario, we obtain near-surface air temperature
(TAS) predictions with monthly frequency until 2060 as high-resolution geographical
shape files that cover the whole globe. We spatially match these files to the electricity
submarkets in our sample.23 After that, we calculate for every model and scenario
the average temperature in each submarket for all future months up to 2060.

Additionally, we obtain data from historical simulations dating back to 1900 for
all CMIP models and calculate the abnormal future temperature as the differences
between the predicted future temperature in a month and the temperature in the
same month during the base period from 1900 to 1999. It is important to use
historical model simulations to calculate abnormal temperature because different
models can have different absolute values for the same climate variables (see IPCC,
2021, pp. 189 and 190 for details). Figure 3 shows the forecasted absolute and
abnormal temperatures of one exemplary CMIP5 model (MIROC5) for December
2040. This model predicts significantly higher future temperatures, especially for
the norther hemisphere.

However, the predictions of future temperatures vary across models. As Figure 4
illustrates, the predictions from three exemplary models (GFDL-CM3, MPI-ESM,
and INM-CM4) show substantial variation. This heterogeneity is even clearer when
we calculate the difference in the predicted temperatures between two exemplary
models in Figure 5. Among other differences, the temperature in central U.S. in June
2040 is approximately five degrees Celsius lower in the CCSM4 model as compared
to CESM1-CAM5. In contrast, the temperature from CCSM4 is approximately five
degrees higher in the Gulf Coast area in December 2040. In Figure 6, we plot the
average abnormal temperature predictions across all submarkets from all models and
scenarios. Every line in this plot corresponds to one specific model and scenario. We
find that predictions from different models show substantial variation. In Internet
Appendix E, we plot the abnormal temperature prediction only for one exemplary
market, which is NYISO that covers the state of New York. Again, we find that
predictions from different models show substantial variation, even if we only consider
CMIP5 models or only CMIP5 models that use the RCP45 scenario.

We use log(abn temp sdsm
y+5;y+30), which is the log transformation of the stan-

dard deviation of the abnormal temperature predictions across different models and
scenarios for submarket sm and forecast horizon y +5 to y +30 as our main measure
of climate uncertainty. To construct this measure, we compute, for every submarket

23For this purpose, we use the R packages “exactextractr” (link) and “sf” (link). To create the
shapefile for electricity submarkets, we use data on country and state borders as well as detailed
intra-state data for markets that do not correspond to states (e.g., PJM in the U.S.).
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sm, the standard deviation of abnormal temperature forecasts across all different
models and scenarios of a specific CMIP phase in every future year-month and then
average this standard deviation over the forecast period of the respective sample year
y. Assuming that the economic life of a power plant is 25 years and that its con-
struction takes five years, we use the 25-period starting five years after the respective
sample year y as forecast period (see Appendix A for an illustration). Importantly,
we use predictions from CMIP3 models to calculate the standard deviation across
models and scenarios for sample years from 2004 to 2010, assuming that the model
outcome became available shortly before the related workshop was held.24 Using the
same logic, we use CMIP5 models for sample years from 2011 to 2017 and CMIP6
models from 2018 to 2022.

Figure 7 shows box plots of the mean abnormal temperature forecast and the
standard deviation of abnormal temperature forecasts across different models and
scenarios. Using the same forecast period of 2023 to 2047 for all CMIP versions, we
find an increase in the mean abnormal temperature forecast if we move from earlier
to later CMIP phases. This finding indicates that models become more pessimistic
about the extent of the future climate change over time. For the standard deviation
of abnormal temperature predictions across different models and scenarios, we find
a significant variation in all CMIP phases, but no clear time pattern. Figure 8 plots
the mean abnormal temperature predictions as well as the standard deviation of
abnormal temperature predictions across all CMIP5 models and scenarios for the
period 2023 to 2047 for all submarkets in our sample. We find substantial variation
in both the predicted mean abnormal temperatures and their standard deviations.

3.4. Measuring regional variation in flexible investment opportunities

The predominant flexible technology is natural gas with a share of 78 percent in
terms of numbers and 89 percent in terms of capacity. Because natural gas cannot
be easily transported on roads or rails, the availability of gas pipelines is of crucial
importance for the construction of natural gas-fired plants (Diagoupis, Andrianesis,
and Dialynas, 2016). Consequently, the geographical variation in the density of
the gas pipeline networks affects firms’ opportunities to invest in flexible plants.
To reduce concerns about the endogenous construction of gas pipelines, we use the
network density as of 2004 in our baseline specifications.

Data on global gas pipelines comes from the Global Energy Monitor project

24The results from CMIP3 were discussed at a workshop that was held in March 2005 and form
the backbone of the IPCC’s Fourth Assessment Report in 2007. The results of CMIP5, which
were discussed during a workshop in March 2012, are used for IPCC’s Fifth Assessment Report in
2013. The CMIP6 results were discussed in a workshop in March 2019 and used for IPCC’s Sixth
Assessment Report in 2023. See Appendix A for details.
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(link). The history of the Global Energy Monitor project goes back to 2007, when
a group of scientists started to collect data on proposed coal power plants. Today,
the Global Energy Monitor projects collects and publishes data on global energy
systems, with a focus on transparency and accountability. We use information from
their Global Gas Infrastructure Tracker, which contains spatial information on past,
existing, and proposed gas pipelines. Figure 9 shows all gas pipelines that were
operating in 2004 or 2023. As can be seen, there is substantial heterogeneity across
regions in terms of pipeline density.

Our main measure for firms’ access to flexible investment opportunities is gas
pipeline densitysm

2004, which scales the length of gas pipelines in submarket sm

(in meters) by the size of the submarket (in square kilometers). In our baseline
specification, we only consider gas pipelines that were operating in 2004 (at the
beginning of our sample period) to avoid concerns that the investment decisions of
electricity-producing affect the pipeline network. As shown in Table 2, the average
gas pipeline density in our sample is 14.6 meters per square kilometer, with values
ranging from 2.0 meters to 26.2 meters for the 25th and 75th percentile, respectively.
For robustness, we use the yearly density or multiply the length of a pipeline by
its capacity (in billion cubic meters); because data on capacity is not available for
several pipelines, we set the capacity to the average in our sample for missing values.

As alternative measures for the regional variation in access to flexible investment
opportunities, we use gas depositssm

2004, which is calculated as the area of know gas
deposits in submarket sm, scaled by submarket size, as a proxy for the availability
of natural gas resources. The data comes from Petrodata, which was created by
Lujala, Rod, and Thieme (2007) and contains spatial information on global know
gas deposits as of 2004. The last alternative measure is flex capa sharesm

2004,
which is the share of flexible production technologies in submarket sm in 2004. For
its calculation, we consider all power plants in the Platts WEPP database and EIA
Form 860 filings, not only those that are matched to our sample firms. Internet
Appendix F illustrates the regional heterogeneity in natural gas deposits and the
use of flexible production technologies across submarkets.

3.5. Electricity demand, price, and generation data

We obtain data on the hourly demand for electricity at the electricity submarket
level mostly from the electricity market regulators. Internet Appendix G provides
an overview on the 55 markets for which we could obtain this data and the corre-
sponding data sources. Most of the demand data comes directly from the market
regulators. We stop our data collection in 2019 because exclude the time period from
2020 during which electricity demand was strongly influenced by Covid 19-related
effects. As shown in Table 2, we make approximately 12.6 million hourly demand
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observations in submarkets, with an average demand of approximately 12.7 GW.
We collect data on hourly electricity prices from various sources. Because data

on prices in submarkets is often not available, we focus on the average prices in an
electricity market. Our two primary data sources are the electricity exchanges and
the Thomson-Reuters Eikon database. For most European markets, we obtain data
from the Transparency Platform of the European Network of Transmission System.
Electricity prices are measured in U.S. Dollars (USD) per MW hour (MWh) and
local electricity prices are converted to USD using daily exchange rates. Again, we
stop our data collection in 2019 due to Covid-19. We obtain hourly electricity prices
for 49 different markets. Internet Appendix H provides an overview of the markets
for which we could obtain the data, the first year of data availability, and the data
source. As shown in Table 2, the average price of electricity is 51.7 USD per MWh.
However, there is substantial variation in electricity prices, with a 25th percentile of
36.0 USD per MWh and a 75th percentile of 63.2 USD per MWh.

Data on monthly electricity generation come from various sources. For most
markets, the generation data comes from the Monthly Electricity Statistics dataset,
which is published the International Energy Agency (IEA). This dataset provides
information on the monthly electricity generation by various electricity sources for
all OECD member countries and several other countries. For Australia, Canada,
and the U.S., we cannot use the aforementioned datasets because multiple markets
exist within these countries. Internet Appendix I provides a detailed overview on
the data sources for these countries. Table 2 shows that on average 23.7 percent of
the produced electricity comes from flexible generation sources.

3.6. Weather data

Data on hourly temperatures come from the Integrated Surface Database (ISD)
of the National Oceanic and Atmospheric Administration (NOAA). This database
includes hourly temperatures for weather stations around the globe from various
sources. The NOAA homepage provides a detailed description of this database
(link). We spatially match the coordinates of weather stations to the electricity
submarkets in our sample and average hourly temperatures across stations within
submarkets. In this process, we match 13,891 ISD weather stations to the submar-
kets in our sample. As shown in Table 2, our sample includes approximately 10.8
million hourly temperature observations on the submarket level, with an average
temperature of 12.7 degrees Celsius.
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4. Estimating the way in which Climate Uncertainty affects Investments

4.1. Methods

Our dependent variables measure power plants’ technologies, as well as firms’ in-
vestment levels in flexible, non-flexible, and all power plants. Our main independent
variable is climate uncertainty which captures the uncertainty about future temper-
atures and thus future electricity demand in a particular submarket. Our baseline
models include year fixed effects, firm fixed effects, and submarket fixed effects. The
year fixed effects ensure that our estimates are not affected by general time trends
and submarket and firm fixed effects control for time-invariant heterogeneities across
electricity submarkets and firms. This empirical approach guarantees that our mod-
els only exploit changes in firms’ investment decisions as reaction to time-series
variation in climate uncertainty within submarkets.

This time series variation of the uncertainty measure is plausibly exogenous since
it is mainly driven by changes in climatic predictions across CMIP periods.25 Those
differences come from improvements in computing power and scientific advances in
the modeling of earth climate and are unlikely directly related to any factors on the
firm, country, or (sub)market level. Additionally, local factors that are correlated
with firms’ investments are unlikely to affect changes in the modeling of Earth’s
climate because the modeling groups are located in various countries (see Internet
Appendix C), and each group predicts future temperatures for the entire globe.
Lastly, the forward-looking nature of the measure makes it unlikely that it is corre-
lated with contemporaneous omitted variables on the firm, country, or (sub)market
level that also influence firms’ investments.

Nevertheless, we add firm time year fixed effects, market times year fixed effects,
or both in a robustness test to explicitly control for time-variant and time-invariant
factors on the firm, country, and market level. Additionally, we control for any direct
effects of the severity of climate change by adding abnormal temperature controls to
our empirical models. In our baseline specification, we use ten group dummies that
are based on the mean abnormal temperature prediction from all CMIP models for
a submarket to allow for non-linear effects. In a robustness test, we add linear and
quadratic controls for predicted mean abnormal temperatures in a submarket.

Climate uncertainty as our key explanatory variable is measured at the submarket-
year level, and our investment measures are measured on the firm-submarket-year

25Technically, the time-series variation of our uncertainty measure between year y and y − 1
can also come from the one-year shift in the forecast horizon. However, this variation is small
compared to changes across CMIP phases. We show in a robustness test that our results are
virtually unchanged if we keep the forecast period constant in every CMIP phase and only exploit
time-series variation in the predictions across phases.
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level. We use robust standard errors clustered by electricity submarkets and firms
in our baseline models to allow for errors that are correlated with submarkets and
firms, and present alternative approaches to clustering for robustness.26

4.2. The choice of the production technology

We evaluate the way in which climate uncertainty affects the choice of the pro-
duction technology used in planned power plants in Table 3. To do so, we estimate
equations predicting variables reflecting the flexibility of firms’ investments. In par-
ticular, the dependent variable in Columns 1 and 2 is the dummy variable flex
technologyp, which is set equal to one if plant p uses a technology that is clas-
sified as flexible. The dependent variable in Columns 3 and 4 is the fixed cost
ratiop of plant p’s technology (see Appendix B for technology-specific values).

We conduct this analysis at the power plant level. We consider each unit of a
power plant separately since different units of a plant can be constructed at different
time and use different production technologies. Furthermore, power plant units that
are owned by more than one firm in our sample are counted multiple times, but their
capacity is adjusted for ownership shares. We include both existing and planned
plants for this analysis; the forecast period starts five years after a plant is first
included in our sample.

Our estimates indicate that log(abn temp sdsm
y+5;y+30), our main measure for

climate uncertainty, has no impact on the technology choice of existing power plants.
The lack of an effect for existing plants is not surprising because of the forward-
looking nature of our climate uncertainty measure. Because of that, time series
changes in the uncertainty of future temperatures cannot causally affect the pro-
duction technology of existing power plants. However, if we consider the effect on
planned plants by interacting our measure for climate uncertainty with plannedp,
which is a dummy variable indicating whether plant p is planned or existing, we find
that higher uncertainty increases the probability that a flexible production technol-
ogy is used.

We also find that firms choose production technologies with lower fixed cost
ratios if climate uncertainty is higher. Newly planned plants, relative to existing
plants, are generally less likely flexible and have on average higher fixed cost ratios.
If we control for the natural logarithm of a plant’s capacity in Columns 2 and 4,
we find that larger plants are more likely flexible and have on average lower fixed

26Firms can operate in multiple submarkets and also change the submarkets in which they operate
over time, making them not nested within submarkets (Cameron, Gelbach, and Miller, 2011). We
cluster by years in a robustness test but not in our baseline specification because the low number
of clusters can lead to econometric problems (Cameron and Miller, 2015).
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cost ratio. However, our main result about the impact of climate uncertainty on
investment flexibility is unaffected by including this additional control.

4.3. Investment levels
We next estimate the relation between climate uncertainty and investment lev-

els in Table 4.27 Column 1 presents the results for flex invi,sm
y , Column 2 for

non-flex invi,sm
y , and Columns 3 and 4 for total invi,sm

y . We find that climate
uncertainty has a positive impact on flexible investments and a negative impact on
non-flexible investments. The estimates imply that the planned capacity of flexible
plants scaled by the total existing capacity increases by 3.70 percent relative to its
mean when climate uncertainty increases by one percent, while the planned capac-
ity for non-flexible plants decreases by 2.20 percent. These results are in line with
theoretical arguments that flexibility should determine whether the convexity of the
profit function effect dominates the option value of waiting effect.

The estimates in Column 3 suggest that effect of uncertainty is on total invest-
ments is close to zero. It appears that increased uncertainty leads firms to substitute
across type of investment, but does not affect the overall level. However, the net
effect likely varies across regions and depends on the available of flexible investment
opportunities (see Section 2.3). If firms can substitute non-flexible with flexible
production technologies, they are more likely to increase investments in response to
higher climate uncertainty.

In Column 4 we include a term interacting the uncertainty about future temper-
atures with a measure of firms’ ability to construct gas power plants, the density
of the gas pipeline network in the region (see Section 3.4). The idea is that when
gas pipelines are more widely available, it is easier for firms to invest in natural
gas-fired power plants as the predominant for of flexible power plants, thus poten-
tially increasing their overall investments as response to higher uncertainty about
future demand. Consistent with this idea, the coefficient on the interaction term
is positive, and statistically significantly different from zero. The estimates imply
that the planned total capacity scaled by the existing capacity increases by 1.38
percent relative to its mean when climate uncertainty increases by one percent in
submarkets with median gas pipeline density. For submarkets for which gas pipeline
density is at the 75th percentile, the corresponding increase in total investments is
3.21 percent. These findings suggest that firms increase their investments in re-
sponse to uncertainty if they have the opportunity to substitute non-flexible with
flexible production technologies.

27The models in Table 4 include 128 submarkets and 323 firms, while those in Table 3 include 127
submarkets and 322 firms. The reason is that some observations in Table 3 are dropped because of
the fixed effects.
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4.3.1. Subsamples
To allow for non-linear effects, we split the sample into markets with low, medium,

and high gas pipeline density in Panel A of Table 5. For the low and medium gas
pipeline density terciles, climate uncertainty does not appear to affect total invest-
ments. However, for the tercile with the highest gas pipeline density, an increase in
climate uncertainty leads to a substantially higher total investment level (see Col-
umn 3). The estimates imply that for this tercile of firms, a one percent increase in
climate uncertainty leads to 5.40 percent higher total investments, relative to their
sample mean. We also find that a positive and highly significant coefficient estimate
for the interaction between climate uncertainty and an indicator for the pipeline
density tercile (Column 4) or pipeline density quintile (Column 5).

4.3.2. Additional fixed effects
The baseline models control for year, firm, and submarket fixed effects. What we

do not control for in these models are time-variant factors on the market or firm level.
Furthermore, our baseline estimates include abnormal temperature controls, but we
assume that their impact on total investments does not depend on the availability
of flexible investment opportunities. To understand how those factors affect our
estimates, we present estimates of models explaining investments with additional
fixed effects in Panel B of Table 5.

In Column 1, we interact the abnormal temperature controls with dummy vari-
ables for the pipeline density tercile that we use in Panel A. These models allow
the effect of the mean temperature change to be different for markets with low,
medium, or high gas pipeline density. To control for firm-level factors, we add year
times firm fixed effects in Column 2. This specification controls for all time-variant
and -invariant firm-level factors. In Column 3, we include year times market fixed ef-
fects. This model exploits variation within markets and controls for all time-variant
and time-invariant factors on the market and, because no market spans more than
one country in our sample, country level. These factors include, among others,
changes in regulations, production cost, population growth, attitude toward certain
technologies, fiscal incentives, and access to capital on the market or country level.
In Columns 4, we add year times firm and year times market fixed effects at the same
time. Finally, we add year times firm times market fixed effects to exploit variation
within the same market of the same firm in Column 5. The coefficient estimates for
the interaction terms between climate uncertainty and pipeline density are positive
and statistically significant in all specifications.

As an alternative to using fixed effects, we add additional controls to our main
equations. In Panel A of Internet Appendix J, we control for the country-level
characteristics of GDP per capita, population size, inflation rate, and the environ-
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mental policy stringency index. In Panel B, we control for characteristics on the
firm-submarket-year level. These characteristics are the capacity of a firm’s flexible
production capacity scaled by its total capacity in a submarket, the overall capac-
ity of its existing production capacity, and the share of its production capacity in
a submarket to the firm’s overall production capacity. In Panel C, we control for
firm-level characteristics. These characteristics are firm size, which we proxy by the
logarithm of total assets, book leverage, EBITDA, and the market-to-book ratio. In
all models, we find that climate uncertainty has a positive impact on investments if
flexible investment opportunities are available.

4.3.3. Alternative measures for the access to flexible investment opportunities
Our measure for flexible investment opportunities is the density of the gas

pipeline network in a submarket in 2004. As alternative measures, we use a sub-
market’s yearly gas pipeline density, gas pipeline capacity as of 2004, yearly gas
pipeline capacity, natural gas reserves, and share of flexible production technologies.
Section 3.4 provides details on the construction of these variables. We present the
estimates in Panel C of Table 5. We find a positive and statistically significant
coefficient estimate for the interaction terms between climate uncertainty and all al-
ternative measures of flexible investment opportunities. These results suggest that
our baseline finding does not depend on the way in which we measure firms’ access
to flexible investment opportunities.

4.3.4. The impact of industry concentration and market power
We also evaluate the impact of industry concentration and firms’ market power

on the relation between climate volatility and firms’ investments. Models of invest-
ment under uncertainty highlight the crucial role of the industry structure on this
relationship.28 To measure the concentration of a market as an important feature of
its structure, we rely on the Herfindahl-Hirschman Index (HHI). For the construction
of the variable HHIm

y , we consider the generation capacity of all firms in electricity
market m and year y. More precisely, we sum up the production capacity of all
power plants of a company29 in market m and year y, divide that sum by the total
generation capacity in the same market m and year y to calculate the market share,

28For instance, Pindyck (1988) finds a negative impact of uncertainty on investments for monop-
olistic firms, while Caballero (1991) documents the opposite result for competitive firms. Pindyck
(1993) and Sakellaris (1994) also highlight the role of the market structure for the impact of uncer-
tainty on investments.

29We do not focus rely on matched firms for its calculation, but also consider firms that are not
matched to our sample (e.g., because they are private). To calculate the capacity of a firm in a
market, we use rely on the operator’s name in the Platts database or EIA 860 filings. Because the
stated operator is not always the parent company, this approach is likely to underestimate market
concentration.
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square the market share, and calculate the sum of squared market shares within a
market and year. Table 2 shows that the median HHI in our sample is 0.11, which
indicates that the median market is fairly competitive.

In Table 6, Panel A, we show the results for our baseline specification if we only
include markets with low, medium, or high concentration.30 We find that our results
of higher investments as response to climate uncertainty if flexible investment op-
portunities are available holds for markets with low and medium concentration. For
highly concentrated markets, the interaction term is still positive, but statistically
insignificant. The triple interaction term in Column 4 has a negative coefficient
estimate but is statically insignificant, possible because the impact of uncertainty
on investments is strongest in markets with medium concentration. Market concen-
tration itself seems to have a negative impact on total investments, but this effect
is statistically insignificant with a t-value of -1.03. Overall, these results are in line
with the model in Lee and Shin (2000), which assumes a competitive firm, and sug-
gests that firms in monopolistic environments pay less attention to uncertainty when
making their investment decisions.

In addition to market concentration, we also investigate the role of firms’ market
power.31 We calculate the variable market sharei,m

y as measure for firm i’s market
power in year y and market m as its generation capacity in a market m and year y,
scaled by market m’s total capacity in year y. In Panel B, we interact this market
share with our baseline interaction term and present the results for markets with
low, medium, and high concentration as well as all markets. Overall, we find no
strong impact of market power on our baseline result. Only for firms in markets
with medium concentration, there is some evidence that market power reduces their
responsiveness to climate uncertainty. The coefficient estimates for market share
itself is negative in all four specifications, but statistically significant only for markets
with medium concentration. Overall, these findings provide some support for the
idea that monopolistic firms are react less to demand uncertainty and are in general
less likely to invest.

In Panel C, we exclude firms with high market power to investigate how they
affect our results. Firms with high market power could conceivably influence elec-
tricity price characteristics and potentially also other market factors through their
bidding behavior. If the effect of market power occurs more often when there is
higher climate uncertainty, then our results could reflect this market power. How-
ever, the relation between climate uncertainty and investments holds if we exclude

30We use HHI thresholds of 0.15 and 0.25 to classify markets as having low, medium, and high
concentration.

31See Rettl, Stomper, and Zechner (2020) for a discussion of competitor effects in energy markets.
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firms that account for more than 20 percent, 15 percent, 10 percent, or 5 percent of
the production capacity in a particular market, which alleviates those concerns.

4.3.5. Alternative specifications
We next evaluate the robustness of the relation between climate uncertainty and

firms’ investments to alternative specifications for our main equation in Table 7.
For brevity, we only report the coefficient estimate for the interaction term between
climate uncertainty and gas pipeline density and the coefficient estimate for cli-
mate uncertainty using observation from the high gas pipeline density tercile (see
Panel A of Table 5). The dependent variable is total invi,sm

y as measure of total
investments, and the baseline results are reported in the first line.

The first group of alternative specifications centers around the measurement of
climate change. We start by using the same forecast window for all sample years
in the same CMIP phase, which ensures that time-series variation in the climate
variables only comes from plausibly exogenous scientific modeling changes and not
from shifts in the forecast period between sample years. The next alternative spec-
ification only exploits variation in predictions of models that use the same CMIP
scenario, ensuring that the different number of scenarios for each model cannot bias
our results. After that we use the standard deviation of abnormal temperature
predictions across models and scenarios without log transformation, add a control
variable for the mean predicted abnormal temperature in a submarket, a centered
squared control variable for the mean predicted abnormal temperature, or use five,
20, and 50 abnormal temperature group dummies instead of the ten groups in our
baseline specification.

Second, we use alternative proxies for firms’ investments in power plants. These
alternative proxies are our baseline total investment measure that is not set to
one if the planned capacity exceeds existing capacity, but winsorized at the 90th

or 95th percentile. After that, we use the total planned capacity in GW without
scaling it and the log transformation of this variable. Lastly, we exclude renewable
technologies from the total investment variable because these investments might be
affected by subsidies and other factors that are unique to zero-emission technologies.

Third, we use alternative econometric specifications. We start with weighted
regression in which we weight each observation by a firm’s existing capacity in that
submarket or the log transformation of this capacity. After that, we show the
results for the alternative clustering of standard errors. In our baseline specification,
standard errors are clustered by submarkets and firms. Alternatively, we cluster
standard errors by electricity submarket only, by submarkets and years, and by
submarket and firm and year.

Fourth, we use alternative criteria for a firm or submarket to be included in our
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sample. In our baseline specification, we include firms with at least 100 MW of total
capacity and all their submarkets in which they own generation capacity. The first
alternative specification is to impose a threshold of 10 or 100 MW of existing capacity
for a submarket of a firm to be included in the sample. After that, we impose a
threshold of 500 MW or 1GW for total capacity or only consider submarkets that
account for at least one or five percent of a firm’s production capacity. None of these
alternative specifications leads to substantially different results than our baseline
specification for the interaction term or the top gas pipeline density subsample.

Fifth, we consider the possibility that our results are driven by any particular
electricity market. Using the model in Table 4, Column 4, as a baseline specifica-
tion, we exclude observations from single markets while estimating how the effect of
demand uncertainty on total investments depends on the regional variation of flexi-
ble investment opportunities. The results for the exclusion of markets are shown in
Internet Appendix K and show that the coefficient estimate for the interaction term
of climate uncertainty and gas pipeline density is relatively unaffected by excluding
single markets, and all estimated coefficients are statistically different from zero at
least at the 95 percent confidence level. These results suggest that our findings are
not driven by any particular market.

5. Mechanism tests

The idea that uncertainty about future weather conditions could affect firms’
choices of investments today depends on at least three underlying assumptions.
First, temperatures need to be meaningful drivers of electricity demand, so that
higher temperature uncertainty would lead to higher demand uncertainty (Perez-
Gonzalez and Yun, 2013).32 Second, higher demand uncertainty should increase
price uncertainty and thus the probability that market conditions would make the
operation of plants unprofitable (Cicala, 2022). Third, plants with flexible technolo-
gies have to be less affected by adverse market conditions because they can be shut
off, making their profit function more convex as compared to plants with non-flexible
technologies (Mauer and Triantis, 1994). We test these assumptions in this section.

5.1. Temperatures and the demand for electricity

We first consider the relation between hourly electricity demand and hourly elec-
tricity demand. To do so, we estimate models with the logarithm of hourly electricity
demand as dependent variable and the average hourly temperature in a submarket

32Please note that it is difficult and often impossible for firms to financially hedge this uncertainty.
The reason is that the economic life of a plant is 25 to 30 years, and electricity future or forward
markets for time horizons above a few years are typically very illiquid.
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as independent variable in Panel A of Table 8. We start with a model that includes
all observations and find no impact of temperatures on electricity demand. How-
ever, the impact of temperatures on demand is likely non-linear because electricity
is used both for heating and cooling Mideska and Kallbekken (2010). Thus, if tem-
peratures increase from a low level, demand decreases because the need for heating
goes down. However, if temperatures increase from a high level, demand goes up
because the need for cooling increases. The results in Columns 2 and 3 provide
evidence for this nonlinearity. If we split the sample into hours with temperatures
above or below 18.3 degrees Celsius, which is the temperature that is typically used
to distinguish between heating and cooling degree days in the U.S., we find that a
one degree increase of low temperatures decreases electricity demand by 0.5 percent,
while a one degree increase of high temperatures increases electricity demand by 2.3
percent. This U-shaped pattern is confirmed when we add the squared temperature
in Column 4 or plot the demand-temperature relationship in Internet Appendix L.33

In Panel B, we investigate the relationship between temperature uncertainty and
demand uncertainty. For this purpose, estimate a model in which the logarithm of
the standard deviation of the hourly electricity demand in a submarket and year is
the dependent variable and the logarithm of the standard deviation of the hourly
temperatures in the same submarket and year the independent variable. The co-
efficient estimates in Column 1 imply that a one percent increase in the standard
deviation of hourly temperatures leads to a 0.15 percent increase in the standard
deviation of hourly demand. In Columns 2 to 4, we aggregate hourly values to the
day, week, or month level before computing the standard deviation. We find that
a one percent increase in temperature standard deviation causes a 0.25, 0.34, and
0.35 percent increase in demand standard deviation for daily, weekly, and monthly
aggregation.

We take a slightly different approach in Panel C and use predictions of the
abnormal demand uncertainty in a submarket. For its calculation, we first convert
historical and predicted temperatures from the CMIP models in cooling and heating
degree days using a base temperature of 18.3 degrees Celsius. After that, we estimate
the elasticity of hourly electricity demand to hourly cooling and heating degree days
for every submarket. Then we predict the future abnormal electricity demand in
a submarket by multiplying the elasticities with the predicted heating and cooling
degree days. The last step is to calculate the standard deviation of the abnormal
demand for electricity in a submarket during the forecast period, which we do in the

33For the graphical illustration, we create 100 bins of hourly temperatures, each with the same
number of observations. After that, we scale hourly demand in a submarket by the demand in bin
50 of that submarket.
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same way as for abnormal temperatures. When we use the logarithm of abnormal
demand instead of abnormal temperatures, the results are very similar. We find
that total investment is unaffected by demand uncertainty in the tercile with low
flexible investment opportunities. For the medium and high tercile, we find a positive
impact of uncertainty on investments, with a stronger effect for the high tercile
(coefficient estimates of 0.38 vs. 0.72). This test adds confidence that our results
are indeed driven by firms’ adjustments of their investment plans to changes in
demand uncertainty.

5.2. Demand and the price for electricity
To investigate the relationship between electricity demand and prices, we esti-

mate a model with the logarithm of hourly electricity prices as dependent variable
and the logarithm of hourly electricity demand as independent variable in Panel A
of Table 9. We find that a one percent increase in demand is associated with an
increase in electricity prices of 0.75 percent. In the following columns, we focus
on the impact of temperatures, which by themselves affect demand, on electricity
prices. In line with our previous results for the impact of temperatures on demand,
we find a U-shape relationship between demand and prices. For lower temperature
levels, an increase in temperature decreases electricity prices. By contrast, there is a
positive relationship between temperatures and prices for higher temperature levels.

In Panel B, we investigate the relationship between demand uncertainty and
price uncertainty. For this purpose, estimate a model in which the logarithm of
the standard deviation of the hourly electricity price in a submarket and year is
the dependent variable and the logarithm of the standard deviation of the hourly
electricity demand in the same submarket and year the independent variable. Al-
ternatively, we use the logarithm of the standard deviation of temperatures in a
submarket as independent variable. The coefficient estimates in Column 1 indicate
that a one percent increase in the standard deviation of hourly demand leads to a
0.43 percent increase in the standard deviation of hourly prices. For temperatures in
Column 2, we find that a one percent increase leads to approximately a one percent
increase in the standard deviation of hourly prices. We find similar or even slightly
stronger results when we aggregate hourly to monthly values before calculating the
standard deviations.

Overall, these tests provide support of the assumption that uncertainty about
temperature and electricity demand leads to more uncertain prices, increasing the
risk of adverse market conditions for operators of power plants.

5.3. Generation from flexible/non-flexible production technologies
The third underlying assumption is that flexible plants are less affected by ad-

verse market conditions than non-flexible plants because they are be switched off
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if demand or prices are low, leading to a more convex profit function Mauer and
Triantis (1994). The rationale behind this assumption is twofold. First, non-flexible
plants have lower variable cost than flexible plants but higher fixed cost. For flexible
production technologies, the average ratio of fixed cost to total cost is 32.1 percent,
while the corresponding number is 81.4 percent for non-flexible technologies (see
Appendix B for technology-specific values). This cost structure makes it optimal for
firms to operate non-flexible plants most of the time. The second reason why non-
flexible plants typically run most of the time is that they have substantially higher
start up and shut down cost than non-flexible plants, or they cannot be actively
dispatched at all (Reinartz and Schmid, 2016).

We whether non-flexible plants are indeed less sensitive to changes in demand
and prices using data on monthly electricity generation from various technologies
for the majority of the electricity markets in our sample (see Section 3.5 for a de-
scription of the data). The results in Table 10 show that electricity generation from
flexible technologies is highly responsive to demand and prices changes, which is in
line with our assumption that their profit function is convex. For instance, a one-
percent increase in electricity demand (prices) leads to a 1.22 (0.42) percent increase
in generation from flexible technologies. Non-flexible technologies also respond to
higher demand, but the sensitivity is lower, with a 0.52 percent increase if demand
increases by one percent. For prices, we find that non-flexible technologies are not
sensitive at all. These findings suggest that flexible technologies are more sensitive
to changes in demand and prices than non-flexible technologies, which in turn makes
their profit function more convex.

6. Conclusion

Economic theory suggests that uncertainty about future demand for a firm’s
products is of paramount importance for its investment decisions and the choice of
its production technology. However, the predictions vary across theories, with some
suggesting that uncertainty depresses investments while other reach the opposite
conclusion. Empirical work on the way in which uncertainty affects the type of firms’
investments is limited, which may be due to difficulties in measuring uncertainty
about demand and firms’ investments in sufficient detail.

An important source of uncertainty in many industries is the way in which
climate changes in the future. Since weather changes are anticipated to become
larger over time, they can be particularly relevant for a firm’s long-term investments
choices. One industry that is strongly affected by climate is the electricity-producing
industry, as electricity demand is dependent on people’s desire for heating and cool-
ing. However, despite the broad consensus that temperatures will be higher in the
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future, there is substantial uncertainty about the extent of climate change in any
particular location. There are a number of climate models that offer different pre-
dictions, making it difficult to determine the expected weather over the 25 to 30-year
lifespan of a planned power plant.

We examine the investments in new power plants of sample of 323 for-profit firms
from the electricity-generating industry and assess the extent to which uncertainty
about future weather affects these investments. We use differences in the predictions
across scientific climate models for the same location as a measure for uncertainty.
Our estimates suggest that firms are more inclined to choose flexible production
technologies for their newly planned plants when uncertainty about future temper-
atures is higher at the location of the plant. Firms’ investments in power plants
with flexible production technologies increase with uncertainty, while investments in
non-flexible plants decrease. Uncertainty about weather (and hence demand) does
not affect the total number of investments. However, if firms have better access to
flexible investment opportunities as indicated by a higher density of the gas pipeline
network, they do increase their total investments in response to higher uncertainty.

This result is likely causal as time-series variation in our uncertainty measure
is primarily driven by scientific advances in climate modeling and improvements in
computing power, which are unlikely to be directly connected to firms’ investment
decisions in a certain region. Additionally, we provide evidence for our proposed
mechanism by showing that temperatures are meaningful drivers of electricity de-
mand, demand changes affect prices for electricity, and flexible technologies are less
affected by adverse market conditions because they are more likely to be switched
off when demand or prices are low.

The patterns documented in this paper are clearly specific to the electricity-

producing industry. However, the way in which for-profit firms in deregulated elec-

tricity markets make investment decisions is comparable to other manufacturing

industries. Thus, while the question of how electricity-producing firms make in-

vestments in new power plants is an important issue, we hope our paper conveys a

broader point: demand uncertainty doesn’t suppress investments but shifts firms’

investments toward more flexible production technologies. If such flexible tech-

nologies are available for firms, their overall investment levels may well increase

with uncertainty. Providing additional evidence on how demand uncertainty affects

investments in flexibility by firms from other industries represents an interesting

avenue for future research.
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Figure 2: This figures shows Italy (in orange) as an example of a market with multiple submarkets
and the surrounding markets (in blue) that do not have submarkets. See Internet Appendix A for
a detailed overview on all electricity markets.
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Figure 3: This figure shows near-surface air temperature predictions (in degrees Celsius) of the
MIROC5 model (as one exemplary CMIP5 model) for December 2040 under the assumption of
the RCP 4.5 scenario. The abnormal temperature is adjusted for the average temperature in the
forecast month (i.e., December in this example) from 1900 to 1999; past data is based on the
historical simulation of the MIROC5 model. Temperatures are winsorized at plus/minus 40 degrees
Celsius and abnormal temperatures are winsorized at plus five degrees Celsius and minus one degree
Celsius for this illustration. See Internet Appendix D for climate data sources.
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(a) GFDL-CM3 model, June 2040 (b) GFDL-CM3 model, December 2040

(c) MPI-ESM model, June 2040 (d) MPI-ESM model, December 2040

(e) INM-CM4 model, June 2040 (f) INM-CM4 model, December 2040
Figure 4: This figure shows near-surface air temperature predictions (in degrees Celsius) of several
exemplary CMIP5 models for June and December 2040 using the RCP 4.5 scenario. Temperatures
are winsorized at plus/minus 40 degrees Celsius for this illustration. See Internet Appendix D for
climate data sources.
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Figure 5: This figure shows the differences in near-surface air temperature predictions (in degrees
Celsius) between the CCSM4 and the CESM1-CAM5 model (as two exemplary CMIP5 models).
The forecast periods are either June 2040 or December 2040 and the assumed scenario is RCP 4.5.
Temperatures differences are winsorized at plus/minus five degrees Celsius for this illustration. See
Internet Appendix D for climate data sources.
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Figure 6: This figure shows the average abnormal near-surface air temperature predictions from all
CMIP models and scenarios. Every line represents the forecasts from one specific climate model and
scenario. The equivalent illustration for a single market (NYISO) is shown in Internet Appendix E.
See Internet Appendix D for climate data sources.

Figure 7: This figure shows the distribution of the mean abnormal temperature prediction and the
standard deviation of the predicted abnormal temperatures across models and scenarios. We use
the same forecast window (i.e., 2023 to 2047) for all CMIP versions. See Internet Appendix D for
climate data sources.
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Figure 8: This figure shows the mean abnormal temperature forecast and the standard deviation
of the mean abnormal temperature forecast across all CMIP5 models and scenarios. The forecast
period is 2022 to 2046. See Internet Appendix D for more information on CMIP models.
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Figure 9: This figure shows global gas pipelines in red. Data on pipelines comes from the Global
Energy Monitor project (link). The first picture shows all pipelines that were operating in 2004
and the second picture those that were operating in September 2023.
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Table 1: Descriptive statistics: planned power plant units

total capacity (MW)
Technology number GW average median

Flexible plants 2,031 530 142 114

Natural gas 1,583 473 299 250
simple cycle combustion turbine 459 72 157 150
combined cycle gas turbine 888 387 436 400
gas-fired reciprocating engine 183 11 61 15
unspecified gas-fired 53 2 47 10

Biogas 98 2 16 5
Oil 133 7 51 19
Pump storage 217 49 225 200

Non-flexible plants 5,930 1,084 258 239

Coal 739 436 589 660
Nuclear 103 115 1117 1200
Waste 208 28 136 130
Other non-renewable 60 5 76 20
Solar 991 60 61 11
Wind 2,128 268 126 50
Hydro (conventional) 1,537 163 106 36
Biomass 76 5 66 24
Other renewable 88 4 44 20

Total 7,961 1,614 207 184

This table presents descriptive statistics for the planned power plant units
of firms that are included in our sample. Reported are the total number of
planned power plant units, their total capacity in gigawatt (GW), and their
average and median capacity in megawatt (MW). We count each unit of a
power plant separately since different units of a plant can be constructed at
different time and use different production technologies. Power plant units
that are owned by more than one firm in our sample are counted multiple
times, but their capacity is adjusted for ownership shares. See Appendix C
for an overview on operating power plants.
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Table 2: Descriptive statistics
Variable N mean p25 p50 p75 SD

Firm-submarket-year level

Abn temp SDsm
y+5;y+30 16,598 1.567 1.214 1.522 1.897 0.495

Log(abn temp SDsm
y+5;y+30) 16,598 0.395 0.194 0.420 0.640 0.338

Abn tempsm
y+5;y+30 16,598 1.679 1.305 1.581 1.978 0.490

Flex invi,sm
t 16,598 0.049 0.000 0.000 0.000 0.182

Non-flex invi,sm
t 16,598 0.123 0.000 0.000 0.025 0.286

Total invi,sm
t 16,598 0.163 0.000 0.000 0.119 0.320

Gas pipeline densitysm
2004 16,598 14.557 1.971 11.213 26.152 13.799

Gas pipeline densitysm
y 16,598 15.840 2.675 12.337 27.902 14.503

Gas pipeline capacitysm
2004 16,598 395.272 16.698 106.190 351.367 633.994

Gas pipeline capacitysm
y 16,598 415.240 29.959 138.235 423.849 639.939

Gas depositssm
2004 16,598 0.273 0.017 0.135 0.400 0.339

Flexible capacity sharesm
2004 16,598 0.405 0.174 0.386 0.621 0.242

HHIm
y 16,598 0.218 0.056 0.107 0.292 0.224

Market sharei,m
y 16,251 0.054 0.002 0.012 0.056 0.112

Log(total assetsi
y) 13,219 16.541 15.364 16.890 18.016 1.769

Book leveragei
y 13,213 0.568 0.453 0.589 0.700 0.197

EBITDAi
y 13,174 0.083 0.061 0.084 0.104 0.052

Market-to-booki
y 13,813 1.679 0.950 1.360 1.990 1.573

Flex-to-total existingi,sm
y 16,598 0.235 0.010 0.063 0.300 0.332

Existing generationi,sm
y [GW] 16,598 2.019 0.053 0.311 1.481 5.819

Log(existing generationi,sm
y ) 16,598 5.611 3.989 5.743 7.301 2.290

Existingi,sm
y /existingi

y 16,598 0.335 0.000 0.073 0.672 0.396

Plant level

Abn temp SDsm
y+5;y+30 65,748 1.549 1.253 1.474 1.819 0.442

Log(abn temp SDsm
y+5;y+30) 65,748 0.395 0.226 0.388 0.598 0.299

Plannedp 65,748 0.121 0.000 0.000 0.000 0.326
Capacityp 65,748 87.633 3.000 18.000 81.900 182.826
Log(capacityp) 65,748 2.709 1.099 2.890 4.405 2.208
Flex technologyp 65,748 0.320 0.000 0.000 1.000 0.467
Fixed cost ratiop 65,440 0.693 0.315 0.914 0.914 0.328

Submarket-year level

Demand SDsm
y 1,248 1.949 0.214 0.794 2.126 2.991

Log(demand SDsm
y ) 1,248 -0.297 -1.543 -0.231 0.754 1.440

Temperature SDsm
y 1,248 7.941 5.938 7.707 10.211 2.988

Log(temperature SDsm
y ) 1,248 1.988 1.781 2.042 2.323 0.436

Submarket-hour level

Demandsm
hr 12,597,662 12.773 1.238 4.981 14.079 20.059

Log(demandsm
hr ) 12,597,662 1.474 0.213 1.606 2.645 1.605

Temperaturesm
hr 10,808,555 12.669 5.520 13.510 21.010 11.100

continued on next page

39



Table 2 continued

Variable N mean p25 p50 p75 SD

Market-year level

Price SDm
y 552 40.195 15.338 21.796 40.406 51.897

Log(price SDm
y ) 552 3.257 2.730 3.082 3.699 0.853

Demand SDm
y 546 2.936 0.595 1.229 3.508 3.813

Log(demand SDm
y ) 546 0.305 -0.519 0.206 1.255 1.294

Temperature SDm
y 552 7.611 6.004 7.332 9.447 2.315

Log(temperature SDm
y ) 552 1.975 1.792 1.992 2.246 0.350

Market-month level

Gen flexm
ym 4,705 5,129 258 1,278 7,223 7,474

Log(gen flexm
ym) 4,705 7.152 5.558 7.154 8.885 2.008

Gen non-flexm
ym 4,705 14,480 2,957 5,656 16,476 19,701

Log(gen non-flexm
ym) 4,705 8.769 7.992 8.640 9.710 1.361

Gen flex/totalmym 4,705 0.237 0.061 0.206 0.378 0.192
Demandm

ym 4,705 18,802 3,791 7,441 25,386 24,326
Log(demand GWhm

ym) 4,705 9.082 8.240 8.915 10.142 1.311
Pricem

ym 4,397 51.662 35.975 48.572 63.180 21.448
Log(pricem

ym) 4,397 3.865 3.583 3.883 4.146 0.400

Market-hour level

Pricem
hr 4,926,214 51.194 28.100 44.452 63.915 68.264

Log(pricem
hr) 4,905,434 3.727 3.343 3.798 4.159 0.681

Demandm
hr 12,597,662 12.773 1.238 4.981 14.079 20.059

Log(demandm
hr) 12,597,662 1.474 0.213 1.606 2.645 1.605

Temperaturem
hr 10,808,555 12.669 5.520 13.510 21.010 11.100

This table presents descriptive statistics for all variables. Reported are the number of observations
(N), mean value, p25, p50, p75, and standard deviation (SD). The index i indicates firms, sm

electricity submarkets, m electricity markets, y years, ym months, and hr hours. A detailed
description of all variables can be found in D.
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Table 3: Climate uncertainty and plant technology choice (plant level)

Column 1 2 3 4
Dependent flex technologyp fixed cost ratiop

Log(abn temp SDsm
y+5;y+30) 0.45 0.32 -0.14 -0.031

(1.42) (1.04) (-0.63) (-0.14)
Plannedp -0.071** -0.11*** 0.075*** 0.10***

(-2.18) (-3.69) (3.09) (4.72)
x log(abn temp SDsm

y+5;y+30) 0.16** 0.16*** -0.11** -0.11**
(2.52) (2.63) (-2.36) (-2.48)

Log(capacityp) 0.026*** -0.023***
(3.92) (-5.12)

Abn temp controls yes yes yes yes
Year/firm/submarket FE yes yes yes yes
Observations 65,746 65,746 65,438 65,438
#firms 322 322 322 322
#submarkets 127 127 127 127
Adj. R2 0.30 0.31 0.34 0.36

The models are estimated on the power plant level. The dependent variable in
Columns 1 and 2 is flex technologyp, which is one if plant p uses a flexible
production technology (natural gas, oil, biogas, and pump storage) and zero
otherwise. The dependent variable in Columns 3 and 4 is fixed cost ratiop,
which is calculated as the fixed cost of the production technology of plant p scaled
by its total cost (see Appendix B for details).

The variable abn temp sdsm
y+5;y+30 is the standard deviation of abnormal tem-

perature predictions across different CMIP models and scenarios for submarket
sm; it is calculated as the average of the standard deviations of abnormal tem-
perature predictions in all months during the forecast period y + 5; y + 30 (see
Appendix A). Abn temp controls refers to 10 group dummies that are based on
the average abnormal temperature prediction from all CMIP models for submar-
ket sm over the forecast period y + 5; y + 30. The year y represents the first year
in which a plant was included in the sample.

T-statistics based on robust standard errors clustered by electricity submarkets
and firms are presented in parentheses. ***, ** and * indicate significance on
the 1%-, 5%- and 10%-levels, respectively. A detailed description of all variables
can be found in Appendix D.
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Table 4: Climate uncertainty and investment levels

Column 1 2 3 4
Investment type flexi,sm

y non-flexi,sm
y totali,sm

y

Log(abn temp SDsm
y+5;y+30) 0.18** -0.27* -0.071 -0.23

(2.14) (-1.84) (-0.43) (-1.22)
x gas pipeline densitysm

2004 0.020***
(2.87)

Abn temp controls yes yes yes yes
Year/firm/submarket FE yes yes yes yes
Observations 16,598 16,598 16,598 16,598
#firms 323 323 323 323
#submarkets 128 128 128 128
Adj. R2 0.18 0.34 0.31 0.31

The models are estimated on the firm-submarket-year level. The dependent
variables are flex invi,sm

t , non-flex invi,sm
t , and total invi,sm

t . to-
tal invi,sm

t is calculated as planned power plant construction projects (in
megawatt, MW) of firm i in electricity submarket sm and year t, scaled by
the capacity of existing power plants of the same firm i in the same submarket
sm and year t and set to one if planned investments exceed total installed ca-
pacity. flex invi,sm

t and non-flex invi,sm
t are constructed in the same way,

but only flexible (natural gas, oil, biogas, and pump storage) or non-flexible
power plant projects are considered.

The variable abn temp sdsm
y+5;y+30 is the standard deviation of abnormal tem-

perature predictions across different CMIP models and scenarios for submar-
ket sm; it is calculated as the average of the standard deviations of abnormal
temperature predictions in all months during the forecast period y + 5; y + 30
(see Appendix A). Abn temp controls refers to 10 group dummies that are
based on the average abnormal temperature prediction from all CMIP models
for submarket sm over the forecast period y + 5; y + 30.

T-statistics based on robust standard errors clustered by electricity submar-
kets and firms are presented in parentheses. ***, ** and * indicate significance
on the 1%-, 5%- and 10%-levels, respectively. A detailed description of all
variables can be found in Appendix D.
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Table 5: Flexible investment opportunities and total investments

Panel A: Subsamples

Column 1 2 3 4 5
Gas pipeline density subsample low medium high all

Log(abn temp SDsm
y+5;y+30) -0.078 0.14 0.88*** -0.36 -0.39

(-0.30) (0.56) (3.18) (-1.61) (-1.65)
x gas pipeline density tercilesm

2004 0.47***
(3.43)

x gas pipeline density quintilesm
2004 0.29***

(3.32)

Abn temp controls yes yes yes yes yes
x gas pipeline density tercile n/a n/a n/a no yes

Year/firm/submarket FE yes yes yes yes yes
Observations 5,565 5,559 5,470 16,598 16,598
#firms 162 186 163 323 323
#submarkets 57 50 21 128 128
Adj. R2 0.41 0.30 0.33 0.31 0.31

Panel B: Controlling for time-variant market and firm-level characteristics

Column 1 2 3 4 5

Log(abn temp SDsm
y+5;y+30) -0.19 -0.013 0.53** 0.59* 0.49

(-0.99) (-0.056) (2.11) (1.83) (1.23)
x gas pipeline densitysm

2004 0.025*** 0.016** 0.011*** 0.014** 0.019**
(3.08) (2.42) (2.77) (2.41) (2.63)

Abn temp controls yes yes yes yes yes
x gas pipeline density tercile yes yes yes yes yes
Year/firm/submarket FE yes yes yes yes yes
Year x firm FE no yes no yes n/a
Year x market FE no no yes yes n/a
Year x firm x market FE no no no no yes
Observations 16,598 14,990 14,946 14,927 6,549
#firms 323 217 217 217 142
#submarkets 128 126 126 126 86
Adj. R2 0.31 0.27 0.32 0.26 0.37

continued on next page
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Table 5 continued

Panel C: Alternative measures

Column 1 2 3 4 5

Log(abn temp SDsm
y+5;y+30) -0.25 -0.21 -0.22 -0.22 -0.43*

(-1.24) (-1.20) (-1.22) (-1.23) (-1.70)
x gas pipeline densitysm

y 0.021***
(3.21)

x gas pipeline capacitysm
2004 0.00059***

(3.79)
x gas pipeline capacitysm

y 0.00063***
(3.69)

x gas depositssm
2004 0.84**

(2.47)
x flexible capacity sharesm

2004 0.90**
(2.18)

Abn temp controls yes yes yes yes yes
Year/firm/submarket FE yes yes yes yes yes
Observations 16,598 16,598 16,598 16,598 16,598
#firms 323 323 323 323 323
#submarkets 128 128 128 128 128
Adj. R2 0.31 0.31 0.31 0.31 0.31

The dependent variable is total invi,sm
t , which is calculated as planned power plant construction

projects (in megawatt, MW) of firm i in electricity submarket sm and year t, scaled by the capacity
of existing power plants of the same firm i in the same submarket sm and year t and set to one if
planned investments exceed total installed capacity.

In Panel A, the classification into terciles and quintiles is based on the average gas pipeline density
in an electricity market in 2004. In Panel B, we interact abnormal temperature group dummies
with gas pipeline density terciles and add various other fixed effects. In Panel C, we use alternative
measures for the availability of flexible investment opportunities.

The variable gas pipeline densitysm
2004 is the length of operating gas pipelines in submarket sm

in 2004 in kilometers, scaled by the total area of submarket sm in square kilometers. Data on gas
pipelines comes from the Global Energy Monitor project (see Figure 9). The variable abn temp
sdsm

y+5;y+30 is the standard deviation of abnormal temperature predictions across different CMIP
models and scenarios for submarket sm; it is calculated as the average of the standard deviations
of abnormal temperature predictions in all months during the forecast period y + 5; y + 30 (see
Appendix A). Abn temp controls refers to 10 group dummies that are based on the average abnormal
temperature prediction from all CMIP models for submarket sm over the forecast period y+5; y+30.

T-statistics based on robust standard errors clustered by electricity submarkets and firms are pre-
sented in parentheses. ***, ** and * indicate significance on the 1%-, 5%- and 10%-levels, respec-
tively. A detailed description of all variables can be found in Appendix D.
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Table 6: The impact of industry concentration and market power

Panel A: Industry concentration

Column 1 2 3 4
HHIm

y <0.15 ≥0.15 <0.25 ≥0.25 all

Log(abn temp SDsm
y+5;y+30) -0.062 -0.21* -0.93** -0.25

(-0.27) (-1.96) (-2.38) (-1.23)
x gas pipeline densitysm

2004 0.017** 0.036*** 0.0099 0.028***
(2.35) (3.55) (1.05) (3.00)

x gas pipeline densitysm
2004 x HHIm

y -0.023
(-0.55)

HHIm
y -0.35

(-1.03)

Included fixed effects year & submarket & firm & abn temp
Observations 10,130 1,907 4,548 16,598
Adj. R2 0.37 0.26 0.28 0.31

Panel B: Industry concentration and market power

Column 1 2 3 4
HHIm

y <0.15 ≥0.15 <0.25 ≥0.25 all

Log(abn temp SDsm
y+5;y+30) -0.037 -0.35 -0.93** -0.19

(-0.16) (-1.64) (-2.44) (-1.00)
x gas pipeline densitysm

2004 0.017** 0.042*** 0.0096 0.020***
(2.27) (3.28) (1.22) (2.68)

x gas pipeline densitysm
2004 x mkt sharei,m

y 0.026 -0.026* 0.0026 0.016
(1.08) (-1.82) (0.098) (1.60)

Market sharei,m
y -0.056 -0.78** -0.54 -0.091

(-0.31) (-2.59) (-1.20) (-0.64)

Included fixed effects year & submarket & firm & abn temp
Observations 9,839 1,851 4,548 16,251
Adj. R2 0.37 0.27 0.30 0.32

Panel C: Excluding firms with market power

Column 1 2 3 4
Market sharei,m

y <0.20% <0.15% <0.10% <0.05%

Log(abn temp SDsm
y+5;y+30) -0.19 -0.18 -0.18 -0.089

(-0.93) (-0.77) (-0.77) (-0.33)
x gas pipeline densitysm

2004 0.020** 0.019** 0.018** 0.019**
(2.50) (2.18) (2.12) (2.11)

Included fixed effects year & submarket & firm & abn temp
Observations 15,038 14,721 13,929 11,888
Adj. R2 0.32 0.32 0.32 0.32

continued on next page
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Table 6 continued

The dependent variable is total invi,sm
t , which is calculated as planned power plant construc-

tion projects (in megawatt, MW) of firm i in electricity submarket sm and year t, scaled by the
capacity of existing power plants of the same firm i in the same submarket sm and year t and set
to one if planned investments exceed total installed capacity. The variable abn temp sdsm

y+5;y+30

is the standard deviation of abnormal temperature predictions across different CMIP models
and scenarios for submarket sm; it is calculated as the average of the standard deviations of
abnormal temperature predictions in all months during the forecast period y + 5; y + 30 (see
Appendix A).

In Panels A and B, we restrict the sample to observations from electricity markets with an HHI
of less than 0.15 in Column 1, between 0.15 and 0.25 in Column 2, or more than 0.25 in Column
C. HHIm

y is the Herfindahl-Hirschman Index for electricity market m in year y; it is calculated
as the sum of the squared market shares of every (matched and unmatched) company in market
m in year y. In Panel C, we exclude firms with more than 20% market share in Column 1,
more than 15% market share in Column 2, more than 10% in Column 3, and more than 5%
market share in Column 4. Mkt sharei,m

y is the market share of firm i in market m and year y;
it is calculated as the capacity of firm i in electricity market m and year y, scaled by the total
production capacity in market m and year y.

T-statistics based on robust standard errors clustered by electricity submarkets and firms are
presented in parentheses. ***, ** and * indicate significance on the 1%-, 5%- and 10%-levels,
respectively. A detailed description of all variables can be found in Appendix D.
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Table 7: Alternative specifications

Alternative specification description interaction term top tercile

Baseline main specification 0.020*** (2.87) 0.88*** (3.18)

Climate change across CMIP periods variation only 0.024*** (3.26) 0.79*** (3.13)
related within scenario SD only 0.020*** (2.81) 0.89*** (3.36)

SD without log transformation 0.014** (2.39) 0.71** (2.33)
abn temp control: linear 0.018*** (2.72) 0.55** (2.18)
abn temp control: quadratic 0.019*** (3.11) 0.59** (2.23)
abn temp control: 5 groups 0.022*** (3.18) 0.66* (2.01)
abn temp control: 20 groups 0.018** (2.38) 0.86*** (3.13)
abn temp control: 50 groups 0.017** (2.31) 0.96* (2.01)

Investment Investment winsorized at 90% 0.019*** (3.00) 0.78*** (3.14)
related Investment winsorized at 95% 0.028** (2.52) 1.20** (2.62)

Unscaled investment in GW 0.032** (2.08) 1.38** (2.52)
Log(unscaled investment) 0.12** (2.25) 6.30** (2.60)
Exclude renewable technologies 0.013** (2.18) 0.71*** (3.04)

Econometrics Weighting: submarket capa 0.038*** (3.94) 1.12*** (2.95)
related Weighting: log(submarket capa) 0.025*** (3.19) 0.99*** (2.95)

SE clustered by submarket only 0.020*** (2.73) 0.88*** (3.22)
SE clustered by submarket+year 0.020*** (2.88) 0.88*** (3.04)
SE clustered by submarket+firm+year 0.020*** (2.96) 0.88*** (2.92)

Sample ≥ 10 MW capacity in submarket 0.024*** (3.10) 0.87** (2.79)
≥ 100 MW capacity in submarket 0.026*** (2.67) 0.99** (2.40)
≥ 500 MW total capacity 0.019** (2.32) 0.85** (2.72)
≥ 1GW total capacity 0.021*** (2.70) 1.01** (2.69)
≥ 1% capacity in submarket 0.030*** (3.50) 1.12*** (3.03)
≥ 5% capacity in submarket 0.031*** (3.52) 1.24*** (4.42)

This table shows, for various alternative specifications, the coefficient estimates for the interaction term
between log(abn temp sdsm

y+5;y+30) and gas pipeline densitysm
2004 and the coefficient estimates for

log(abn temp sdsm
y+5;y+30) using the tercile with the highest gas pipeline density in 2004. The model

specifications follow the baseline specifications in Table 4, Column 4, for the interaction term and
Table 5, Panel A, Column 3, for the top tercile.
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Table 8: Temperatures and the demand for electricity

Panel A: Hourly temperatures and demand (submarket-hour level)

Column 1 2 3 4
Dependent log(demandsm

hr )
Sample all <18.3◦C >18.3◦C all

Temperaturesm
hr 0.00059 -0.0047*** 0.023*** -0.0064***

(0.79) (-5.56) (16.1) (-6.51)
Temperaturesm

hr
2 0.00040***

(10.6)

Submarket FE yes yes yes yes
Date FE yes yes yes yes
Observations 10,721,274 7,160,409 3,560,859 10,721,274
#submarkets 126 121 126 126
Adj. R2 0.98 0.99 0.99 0.98

Panel B: Temperature and demand volatility (submarket-year level)

Column 1 2 3 4
Dependent log(demand SDsm

y )
Aggregation hourly day week month

Log(temperature SDsm
y ) 0.15*** 0.25*** 0.34*** 0.35***

(3.00) (3.57) (4.13) (3.73)

Submarket FE yes yes yes yes
Year FE yes yes yes yes
Observations 1,248 1,247 1,247 1,247
#submarkets 126 126 126 126
Adj. R2 0.99 0.99 0.99 0.98

Panel C: Predicted demand uncertainty (firm-submarket-year level)

Column 1 2 3 4
Dependent total investmenti,sm

y

Gas pipeline density low medium high all

Log(abn demand SDsm
y+5;y+30) 0.12 0.38** 0.72*** -0.014

(0.64) (2.19) (3.46) (-0.10)
x gas pipeline densitysm

2004) 0.024***
(3.56)

Abn temp controls yes yes yes yes
Year/firm/submarket FE yes yes yes yes
Observations 5,147 5,559 5,466 16,175
#firms 158 186 162 320
#submarkets 50 50 20 120
Adj. R2 0.41 0.30 0.33 0.31

continued on next page
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Table 8 continued

In Panel A, the dependent variable is log(demandsm
hr ), which is the demand for elec-

tricity (in gigawatt, GW) in submarket sm and hour hr.

In Panel B, the dependent variable is log(demand sdsm
y ), which is the standard

deviation of electricity demand in submarket sm and year y. For its calculation, we
use hourly electricity demand in Column 1, daily demand in Column 2, weekly demand
in Column 3, and monthly demand in Column 4.

In Panel C, the dependent variables is total invi,sm
t , which is calculated as planned

power plant construction projects (in megawatt, MW) of firm i in electricity submarket
sm and year t, scaled by the capacity of existing power plants of the same firm i in
the same submarket sm and year t and set to one if planned investments exceed total
installed capacity. The variable abn demand sdsm

y+5;y+30 is the standard deviation
of abnormal demand forecasts across different CMIP models for submarket sm; it is
calculated as the average standard deviation for monthly abnormal demand forecasts
over the forecast period y+5; y+30 (see Appendix A). Abnormal demand is calculated
based on abnormal temperature predictions and market-specific temperature-demand
elasticities. The variable gas pipeline densitysm

2004 is the length of operating gas
pipelines in submarket sm in 2004 in kilometers, scaled by the total area of submarket
sm in square kilometers. Data on gas pipelines comes from the Global Energy Monitor
project (see Figure 9). Abn temp controls refers to 10 group dummies that are based
on the average abnormal temperature prediction from all CMIP models for submarket
sm over the forecast period y + 5; y + 30.

T-statistics based on robust standard errors clustered by electricity submarkets (Pan-
els A and B) or electricity submarkets and firms (Panel C) are presented in parentheses.
***, ** and * indicate significance on the 1%-, 5%- and 10%-levels, respectively. A
detailed description of all variables can be found in Appendix D.
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Table 9: Electricity demand, temperatures, and wholesale prices

Panel A: Hourly demand and price (market-hour level)

Column 1 2 3 4
Dependent log(pricem

hr)
Sample all <18.3 ◦C >18.3 ◦C

Log(demandm
hr) 0.75***

(4.90)
Temperaturem

hr 0.0030** -0.010*** 0.041***
(2.44) (-3.83) (6.55)

Market FE yes yes yes yes
Date FE yes yes yes yes
Observations 4,850,748 4,731,485 3,331,096 1,400,389
#markets 50 49 48 49
Adj. R2 0.45 0.39 0.39 0.58

Panel B: Demand and price volatility (market-year level)

Column 1 2 3 4
Dependent log(price SDm

y )
Aggregation hourly month

Log(demand SDm
y ) 0.43*** 0.44**

(2.90) (2.47)
Log(temperature SDm

y ) 1.00*** 1.68***
(3.23) (6.15)

Market FE yes yes yes yes
Year FE yes yes yes yes
Observations 565 552 564 551
#submarkets 50 49 50 49
Adj. R2 0.71 0.72 0.45 0.48

In Panel A, the dependent variable is log(pricem
hr), which is the price for

electricity (in USD per MWh) in market m and hour hr.

In Panel B, the dependent variable is log(price sdm
y ), which is the standard

deviation of electricity prices in submarket m and year y. For its calculation,
we use hourly electricity prices in Columns 1 and 2 and monthly prices in
Columns 3 and 4.

T-statistics based on robust standard errors clustered by electricity markets
are presented in parentheses. ***, ** and * indicate significance on the 1%-,
5%- and 10%-levels, respectively. A detailed description of all variables can
be found in Appendix D.
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Table 10: Electricity market conditions and generation (market-month level)

Column 1 2 3 4 5 6
Dependent log(gen flexm

ym) log(gen non-flexm
ym) gen flex/totalmym

Log(demandm
ym) 1.22*** 0.52*** 0.084**

(3.06) (3.33) (2.57)
Log(pricem

ym) 0.42*** -0.032 0.050***
(4.69) (-0.96) (3.76)

Market FE yes yes yes yes yes yes
Year/Month FE yes yes yes yes yes yes
Year x Market FE yes yes yes yes yes yes
#markets 4,705 4,398 4,705 4,398 4,705 4,398
Observations 47 46 47 46 47 46
Adj. R2 0.98 0.98 0.99 0.99 0.95 0.95

The dependent variables are the logarithm of gen flexm
ym in Columns 1 and 2, the loga-

rithms or gen non-flexm
ym in Columns 3 and 4, and gen flex/totalm

ym in Columns 5
and 6. The variable gen flexm

ym is the monthly electricity generation in GWh from
power plants using flexible technologies (natural gas, oil, biogas, pump storage) in elec-
tricity market m and year-month ym. The variable gen non-flexm

ym is calculated in the
same way but only considers generation from non-flex technologies. The variable gen
flex/totalm

ym is the monthly generation from flexible technologies divided by total
generation in electricity market m and year-month ym. The variable demand gwhm

ym

is the monthly electricity demand in GWh in electricity market m and year-month ym.
The variable pricem

ym is the average electricity price in USD per MWh in electricity
market m and year-month ym.

T-statistics based on robust standard errors clustered by electricity markets are pre-
sented in parentheses. ***, ** and * indicate significance on the 1%-, 5%- and 10%-
levels, respectively. A detailed description of all variables can be found in Appendix D.
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Appendix

25 03 2019
CMIP6 workshop

05 03 2012
CMIP5 workshop

01 03 2005
CMIP3 workshop

2004
sample start

2022
sample end

2018

CMIP6

2024 2048

forecast period

2011

CMIP5

2017 2041

forecast period

2004

CMIP3

2010 2034

forecast period

Appendix A: This figure provides an overview on the time structure of our sample. The investment
regression sample starts in 2004 and ends in 2022. For the period from 2004 to 2010, CMIP3
model forecasts are used. For the period from 2011 to 2017, CMIP5 model forecasts are used. For
the period from 2018 to 2022, CMIP6 model forecasts used. The length of the forecast periods
is 25 years; the forecast periods starts five years after the end of the respective sample year. We
assume that the models of the different CMIP phases are publicly available in the year before the
corresponding workshop was held. The CMIP3 workshop was held from March 1 to 4, 2005 in
Honolulu (link). The CMIP5 workshop was held from March 5 to 9, 2012, in Honolulu (link). The
CMIP6 workshop was held from March 25 to 28, 2019, in Barcelona (link).
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Appendix B: Technology-specific fixed and variable cost

cost in 2013US$/MWh
Technology fixed variable total fixed ratio

Panel A: Flexible plants

Biogas 43.500 94.600 138.100 0.315
Gas (combined cycle) 16.100 57.800 73.900 0.218
Gas (not combine cycle) 43.500 94.600 138.100 0.315
Oil 15.000 197.000 212.000 0.071
Pump storage 74.600 34.261 108.861 0.685
Average 38.540 95.652 134.192 0.321

Panel B: Non-flexible plants

Biomass 61.600 37.600 99.200 0.621
Coal (lignite) 83.800 30.700 114.500 0.732
Coal (not lignite) 64.600 29.400 94.000 0.687
Hydro (conventional) 74.600 7.000 81.600 0.914
Nuclear 81.900 12.200 94.100 0.870
Solar 121.200 0.000 121.200 1.000
Waste 64.600 29.400 94.000 0.687
Wind 70.500 0.000 70.500 1.000
Average 77.850 18.288 96.138 0.814

This table shows the technology-specific cost (in 2013 US$ per MWh). Fixed cost
include fixed operating and maintenance cost and levelized capital cost. Variable
cost include variable operating and maintenance cost and cost for fuel. The fixed
cost ratio is calculated as fixed cost divided by total cost. The data source is
the EIA’s Annual Energy Outlook 2015. For biogas plants, we assume that the
same cost structure as for natural gas. For waste plants, we assume the same
cost structure as for coal (non-lignite) plants. For pump storage, we assume that
fixed cost equal those of hydro (conventional) and variable cost equal those of
hydro (conventional) plus 27 US$ per MWh (the 25th percentile, see Table 2) for
pumping water in the upper reservoir.
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Appendix C: Descriptive statistics: existing power plant units

total capacity (MW)
Technology number GW average median

Flexible plants 19,028 1,613 79 49

Natural gas 11,396 1,201 105 54
simple cycle combustion turbine 3,267 309 95 62
combined cycle gas turbine 4,013 759 189 160
gas-fired reciprocating engine 3,682 113 31 3
unspecified gas-fired 434 20 46 3

Biogas 743 10 14 2
Oil 5,871 268 46 11
Pump storage 1,018 134 132 104

Non-flexible plants 38,759 2,534 156 135

Coal 4,192 1,116 266 180
Nuclear 533 465 872 917
Waste 1,598 140 87 48
Other non-renewable 248 12 47 10
Solar 2,684 42 15 2
Wind 7,173 259 36 17
Hydro (conventional) 21,863 489 22 5
Biomass 165 4 27 20
Other renewable 303 8 26 18

Total 57,787 4,148 122 98

This table presents descriptive statistics for the existing power plant units
of firms that are included in our sample. Reported are the total number of
power plant units, their total capacity in gigawatt (GW), and their average
and median capacity in megawatt (MW). We count each unit of a power plant
separately since different units of a plant can be constructed at different time
and use different production technologies. Power plant units that are owned
by more than one firm in our sample are counted multiple times, but their
capacity is adjusted for ownership shares. See Table 1 for an overview on
planned power plants.
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Appendix D: Definition of variables

Variable Description

Abn temp sdsm
y+5;y+30 Standard deviation of abnormal temperature forecasts across different

CMIP models for submarket sm; it is calculated as the average standard
deviation for monthly abnormal temperature forecasts over the forecast
period y + 5; y + 30. Source: Own calculations based on CMIP data.

Abn demand sdsm
y+5;y+30 Standard deviation of abnormal demand across different CMIP models for

submarket sm. Calculation: (1) convert historical and predicted temper-
atures from the CMIP models in cooling and heating degree days using
a base temperature of 18.3 degrees Celsius; (2) estimate the elasticity of
hourly electricity demand to hourly cooling and heating degree days for
every submarket sm; (3) predict future abnormal electricity demand in
submarket sm by multiplying the elasticities with the predicted heating
and cooling degree days; (4) calculate standard deviation of the abnormal
demand in submarket sm during the forecast period y + 5; y + 30.

Book leveragei
y Total debt [wc03255] of firm i in year y scaled by the sum of total debt

plus book value of equity [wc03501]).
Capacityp Capacity of power plant p in MW. Source: Platts WEPP (for non-U.S.

markets) and EIA Form 860 (for U.S. markets) data.
Demandsm

hr Demand for electricity in submarket sm and hour hr (in gigawatt, GW).
Source: The data is obtained from various sources, including market oper-
ators. See Internet Appendix G for more details.

Demandm
ym Aggregate demand for electricity in submarket sm and month ym (in gi-

gawatt hours, GWh).
Demand SDsm

y Standard deviation of electricity demand in submarket sm and year y.
Demand SDm

y Standard deviation of electricity demand in market m and year y.
∆Demandi

y capacity-weighted average of log differences of electricity demand in all
electricity submarkets in which firm i operates in year y.

EBITDAi
y Earnings before interest, taxes, depreciation, and amortization [wc18198]

of firm i in year y scaled by total assets.
EPSIctry

t,y
Environmental policy stringency index in country ctry and year y. Source:
OECD.

Existing generationi,sm
y Existing generation capacity in MW of firm i in submarket sm and year y.

Existingi,sm
y /existingi

y Existing generation capacity of firm i in submarket sm and year y, scaled
by the total generation capacity of firm i in year y (across all markets).

Fixed cost ratiop Ratio of capital cost plus fixed operating and maintenance cost (in US$ per
MWh) scaled by total cost for the production technology of power plant p.
The technology-specific values are reported in Appendix B. Source: EIA’s
Annual Energy Outlook 2015 and Lazard’s levelized cost of energy analysis
2015.

Flex technologyp Dummy variable that equals one if the production technology of plant p is
flexible (natural gas, oil, biogas, and pump storage).

Flex capa sharesm
2004 Share of flexible generation in submarket sm in 2004. Source: Own calcu-

lations based on Platts WEPP and EIA Form 860 data.
continued on next page
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Appendix D continued
Variable Description
Flex invi,sm

y Planned power plant construction projects with flexible technologies in
MW of firm i in submarket sm and year y, scaled by the capacity of
existing power plants of firm i in submarket sm and year y and set to one
if planned flexible investments exceeds total installed capacity. Natural
gas, oil, biogas, and pump storage plants are classified as flexible plants.
Source: Own calculations based on Platts WEPP (for non-U.S. markets)
and EIA Form 860 (for U.S. markets) data. See Internet Appendix A for
more detail on electricity submarkets.

Flex-to-total
existingi,sm

y

Flexible generation capacity of firm i in submarket sm and year y, scaled
by the total generation capacity of firm i in submarket sm and year y.
Source: Own calculations based on Platts WEPP and EIA Form 860 data.

Gas depositssm
2004 Area of all known onshore and offshore gas deposits (in square km) in

submarket sm in 2004, scaled by the size of the submarket (in square km).
Source: PETRODATA (Lujala et al., 2007, data link).

Gas pipeline densitysm
2004 Length of operating gas pipelines in submarket sm in 2004 in meters,

scaled by the total area of submarket sm in square kilometers. Source:
Own calculations based on data from the Global Energy Monitor project.

Gas pipeline densitysm
y Length of operating gas pipelines in submarket sm in year y in meters,

scaled by the total area of submarket sm in square kilometers. Source:
Own calculations based on data from the Global Energy Monitor project.

Gas pipeline densitysm
2004 Length of operating gas pipelines in submarket sm in 2004 in meters,

multiplied by the capacity of the gas pipelines in Billion cubic metres and
scaled by the total area of submarket sm in square kilometers. If the
capacity for a pipeline is missing we replace its value by the median capacity
of all pipelines. Source: Own calculations based on data from the Global
Energy Monitor project.

Gas pipeline densitysm
y Length of operating gas pipelines in submarket sm in year y in meters,

multiplied by the capacity of the gas pipelines in Billion cubic metres and
scaled by the total area of submarket sm in square kilometers. If the
capacity for a pipeline is missing we replace its value by the median capacity
of all pipelines. Source: Own calculations based on data from the Global
Energy Monitor project.

Gen flexm
ym Monthly electricity generation in GWh from power plants using flexible

technologies (natural gas, oil, biogas, pump storage) in electricity market
m and year-month ym. Source: The generation data comes from various
sources, which are summarized in Internet Appendix I.

Gen non-flexm
ym Monthly electricity generation in GWh from power plants using non-

flexible technologies in electricity market m and year-month ym.
Gen flex/total m

ym Monthly generation from flexible technologies divided by total generation
in electricity market m and year-month ym.

GDP per capitactry
y GDP per capita (in 2015US$) in country ctry and year y. Source: World-

bank.
continued on next page
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Appendix D continued
Variable Description
HHIm

y Herfindahl-Hirschman Index for electricity market m in year y; it is cal-
culated as the sum of the squared market shares of every (matched and
unmatched) company in market m in year y. Source: Own calculations
based on Platts WEPP and EIA Form 860 data.

Inflation ratectry
y Yearly inflation rate in country ctry and year y. Source: Worldbank.

Market-to-booki
y Market capitalization of equity [wc08001] of firm i in year y scaled by the

book value of equity [wc03501].
Market sharei,m

y Generation capacity of firm i in electricity market m and year y, scaled by
the total installed production capacity in electricity market m and year y.
Source: Own calculations based on Platts WEPP and EIA Form 860 data.

Non-flex invi,sm
y Planned power plant construction projects with non-flexible technologies

in MW of firm i in submarket sm and year y, scaled by the capacity of
existing power plants of firm i in submarket sm and year y and set to
one if planned non-flexible investments exceeds total installed capacity.
Technologies other than natural gas, oil, biogas, and pump storage are
classified as non-flexible. Source: Own calculations based on Platts WEPP
(for non-U.S. markets) and EIA Form 860 (for U.S. markets) data.

OpFlexi
y Capacity of flexible production technologies divided to the total production

capacity of firm i in year y across all electricity markets.
Operating profiti

y Operating income [wc01250] of firm i in year y scaled by total assets.
Populationctry

y Total population in country ctry and year y. Source: Worldbank.
Plannedp Dummy variable that equals one if plant p is planned and zero if it is

operating. Platts WEPP (for non-U.S. markets) and EIA Form 860 (for
U.S. markets) data.

Pricem
hr Hourly wholesale market price of electricity in US$ per MWh in market m

and hour hr. Source: For most markets, the price data is directly obtained
from the power exchange. If we cannot obtain the data directly from the
exchange, we use price data from ThomsonReuters Eikon.

Pricem
ym Average wholesale market price of electricity in US$ per MWh in market

m and month ym.
Price SDm

y Standard deviation of the wholesale market price of electricity in US$ per
MWh in market m and year y.

Temperaturesm
hr Hourly temperature in submarket sm and hour hr. Temperatures within

submarkets are averaged across weather stations. Source: Integrated Sur-
face Database (ISD).

Temperaturem
hr Hourly temperature in market m and hour hr.

Temperature SDy
sm Standard deviation of temperatures in submarket sm and year y.

Temperature SDy
m Standard deviation of temperatures in market m and year y.

Total invi,sm
y Planned power plant construction projects in MW of firm i in submarket

sm and year y, scaled by the capacity of existing power plants of firm i

in submarket sm and year y and set to one if planned flexible investments
exceeds total installed capacity. Source: Own calculations based on Platts
WEPP (for non-U.S. markets) and EIA Form 860 (for U.S. markets) data.

Total assetsi
y Total assets [wc02999] of firm i in year y in tsd US$. Source: Worldscope

WEPP stands for World Electric Power Plants database and EIA for Energy Information Administration.
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Internet Appendix
Internet Appendix A: Electricity markets

continent country market #submkts start obs

Africa South Africa SAPP 1 2009 46
Asia India IEX 5 2008 1,031
Asia Japan JEPX 10 2004 878
Asia Philippines WESM 5 2006 275
Asia Singapore EMC 1 2003 35
Asia South Korea KPX 2 2001 122
Europe Austria EXAA 1 2002 89
Europe Belgium BELPEX 1 2006 149
Europe Bulgaria IBEX 1 2014 101
Europe Croatia CROPEX 1 2016 14
Europe Czech Republic OTE 1 2002 159
Europe Denmark NP_DK 2 1996 59
Europe Finland NP_FI 1 1996 79
Europe France EPEX_F 1 2002 374
Europe Germany EPEX_D 1 2002 658
Europe Greece ENEX 1 2007 196
Europe Hungary HUPX 1 2010 89
Europe Ireland SEMO 1 2006 120
Europe Italy GME 6 2004 1,591
Europe Latvia NP_LV 1 2012 22
Europe Lithuania NP_LT 1 2013 32
Europe Luxembourg EPEX_LUX 1 2002 54
Europe Netherlands APX_NL 1 1999 193
Europe Norway NP_NO 5 1996 166
Europe Poland TGE 1 2001 291
Europe Portugal OMIE_PT 1 2008 208
Europe Romania OPCOM 1 2005 149
Europe Russian Federation ATS 7 2007 742
Europe Slovakia OKTE 1 2011 70
Europe Slovenia BORZEN 1 2001 31
Europe Spain OMIE_SP 1 1998 450
Europe Sweden NP_SW 4 1996 347
Europe Switzerland EPEX_CH 1 2007 122
Europe Turkey EPIAS 1 2015 108
Europe Ukraine UEEX 1 2019 4
Europe United Kingdom APX_UK 1 2001 536
North America Canada AESO 6 2000 478
North America Canada IESO 10 1999 895
North America U.S. CAISO 1 1998 433
North America U.S. ERCOT 1 2002 335
North America U.S. ISONE 1 1999 406
North America U.S. MISO 1 2005 575
North America U.S. NYISO 1 1999 418

continued on next page
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Internet Appendix A continued

continent country market #submkts start obs
North America U.S. PJM 1 1997 608
North America U.S. SPP 1 2013 181
Oceania Australia AEMO_NSW 1 1998 165
Oceania Australia AEMO_QLD 1 1998 141
Oceania Australia AEMO_SA 1 1998 221
Oceania Australia AEMO_TAS 1 2005 18
Oceania Australia AEMO_VIC 1 1998 195
Oceania Australia AEMO_WA 1 1998 205
Oceania New Zealand EMI 5 1996 183
South America Argentina ENRE 7 1992 292
South America Brazil CCEE 4 2004 861
South America Chile CEN 1 1982 203
South America Mexico MEM 9 2015 195

Total 44 56 128 16,598

This table shows, for every electricity market, the continent, country, number of submar-
kets, start year of the market, and number of observations in the investment regression
sample. The last row shows the number of unique countries, electricity markets, and elec-
tricity submarkets as well as the total number of observations the investment regression
sample. See Figure 1 and Figure 2 for a graphical illustration of the markets.
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Internet Appendix B: This figure shows all planned U.S. power plants with more than 10 MW
of planned capacity in 2015. Regions with electricity markets are colored in blue. The color of
the location indicates the production technology; flexible plants are represented by boxes and non-
flexible plants by circles. The size of the boxes and circles corresponds to the capacity of the planned
power plant.
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Internet Appendix D: CMIP models

Phase Modeling group Model Scenarios
CMIP 6 CSIRO ACCESS-CM2 SSP126 SSP245 SSP370 SSP585
CMIP 6 CSIRO-ARCCSS ACCESS-ESM1-5 SSP126 SSP245 SSP370 SSP585
CMIP 6 AWI AWI-CM-1-1-MR SSP126 SSP245 SSP370 SSP585
CMIP 6 BCC BCC-CSM2-MR SSP126 SSP245 SSP370 SSP585
CMIP 6 BCC BCC-ESM1 SSP370
CMIP 6 CAMS CAMS-CSM1-0 SSP126 SSP245 SSP370 SSP585
CMIP 6 CCCMa CANESM5 SSP126 SSP245 SSP370 SSP585
CMIP 6 CCCMa CANESM5-1 SSP126 SSP585
CMIP 6 CAS CAS-ESM2-0 SSP126 SSP245 SSP370 SSP585
CMIP 6 NCAR CESM2-WACCM SSP126 SSP245 SSP370 SSP585
CMIP 6 THU CIESM SSP126 SSP245 SSP585
CMIP 6 CMCC CMCC-CM2-SR5 SSP126 SSP245 SSP370 SSP585
CMIP 6 CMCC CMCC-ESM2 SSP126 SSP245 SSP370 SSP585
CMIP 6 CNRM CNRM-CM6-1-HR SSP126 SSP245 SSP370 SSP585
CMIP 6 CNRM CNRM-ESM2-1 SSP126 SSP245 SSP370 SSP585
CMIP 6 E3SM E3SM-1-0 SSP585
CMIP 6 E3SM E3SM-1-1 SSP585
CMIP 6 E3SM E3SM-1-1-ECA SSP585
CMIP 6 EC Earth EC-EARTH3 SSP126 SSP245 SSP370 SSP585
CMIP 6 EC Earth EC-EARTH3-CC SSP245 SSP585
CMIP 6 EC Earth EC-EARTH3-VEG SSP126 SSP245 SSP370 SSP585
CMIP 6 CAS FGOALS-F3-L SSP126 SSP245 SSP370 SSP585
CMIP 6 CAS FGOALS-G3 SSP126 SSP245 SSP370 SSP585
CMIP 6 FIO-QNLM FIO-ESM-2-0 SSP126 SSP245 SSP585
CMIP 6 NOAA-GFDL GFDL-ESM4 SSP126 SSP245 SSP370 SSP585
CMIP 6 NASA-GISS GISS-E2-1-G SSP126 SSP245 SSP370 SSP585
CMIP 6 NASA-GISS GISS-E2-1-H SSP126 SSP245 SSP370 SSP585
CMIP 6 CCCR-IITM IITM-ESM SSP126 SSP245 SSP370 SSP585
CMIP 6 INM INM-CM4-8 SSP126 SSP245 SSP370 SSP585
CMIP 6 INM INM-CM5-0 SSP126 SSP245 SSP370 SSP585
CMIP 6 IPSL IPSL-CM5A2-INCA SSP126 SSP370
CMIP 6 IPSL IPSL-CM6A-LR SSP126 SSP245 SSP370 SSP585
CMIP 6 NIMS-KMA KACE-1-0-G SSP126 SSP245 SSP370 SSP585
CMIP 6 UA MCM-UA-1-0 SSP126 SSP245 SSP370 SSP585
CMIP 6 MIROC MIROC6 SSP126 SSP245 SSP370 SSP585
CMIP 6 HAM MPI-ESM-1-2-HAM SSP370
CMIP 6 MPI MPI-ESM1-2-HR SSP126 SSP245 SSP370 SSP585
CMIP 6 MPI MPI-ESM1-2-LR SSP126 SSP245 SSP370 SSP585
CMIP 6 MRI MRI-ESM2-0 SSP126 SSP245 SSP370 SSP585
CMIP 6 NUIST NESM3 SSP126 SSP245 SSP585
CMIP 6 NCC NORESM2-LM SSP126 SSP245 SSP370 SSP585
CMIP 6 NCC NORESM2-MM SSP126 SSP245 SSP370 SSP585
CMIP 6 MOHC UKESM1-0-LL SSP126 SSP245 SSP370 SSP585
CMIP 6 MOHC UKESM1-1-LL SSP126 SSP370

continued on next page
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Internet Appendix D continued

Phase Modeling group Model Scenarios
CMIP 6 MOHC HadGEM3-GC31 SSP126 SSP585
CMIP 6 AS-RCEC TaiESM1 SSP126 SSP245 SSP370 SSP585
CMIP 5 CSIRO-BOM ACCESS1-0 RCP45 RCP85
CMIP 5 CSIRO-BOM ACCESS1-3 RCP45 RCP85
CMIP 5 BCC BCC-CSM1-1 RCP26 RCP45 RCP60 RCP85
CMIP 5 BCC BCC-CSM1-1-M RCP26 RCP45 RCP60 RCP85
CMIP 5 BNU BNU-ESM RCP26 RCP45 RCP85
CMIP 5 CCCMa CANESM2 RCP26 RCP45 RCP85
CMIP 5 NCAR CCSM4 RCP26 RCP45 RCP60 RCP85
CMIP 5 NSF-DOE-NCAR CESM1-BGC RCP45
CMIP 5 NSF-DOE-NCAR CESM1-CAM5 RCP26 RCP45 RCP60 RCP85
CMIP 5 NSF-DOE-NCAR CESM1-WACCM RCP26 RCP45 RCP85
CMIP 5 CMCC CMCC-CESM RCP85
CMIP 5 CMCC CMCC-CM RCP45 RCP85
CMIP 5 CMCC CMCC-CMS RCP45 RCP85
CMIP 5 CNRM CNRM-CM5 RCP26 RCP45 RCP85
CMIP 5 CSIRO CSIRO-MK3-6-0 RCP26 RCP45 RCP60 RCP85
CMIP 5 EC Earth EC-EARTH RCP85
CMIP 5 LASG-CESS FGOALS-G2 RCP26 RCP45 RCP85
CMIP 5 LASG-IAP FGOALS-S2 RCP45 RCP85
CMIP 5 FIO FIO-ESM RCP26 RCP45 RCP60 RCP85
CMIP 5 NOAA GFDL-CM3 RCP26 RCP45 RCP60 RCP85
CMIP 5 NOAA GFDL-ESM2G RCP26 RCP45 RCP60 RCP85
CMIP 5 NOAA GFDL-ESM2M RCP26 RCP45 RCP60 RCP85
CMIP 5 NASA-GISS GISS-E2-H RCP26 RCP45 RCP60 RCP85
CMIP 5 NASA-GISS GISS-E2-H-CC RCP45 RCP85
CMIP 5 NASA-GISS GISS-E2-R RCP26 RCP45 RCP60 RCP85
CMIP 5 NASA-GISS GISS-E2-R-CC RCP45 RCP85
CMIP 5 MOHC HADGEM2-AO RCP26 RCP45 RCP60 RCP85
CMIP 5 MOHC HADGEM2-CC RCP45 RCP85
CMIP 5 MOHC HADGEM2-ES RCP26 RCP45 RCP60 RCP85
CMIP 5 INM INMCM4 RCP45 RCP85
CMIP 5 IPSL IPSL-CM5A-MR RCP26 RCP45 RCP60 RCP85
CMIP 5 IPSL IPSL-CM5B-LR RCP45 RCP85
CMIP 5 MIROC MIROC-ESM RCP26 RCP45 RCP60 RCP85
CMIP 5 MIROC MIROC-ESM-CHEM RCP26 RCP45 RCP60 RCP85
CMIP 5 MIROC MIROC5 RCP26 RCP45
CMIP 5 MPI MPI-ESM-LR RCP26 RCP45 RCP85
CMIP 5 MPI MPI-ESM-MR RCP26 RCP45 RCP85
CMIP 5 MRI MRI-CGCM3 RCP26 RCP45 RCP60 RCP85
CMIP 5 MRI MRI-ESM1 RCP85
CMIP 5 NCC NORESM1-M RCP26 RCP45 RCP60 RCP85
CMIP 5 NCC NORESM1-ME RCP26 RCP45 RCP60 RCP85
CMIP 3 BCCR BCCR-BCM20 A1B A2 B1
CMIP 3 CCCMA CCCMA-CGCM31 A1B A2 B1

continued on next page
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Internet Appendix D continued

Phase Modeling group Model Scenarios
CMIP 3 CNRM CNRM-CM3 A1B A2 B1
CMIP 3 CSIRO CSIRO-MK30 A1B A2 B1
CMIP 3 CSIRO CSIRO-MK35 A1B A2 B1
CMIP 3 GFDL GFDL-CM20 A1B A2 B1
CMIP 3 GFDL GFDL-CM21 A1B A2 B1
CMIP 3 NASA-GISS GISS-C4X3 A1B B1
CMIP 3 NASA-GISS GISS-E20HYCOM A1B
CMIP 3 NASA-GISS GISS-E20RUSSEL A1B A2 B1
CMIP 3 LASG IAP-FGOALS10 A1B B1
CMIP 3 INGV INGV-ECHAM46 A1B A2
CMIP 3 INM INM-INMCM30 A1B A2 B1
CMIP 3 IPSL IPSL-CM4V1 A1B A2 B1
CMIP 3 MIROC MIROC-MIROCV32 A1B A2 B1
CMIP 3 UB-KMA MIUB-ECHOG A1B A2 B1
CMIP 3 MPI MPIM-ECHAM5 A1B A2 B1
CMIP 3 MRI MRI-CGCM232 A1B A2 B1
CMIP 3 NCAR NCAR-CCSM30 A1B A2 B1
CMIP 3 NCAR NCAR-PCM1 A1B A2
CMIP 3 UKMO UKMO-HADCM3 A1B A2 B1
CMIP 3 UKMO UKMO-HADGEM1 A1B A2

For more information on the modeling groups, see Internet Appendix C. Our sample includes all
CMIP6, CMIP5, and CMIP3 models for which near-surface air temperature (TAS) predictions with
monthly frequency are available for any CMIP scenario: SSP126, SSP245, SSP370, SSP585 for
CMIP6, RCP26, RCP45, RCP60, RCP85 for CMIP5, and A1B, A2, B1 for CMIP3. Additionally,
we require the availability of historical simulation data for a model to be included in our dataset.
The climate data is downloaded as shape files from the Earth System Grid Federation (ESGF)
server (CMIP6 link; CMIP5 link; CMIP3 link). If data is unavailable from the ESGF servers, we
use the long term archiving service of the German Climate Computing Center as alternative data
source (link).
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(a) All climate models (b) CMIP 5 climate models

(c) CMIP 5 climate models, RCP45 scenario

Internet Appendix E: Subfigure (a) shows the abnormal near-surface air temperature predictions
from all CMIP models and scenarios for the NYISO market. Every line represents the forecasts from
one specific climate model and scenario. In Subfigure (b), we only include CMIP5 climate models,
and in Subfigure (c) only CMIP5 models using the RCP45 scenario. See Internet Appendix D for
climate data sources.
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Internet Appendix F: This figure shows gas deposit locations and the share of flexible generation
in each submarket in 2004. Data on gas deposits comes from PETRODATA (Lujala, Rod, and
Thieme, 2007) and contains information on all known gas deposits throughout the world in 2004
(data link). The share of flexible generation is calculated based on all power plants in a submarket
that were operating in 2004.
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Internet Appendix G: Electricity demand data
market source frequency start

AEMO_NSW AEMO hourly 1998
AEMO_QLD AEMO hourly 1998
AEMO_SA AEMO hourly 1998
AEMO_TAS AEMO hourly 2005
AEMO_VIC AEMO hourly 1998
AEMO_WA AEMO hourly 2006
AESO AESO hourly 2011
APX_NL ENTSOE PS & TP hourly 2006
APX_UK ENTSOE PS & TP hourly 2010
ATS ENTSOE PS & TP hourly 2000
BELPEX ENTSOE PS & TP hourly 2006
BORZEN ENTSOE PS & TP hourly 2006
CAISO FERC F714 & MI hourly 2001
CCEE ONS hourly 1999
CEN CEN hourly 2004
CROPEX ENTSOE PS & TP hourly 2006
EMC EMA hourly 2004
EMI EMI hourly 2009
ENEX ENTSOE PS & TP hourly 2006
ENRE CAMMESA hourly 2006
EPEX_CH ENTSOE PS & TP hourly 2006
EPEX_D ENTSOE PS & TP hourly 2006
EPEX_F ENTSOE PS & TP hourly 2006
EPEX_LUX ENTSOE PS & TP hourly 2006
EPIAS ENTSOE PS & TP hourly 2015
ERCOT FERC F714 & MI hourly 2000
EXAA ENTSOE PS & TP hourly 2006
GME ENTSOE TP hourly 2015
HUPX ENTSOE PS & TP hourly 2006
IBEX ENTSOE PS & TP hourly 2006
IESO IESO hourly 2003
IEX www.iexindia.com hourly 2013
ISONE FERC F714 & MI hourly 2002
JEPX ISEP hourly 2016
KPX www.data.go.kr hourly 2010
MEM Gobierno de Mexico hourly 2016
MISO FERC F714 & MI hourly 2006
NP_DK ENTSOE TP \& NP hourly 2013
NP_FI ENTSOE PS & TP hourly 2010
NP_LT ENTSOE PS & TP hourly 2010
NP_LV ENTSOE PS & TP hourly 2010
NP_NO ENTSOE TP \& NP hourly 2013
NP_SW ENTSOE TP \& NP hourly 2013
NYISO FERC F714 & MI hourly 2001

continued on next page
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Internet Appendix G continued

market source frequency start
OKTE ENTSOE PS & TP hourly 2015
OMIE_PT ENTSOE PS & TP hourly 2006
OMIE_SP ENTSOE PS & TP hourly 2006
OPCOM ENTSOE PS & TP hourly 2006
OTE ENTSOE PS & TP hourly 2006
PJM FERC F714 & MI hourly 2002
SAPP Eskom hourly 2017
SEMO ENTSOE PS & TP hourly 2010
SPP FERC F714 & MI hourly 2002
TGE ENTSOE PS & TP hourly 2006
WESM PEMC hourly 2013

This table shows, for every electricity market, the data sources
for the demand data, its frequency, and the first year for which
data is available. The last year for which data is collected is
2019 because of the impact of Covid-19 on electricity demand
and prices. If more than one source is mentioned, different years
were obtained from different sources. FERC stands for Federal
Energy Regulatory Commission, MI for S&P Market Intelligence,
ENTSOE for European Network of Transmission System Opera-
tors for Electricity, PS for Power Statistics, TP for Transparency
Platform, AESO for Alberta Electric System Operator, IESO for
Independent Electricity System Operator, AEMO for Australian
Energy Market Operator, EMA for Energy Market Authority,
PEMC for Philippine Electricity Market Corporation, ISEP for
Institute for Sustainable Energy Policies, ONS for Operador Na-
cional do Sistema Eletrico, CEN for Coordinador Electrico Na-
cional, and EMI for Electricity Market Information. See Internet
Appendix A for more details on the electricity markets.
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Internet Appendix H: Electricity price data
market source freq. start currency

AEMO_NSW Exchange hourly 1998 AUD
AEMO_QLD Exchange hourly 1998 AUD
AEMO_SA Exchange hourly 1998 AUD
AEMO_TAS Exchange hourly 2005 AUD
AEMO_VIC Exchange hourly 1998 AUD
AEMO_WA Exchange hourly 2006 AUD
AESO Exchange hourly 2000 CAD
APX_NL EIKON hourly 1999 EUR
APX_UK EIKON hourly 2011 GBP
ATS EIKON hourly 2008 RUB
BELPEX EIKON hourly 2007 EUR
BORZEN Exchange hourly 2012 EUR
CAISO Exchange & EIKON hourly 2009 USD
CCEE EIKON hourly 2018 BRL
CROPEX EIKON hourly 2016 EUR
EMC Exchange hourly 2003 SGD
EMI Exchange hourly 1996 NZD
ENEX ENTSOE TP hourly 2014 EUR
EPEX_CH EIKON hourly 2006 EUR
EPEX_D EIKON hourly 2000 EUR
EPEX_F EIKON hourly 2001 EUR
EPIAS Exchange hourly 2016 TRY
ERCOT Exchange hourly 2011 USD
EXAA Exchange & EIKON hourly 2002 EUR
GME Exchange hourly 2004 EUR
HUPX Exchange hourly 2010 EUR
IBEX Exchange hourly 2016 BGN
IESO Exchange hourly 2002 CAD
IEX Exchange hourly 2008 INR
ISONE Exchange & EIKON hourly 2003 USD
JEPX Exchange hourly 2005 JPY
KPX Exchange hourly 2001 KRW
MISO EIKON hourly 2006 USD
NP_DK EIKON hourly 2000 DKK
NP_FI EIKON hourly 1999 EUR
NP_LT EIKON hourly 2012 EUR
NP_LV EIKON hourly 2013 EUR
NP_NO EIKON hourly 2002 NOK
NP_SW EIKON hourly 1999 SEK
NYISO Exchange hourly 2000 USD
OKTE Exchange hourly 2010 EUR
OMIE_PT Exchange & EIKON hourly 1999 EUR
OMIE_SP Exchange & EIKON hourly 2007 EUR
OPCOM Exchange hourly 2005 EUR

continued on next page
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Internet Appendix H continued

market source freq. start currency
OTE Exchange hourly 2010 EUR
PJM Exchange hourly 1998 USD
SEMO Exchange & ENTSOE TP hourly 2008 EUR
SPP Exchange hourly 2014 USD
TGE Exchange & EIKON hourly 2000 PLN

This table shows, for every electricity market, the data sources for electricity
price data, its frequency, the first year for which data is available, and the
currency in which the contract is settled. The last year for which data is col-
lected is 2019 because of the impact of Covid-19 on electricity demand and
prices. EIKON is a commercial database provided by Refinitiv (previously:
ThomsonReuters), ENTSOE TP stands for the Transparency Platform of the
European Network of Transmission System Operators for Electricity, and Ex-
change refers to direct data retrieval from the exchange (mostly via publicly
accessible web/ftp download). If more than one source is mentioned, different
years were obtained from different sources. See A for more details on the elec-
tricity markets.
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Internet Appendix I: Electricity generation data

region source frequency start

Australia AEMO’s SCADA system 5 minutes 2011
Canada Statistics Canada monthly 2008
U.S. EIA923 monthly 2001
Others IEA Monthly Electricity Statistics monthly 2010

This table shows the data sources for the electricity generation data, its
frequency, and the first year for which data is available. The last year
for which data is collected is 2019 because of the impact of Covid-19 on
electricity demand and prices.

For Australia, we rely on data from the SCADA system, which is pub-
lished by the system operator AEMO. This system shows electricity pro-
duction on the plant-level for every five-minute interval, which we convert
to monthly data. For Canada, we use monthly province-level generation
data from Statistics Canada. For the U.S., the EIA Form 923 dataset
provides plant-level information on monthly electricity generation. This
dataset covers all plants with more than one MW of production capacity.
To match plants to markets, which do not always correspond to states
in the U.S., we use information on the plant-specific balancing authority
from EIA Form 860.

EIA stands for Energy Information Administration, and IEA for Inter-
national Energy Agency. Data that has higher frequency than monthly
is converted to monthly frequency.
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Internet Appendix J: Additional control variables

Panel A: Country controls

Column 1 2 3 4

Log(abn temp SDsm
y+5;y+30) -0.25 -0.23 -0.22 -0.15

(-1.41) (-1.24) (-1.18) (-0.80)
x gas pipeline densitysm

2004 0.020*** 0.020*** 0.016** 0.014**
(3.16) (3.00) (2.29) (2.21)

Log(GDP per capitactry
y−1) -0.24** -0.16

(-2.15) (-1.20)
Log(populationctry

y−1) 0.071 -0.019
(0.45) (-0.11)

Inflation ratectry
y−1 0.0065** 0.0082***

(2.31) (3.52)
EPSIctry

y−1 -0.0069 -0.024
(-0.35) (-1.07)

Included fixed effects year & submarket & firm & abn temp
Observations 13,079 12,799 13,687 10,901
Adj. R2 0.33 0.32 0.31 0.32

Panel B: Firm-submarket controls

Column 1 2 3 4

Log(abn temp SDsm
y+5;y+30) -0.25 -0.25 -0.26 -0.25

(-1.45) (-1.44) (-1.50) (-1.42)
x gas pipeline densitysm

2004 0.021*** 0.021*** 0.021*** 0.021***
(3.18) (3.05) (3.11) (3.13)

Flex-to-total existingi,sm
y−1 -0.078*** -0.074***

(-3.23) (-3.07)
Log(existing generationi,sm

y−1 ) -0.0078** -0.012***
(-2.58) (-2.84)

Existingi,sm
y−1 /existingi

y−1 -0.0037 0.066**
(-0.20) (2.17)

Included fixed effects year & submarket & firm & abn temp
Observations 15,865 15,865 15,865 15,865
Adj. R2 0.33 0.32 0.32 0.33

continued on next page
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Internet Appendix J continued

Panel C: Firm controls

Column 1 2 3 4

Log(abn temp SDsm
y+5;y+30) -0.29 -0.28 -0.38* -0.39*

(-1.44) (-1.47) (-1.82) (-1.86)
x gas pipeline densitysm

2004 0.024*** 0.024*** 0.025*** 0.025***
(3.41) (3.41) (3.32) (3.30)

Log(total assetsi
y−1) -0.019 -0.0052

(-1.38) (-0.35)
Book leveragei

y−1 -0.025 -0.074
(-0.61) (-1.60)

EBITDAi
y−1 -0.052 -0.067

(-1.03) (-1.43)
Market-to-booki

y−1 0.0072* 0.0086**
(1.73) (2.06)

Included fixed effects year & submarket & firm & abn temp
Observations 12,764 12,758 11,922 11,922
Adj. R2 0.33 0.33 0.34 0.34

The dependent variable is total invi,sm
t , which is calculated as planned power

plant construction projects (in megawatt, MW) of firm i in electricity submarket
sm and year t, scaled by the capacity of existing power plants of the same firm i

in the same submarket sm and year t and set to one if planned investments ex-
ceed total installed capacity. The variable abn temp sdsm

y+5;y+30 is the standard
deviation of abnormal temperature predictions across different CMIP models and
scenarios for submarket sm; it is calculated as the average of the standard de-
viations of abnormal temperature predictions in all months during the forecast
period y + 5; y + 30 (see Appendix A).

T-statistics based on robust standard errors clustered by electricity submarkets
and firms are presented in parentheses. ***, ** and * indicate significance on the
1%-, 5%- and 10%-levels, respectively. A detailed description of all variables can
be found in Appendix D.
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Internet Appendix K: This figure shows how the coefficient estimates and the 99%, 95%, and 90%
confidence intervals for the interaction term between log(abn temp sdsm

y+5;y+30) and gas pipeline
densitysm

2004) when we subsequently exclude the specified electricity market. The dependent variable
is total invi,sm

t and the model specification follows Table 4, Column 4.
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Internet Appendix L: This figure shows the relationship between hourly electricity demand and
temperatures. The horizontal axis is split into 100 equally sized temperature bins and the vertical
axis shows the demand relative to the base demand in temperature bin 50. The values are averaged
across all electricity submarkets. The red line represents a quadratic fit.
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Not for Publication

Not for publication A: Climate uncertainty and technology-specific investment levels

Panel A: Flexible technologies

Column 1 2 3 4
Technology gas biogas oil pump storage

Log(abn temp SDsm
y+5;y+30) 0.15** 0.00059 -0.026* 0.058

(2.06) (0.12) (-1.66) (0.94)

Abn temp controls yes yes yes yes
Year/firm/submarket FE yes yes yes yes
Observations 16,598 16,598 16,598 16,598
Adj. R2 0.18 0.056 0.18 0.19

Panel B: Non-flexible technologies I/II

Column 1 2 3 4
Technology coal nuclear waste other fossile

Log(abn temp SDsm
y+5;y+30) -0.24** -0.010 0.015 0.0021

(-2.12) (-0.92) (0.48) (0.72)

Abn temp controls yes yes yes yes
Year/firm/submarket FE yes yes yes yes
Observations 16598 16598 16598 16598
Adj. R2 0.42 0.21 0.078 0.043

Panel C: Non-flexible technologies II/II

Column 1 2 3 4
Technology wind solar hydro biomass

Log(abn temp SDsm
y+5;y+30) -0.097 0.016 0.031 -0.0071

(-1.05) (0.74) (0.45) (-0.83)

Abn temp controls yes yes yes yes
Year/firm/submarket FE yes yes yes yes
Observations 16598 16598 16598 16598
Adj. R2 0.24 0.083 0.44 0.20

continued on next page
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Table A continued

The models are estimated on the firm-submarket-year level. The depen-
dent variables are calculated as planned power plant construction projects
(in megawatt, MW) of firm i in electricity submarket sm and year t that use
the specified generation technology, scaled by the capacity of existing power
plants of the same firm i in the same submarket sm and year t and set to one
if planned investments exceed total installed capacity.

The variable abn temp sdsm
y+5;y+30 is the standard deviation of abnormal tem-

perature predictions across different CMIP models and scenarios for submar-
ket sm; it is calculated as the average of the standard deviations of abnormal
temperature predictions in all months during the forecast period y + 5; y + 30
(see Appendix A). Abn temp controls refers to 10 group dummies that are
based on the average abnormal temperature prediction from all CMIP models
for submarket sm over the forecast period y + 5; y + 30.

T-statistics based on robust standard errors clustered by electricity submar-
kets and firms are presented in parentheses. ***, ** and * indicate significance
on the 1%-, 5%- and 10%-levels, respectively. A detailed description of all vari-
ables can be found in Appendix D.
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(a) low pipeline densitiy (b) medium pipeline densitiy

(c) high pipeline densitiy
Not for publication B: Correlation between the average newly planned capacity and climate uncer-
tainty. The vertical axis shows the logarithm of the average total investments of firm i in submarket
sm and the vertical axis the average climate uncertainty in submarket sm, scaled by the mean ab-
normal temperature in the same submarket.

82


	Introduction
	Background and theory
	The organization of electricity markets
	Investment decisions of electricity-producing firms
	Climate change, demand uncertainty, and investments

	Data
	Sample of electricity-generating firms
	Measuring power plant investments
	Measuring climate uncertainty
	Measuring regional variation in flexible investment opportunities
	Electricity demand, price, and generation data
	Weather data

	Estimating the way in which Climate Uncertainty affects Investments
	Methods
	The choice of the production technology
	Investment levels
	Subsamples
	Additional fixed effects
	Alternative measures for the access to flexible investment opportunities
	The impact of industry concentration and market power
	Alternative specifications


	Mechanism tests
	Temperatures and the demand for electricity
	Demand and the price for electricity
	Generation from flexible/non-flexible production technologies

	Conclusion

