Environmental Microbiology Reports (2011) 3(6), 809 doi:10.1111/j.1758-2229.2011.00301.x ## A simple and efficient method for concentration of ocean viruses by chemical flocculation Seth G. John,^{1,2*} Carolina B. Mendez,^{1,3} Li Deng,⁴ Bonnie Poulos,⁴ Anne Kathryn M. Kauffman,⁵ Suzanne Kern,^{6,7} Jennifer Brum,⁴ Martin F. Polz,⁷ Edward A. Boyle¹ and Matthew B. Sullivan^{4**} In our manuscript there were discrepancies between the recipes used in experiments, those cited in the text, and those listed in Table 2. All experiments for Figs 2, 3 and 4 that employed an ascorbic acid resuspension buffer used the following recipe [0.1 M Mg₂EDTA, 0.2 M ascorbic acid, adjusted to pH ~6 with 5 N NaOH]. In contrast, preliminary experiments used earlier versions of the buffer recipe as follows: Fig. 1a and 1b used [0.1 M Na₂EDTA, 0.2 M MgCl₂, 0.125 M Tris, and 0.125 M ascorbic acid, adjusted to pH ~6 with NaOH], while Fig. 1C used a recipe optimized to facilitate pH adjustment [0.2 M Mg₂EDTA, 0.25 M Tris HCl, and either 0.25 M ascorbic acid or 0.25 M oxalic acid]. We have since used Triscontaining buffers for viral concentration and sequence analysis and observed no difference in the performance versus Tris-deficient buffers. Additionally, Mg₂EDTA is difficult or expensive to obtain in some countries; a suggested alternative is a buffer containing [0.1 M Na₂EDTA, 0.2 M MgCl₂, 0.125 M Tris, and 0.125 M reductant (ascorbate or oxalate), adjusted to pH ~6 with NaOH]. The current detailed protocol is available at the Tucson Marine Phage Lab 'Protocols' page: http://www.eebweb.arizona.edu/Faculty/mbsulli/protocols.htm. ¹Department of Earth, Atmospheric, and Planetary Sciences and ⁶Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA. ²Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA. ³Civil Architectural and Environmental Engineering, University of Texas at Austin, Austin, TX, USA. ⁴Ecology and Evolutionary Biology Department, University of Arizona, Tucson, AZ, USA. ⁵MIT/Woods Hole Oceanographic Institution Joint Program in Biological Oceanography, Massachusetts Institute of Technology, Cambridge, MA 02139, USA. ⁷Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.