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Cultivated Single-Stranded DNA Phages That Infect Marine
Bacteroidetes Prove Difficult To Detect with DNA-Binding Stains

Karin Holmfeldt,a,b Duško Odić,a Matthew B. Sullivan,b Mathias Middelboe,c and Lasse Riemanna,c

Department of Natural Sciences, Linneaus University, Kalmar, Swedena; University of Arizona, Tucson, Arizona, USAb; and Marine Biological Section, University of
Copenhagen, Helsingør, Denmarkc

This is the first description of cultivated icosahedral single-stranded DNA (ssDNA) phages isolated on heterotrophic ma-
rine bacterioplankton and with Bacteroidetes hosts. None of the 8 phages stained well with DNA-binding stains, suggesting
that in situ abundances of ssDNA phages are drastically underestimated using conventional methods for enumeration.

While the majority of cultivated viruses infecting hetero-
trophic bacteria (phages) have double-stranded DNA

(dsDNA) genomes, recent metagenomic studies suggest that
single-stranded DNA (ssDNA) phages similar to the Microviridae
family are widespread in aquatic viral communities (1, 6, 22, 23).
However, the only cultivated representatives of aquatic ssDNA
viruses infect cyanobacteria (12) or diatoms (13, 20, 21). So far,
phages belonging to Microviridae have been cultivated only on a
limited set of hosts (Escherichia coli, Chlamydia, Bdellovibrio, Spi-
roplasma) (7), but recently, temperate Microviridae-like genomes
were reported as integrated provirus in several Bacteroidetes ge-
nomes (10). Here we report the first description of cultivated
ssDNA phages infecting heterotrophic marine bacterioplankton, a
member of Bacteroidetes (Cellulophaga baltica) (9).

Confirmation of the phages’ ssDNA nature. The 8 phages
were obtained from concentrated surface water (Öresund Strait
between Denmark and Sweden, 2005) and were isolated on 6 dif-
ferent C. baltica strains using the top-agar plating technique (9,
15). The phages represent 20% of a culture collection of 40 phages
that was established by purifying plaques with distinct morphol-
ogies from each host (9). Phage stocks (obtained by top-agar plat-
ing technique and recovered from the top layer) (15) were ultra-
centrifuged (222,000 � g for 2.5 h at 4°C; Beckman) to obtain
high-titer (1010 to 1012 phage ml�1) phage concentrates for fur-
ther analysis. DNA extracted from the 8 phages could be detected
only through gel-based analysis using SYBR gold (stains ssDNA
and dsDNA; Molecular Probes) when the phages were embedded
and lysed (EDTA-SDS-proteinase K) in agarose plugs (16). All
attempts to extract phage DNA from liquid phage stocks using a �
phage protocol (2) or releasing DNA from phage particles by heat-
ing (16) did not yield detectable amounts of DNA as measured by
PicoGreen (stains dsDNA; Molecular Probes) or when run on gels
stained with SYBR gold or ethidium bromide (EtBr) (stains
dsDNA; Sigma). The DNA of the phages was determined to be
ssDNA, as the DNA in the agarose plugs was degraded by nu-
cleases DNase I (degrades ssDNA and dsDNA; Roche) and S1
(degrades ssDNA and ssRNA; Promega) (Fig. 1). Restriction en-
zymes NdeII and HindIII (digest dsDNA; Boehringer Mannheim)
did cleave DNA from positive-control dsDNA phages infecting C.
baltica (9) but not DNA from the 8 ssDNA phages (Fig. 1). While
we cannot disregard the possibility that a lack of restriction sites
for the two enzymes or genomic DNA modification (e.g., glycosy-
lation) prevented digestion, the data support the view that all 8
phages have ssDNA genomes. CsCl gradients (1 ml of 1.5 g cm�3,

1 ml of 1.4 g cm�3, 3 ml of 1.3 g cm�3, and 4 ml of 1.2 g cm�3 from
bottom to top; 102,000 � g for 4 h at 4°C) (SW40; Beckman)
showed that all 8 phages had lower buoyant densities (1.20 to 1.24
g cm�3) (Table 1) than dsDNA phages infecting the same host
(1.39 to 1.44 g cm�3) (data not shown), which is consistent with
previous comparisons between ssDNA and dsDNA phages (18).
This difference in buoyancy is important to keep in mind if pre-
paring viral samples for metagenomic sequencing using CsCl gra-
dients, since ssDNA phages are found in density fractions not
normally collected for viral metagenomes (4, 18). Morphological
characterization through electron microscopy (2% uranyl acetate,
negatively stained; Philips CM12 microscope, accelerating voltage
of 80 kV) showed that the 8 phages had tailless icosahedral capsids
falling into two size classes (Fig. 2). The smaller phages (capsid
diameters, 30 to 32 nm) (Table 1 and Fig. 2A to C) resembled
phages of the ssDNA phage family Microviridae (7), while the
larger phages (capsid diameters, 72 to 73 nm) (Table 1 and Fig. 2D
to E) resembled a temperate ssDNA phage induced from a culti-
vated cyanobacterium (12). Consistent with the different capsid
sizes, the phages could be grouped into two groups based on ge-
nome size, as estimated by agarose and pulsed-field gel electro-
phoresis. However, there are no commercially available large ss-
DNA ladders and thus we compared the 8 phages to dsDNA
ladders, which provided notably different size estimations de-
pending on if the DNA was run on regular agarose gels (Fig. 1) or
pulsed-field gels (9) and should therefore be interpreted cau-
tiously. While genome sequences would provide the correct ge-
nome size and valuable information about the ecology and evolu-
tion of the phages, we have thus far not been able to obtain
sufficient amounts of DNA for genome sequencing.

Visualization and enumeration of ssDNA phages. Accurate
enumeration of marine viruses is essential for analyzing their dis-
tribution (8, 14), production (24), and role in marine biogeo-
chemistry. While the effectiveness of today’s enumeration meth-
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ods for ssDNA phages has been questioned (17), no major attempt
has been made to confirm this. Here, the 8 ssDNA phages and a
positive-control dsDNA phage were diluted in various media and
stained with 8 different DNA-binding stains (see Table S1 in the
supplemental material) either before or after filtration using
0.02-�m Anodisc 25 membrane filters (Whatman) and examined
with epifluorescence microscopy (EFM) (Zeiss Axioplan, �1,250
magnification) as previously described (14). The ssDNA phages
could be visualized with EFM only if stained with SYBR gold. If the
phages were stained after filtration, all the media used to dilute the
phages resulted in positive staining (Tris-EDTA [TE], MSM [450
mM NaCl, 50 mM MgSO4, 50 mM Tris, pH 8] [storage] buffer, or
seawater), whereas TE had to be used if the phages were stained
prior to filtration. When enumerating SYBR gold-stained virus-
like particles, their abundance was always equal to or higher than
the number of infectious phage particles measured as PFU, point-
ing toward a validity of the enumeration (Fig. 3). However, the
ssDNA phage particles were very faint and hard to enumerate and
would most likely be impossible to enumerate by EFM in environ-
mental samples. Using a flow cytometer (FCM) (FACScan; Becton
Dickinson) where phages were stained with either SYBR green or

SYBR gold (according to references 3 and 5), the dsDNA phages
were easily detected (see Fig. S1 in the supplemental material).
Among the ssDNA phages, only the large phages were detected
above the electronic noise (Fig. S1). However, the calculated
abundances were orders of magnitude lower than EFM counts
(Fig. 3), pointing toward severe underestimation of the ssDNA
phage abundance when enumerating using FCM. This has also
been reported for ssDNA phytoplankton viruses (19). In our per-
ception, indigenous ssDNA phages will be difficult if not impos-
sible to enumerate in mixed natural samples by using conven-
tional techniques, as they are barely visible even in pure cultures.

Conclusions. In this study, we present the first characteriza-
tion of icosahedral ssDNA phages infecting heterotrophic aquatic
bacteria and bacteria belonging to the phylum Bacteroidetes. The 8
phages, which accounted for as much as 20% of a culture collec-
tion, present an excellent opportunity for further investigations
where the phylogeny and evolutionary characteristics of these
phages can be combined with ecological interrogations to evaluate
the role and importance of ssDNA phages in marine waters. In
future work, accurate enumeration of ssDNA phages is highly de-
sirable but represents a difficult challenge due to their minuscule
size and the single-stranded nature of their genomes.

FIG 1 Representative agarose gels showing enzyme digestion of ssDNA from
a large phage (left) and small phage (right). The DNA was digested by nu-
cleases DNase I and S1 but was not affected by treatment without nuclease
(marked buffer) or by restriction enzymes HindIII and NdeII. A GeneRuler
1-kb DNA Ladder (Fermenta) was used as molecular weight marker. The dou-
ble bands seen on the gels could be due to double chromosomes (11) or be an
artifact produced by supercoiling of circular genomes, which Microviridae
commonly possess (7).

FIG 2 Transmission electron micrographs of negatively stained phages, show-
ing their icosahedral tailless nature: �12:2 (A), �18:4 (B), �12a:1(C), �3:2 (D),
�46:2 (E), �48:2 (F). Scale bars equal 100 nm.

TABLE 1 Characteristics of the ssDNA phages examined in this studya

Phage Host bacterium

Capsid
size �
SD (nm) Size group

Buoyant
density
(g cm�3)

�3:2 MM#3 73 � 0.5 Large 1.24
�46:2 NN016046 72 � 1.9 Large 1.23
�48:2 NN016048 72 � 1.1 Large 1.23
�12:2 #12 31 � 2.1 Small 1.20
�12a:1 OL12a 30 � 1.8 Small 1.20
�14:1 #14 ND Small 1.21
�18:4 #18 32 � 2.6 Small 1.24
�48:1 NN016048 ND Small 1.21
a Characteristics are as follows: the host bacterium they were isolated on (the C. baltica
strain), the size group they are affiliated with based on capsid (diameter, n � 10) and
genome size, and their buoyant density in CsCl. ND, no data.

FIG 3 Phage abundance of phage culture stocks estimated by PFU, micros-
copy (SYBR gold), and flow cytometry (SYBR green I and SYBR gold) counts.
Error bars represent standard deviations (duplicate samples). The ssDNA
phages are separated into groups with larger and smaller genome sizes (Table
1). Microscopy counts exceeded PFU counts, whereas FCM counts were in
most cases lower than PFU counts, indicating severe underestimation.
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