Corrigendum

A simple and efficient method for concentration of ocean viruses by chemical flocculation

Seth G. John,1,2* Carolina B. Mendez,1,3 Li Deng,4 Bonnie Poulos,4 Anne Kathryn M. Kauffman,5 Suzanne Kern,6,7 Jennifer Brum,4 Martin F. Polz,7 Edward A. Boyle† and Matthew B. Sullivan**

1Department of Earth, Atmospheric, and Planetary Sciences and 6Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
2Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA.
3Civil Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA.
4Ecology and Evolutionary Biology Department, University of Arizona, Tucson, AZ, USA.
5MIT/Woods Hole Oceanographic Institution Joint Program in Biological Oceanography, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
7Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.

In our manuscript there were discrepancies between the recipes used in experiments, those cited in the text, and those listed in Table 2. All experiments for Figs 2, 3 and 4 that employed an ascorbic acid resuspension buffer used the following recipe [0.1 M Mg2EDTA, 0.2 M ascorbic acid, adjusted to pH ~6 with 5 N NaOH]. In contrast, preliminary experiments used earlier versions of the buffer recipe as follows: Fig. 1a and 1b used [0.1 M Na2EDTA, 0.2 M MgCl2, 0.125 M Tris, and 0.125 M ascorbic acid, adjusted to pH ~6 with NaOH], while Fig. 1C used a recipe optimized to facilitate pH adjustment [0.2 M Mg2EDTA, 0.25 M Tris HCl, and either 0.25 M ascorbic acid or 0.25 M oxalic acid]. We have since used Tris-containing buffers for viral concentration and sequence analysis and observed no difference in the performance versus Tris-deficient buffers. Additionally, Mg2EDTA is difficult or expensive to obtain in some countries; a suggested alternative is a buffer containing [0.1 M Na2EDTA, 0.2 M MgCl2, 0.125 M Tris, and 0.125 M reductant (ascorbate or oxalate), adjusted to pH ~6 with NaOH]. The current detailed protocol is available at the Tucson Marine Phage Lab ‘Protocols’ page: http://www.eebweb.arizona.edu/Faculty/mbsulli/protocols.htm.

For correspondence. *E-mail sjohn@gps.caltech.edu; Tel. (+1) 626 395 2936; Fax (+1) 626 683 0621; **E-mail mbsulli@email.arizona.edu; Tel. (+1) 520 626 6297; Fax (+1) 520 621 9903.

© 2011 Society for Applied Microbiology and Blackwell Publishing Ltd