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As new environments are studied, viruses consistently emerge as important and prominent players in

natural and man-made ecosystems. However, much of what we know is built both upon the foundation

of the culturable minority and using methods that are often insufficiently ground-truthed. Here, we

review the modern culture-independent viral metagenomic sample-to-sequence pipeline and how

next-generation sequencing techniques are drastically altering our ability to systematically and

rigorously evaluate them. Together, a series of studies quantitatively evaluate existing and new

methods that allow—even for ultra-low DNA samples—the generation of replicable, near-quantitative

datasets that maximize inter-comparability and biological inference.

& 2012 Elsevier Inc. All rights reserved.
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Introduction

The realization that ocean viruses are abundant (Bergh, 1989;
Proctor and Fuhrman, 1990) and diverse (Angly et al., 2006) has
fueled the rapidly growing field of ‘‘viral ecology’’ (Fuhrman,
1999; Wilhelm and Suttle, 1999; Wommack and Colwell, 2000;
Weinbauer, 2004; Weinbauer and Rassoulzadegan, 2004; Suttle,
2005; Breitbart et al., 2007; Brussaard et al., 2008; Rohwer and
Thurber, 2009). Broadly, viral ecology seeks to understand how
the distribution of viruses and their genes impact a given host or
ecosystem. Consistent with the universal tenets of ecology, this
requires quantitative rigor as we attempt to track viral popula-
tions through space and time, quantify their impacts on measur-
able processes, and evaluate the underlying changes in genetic
ll rights reserved.

Sullivan).
capacity of both virus and host. Because most (�85–99%)
microbes remain resistant to routine cultivation techniques
(Connon and Giovannoni, 2002; Rappe and Giovannoni, 2003),
and not all viruses are easily cultured (Edwards and Rohwer, 2005),
viral ecologists have relied heavily upon culture-independent
techniques to understand the ecological role of viruses in nature.
With rare exception, these culture-independent techniques are
insufficiently validated for quantitative rigor due to a lack of
isolates in culture collections, financial resources and tools needed
to track viruses at the scales required to document naturally
occurring viral diversity. Further notable, for a virology audience,
is that the work to date is almost exclusively focused on double-
stranded DNA viruses or phages.

Initially, culture-independent viral ecology utilized marker-
based genetic diversity studies (Chen and Suttle, 1996; Fuller
et al., 1998; Breitbart et al., 2004; Dorigo et al., 2004; Millard
et al., 2004; Breitbart and Rohwer 2005; Zeidner et al., 2005;
Sullivan et al., 2006; Sharon et al., 2007; Chenard and Suttle,
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Table 1
Known causes of amplification (PCR) errors and biases.

Error/Bias Experimental solutions References

1. Stochastic events (amplification differences early in

PCR, polymerase error, primer misannealing)

Limit PCR cycles, mix replicate PCRs (Higuchi et al., 1993; Wagner

et al., 1994; Kanagawa 2003)

2. Differential template amplification at each round Limit PCR cycles (Suzuki and Giovannoni

1996)

3. Heteroduplex formation Reconditioning PCR (Speksnijder et al., 2001;

Thompson et al., 2002)

4. Incompletely extended primer Limit PCR cycles (Judo et al., 1998)

5. Template switching during DNA synthesis leading to

chimeric amplicons

Limit PCR cycles (Odelberg et al., 1995; Patel

et al., 1996)

6. Differential primer binding among degenerate

primers (G/C4A/T) leading to skewed template

amplification

Primer design (Polz and Cavanaugh 1998)

7. Cycler ramp speed; if ramping is too steep (e.g., 6 C/s)

there is strong bias against high % GþC regions

2.2 C/s found to be the optimal rate (Aird et al., 2011)

8. Polymerase choice Be cognizant of the influence, e.g., in one study, AccuPrime Taq HiFi decreased

biases against high %GþC seen with Phusion HF; adding betaine may help

(Aird et al., 2011)

9. Incomplete denaturation Elongate the initial denaturation step towards 3 m and the cycle denaturation

towards 8s

(Aird et al., 2011)

10. Primer annealing temperature Least % GþC biased when lowered from 72 to 65 C (Aird et al., 2011)
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2008; Comeau and Krisch, 2008; Sullivan et al., 2008; Goldsmith
et al., 2011) to survey environmental virus samples using marker
genes ranging from major capsid proteins and photosynthesis
genes to phosphate-related genes (e.g., phoH, though, notably, while
originally thought to be phosphate stress related, this gene may have
a different function, as summarized in Sullivan et al. (2010)). These
datasets, i.e., counts of gene sequences belonging to particular
phylogenetic lineages, provide an overview of gene diversity and
how the presence or absence of particular lineages might change
over space and time, but they are unlikely to provide quantitative
data on lineage-specific abundances. This is because such surveys
rely upon highly degenerate primer sets that are designed from
limited sequence databases and require surprisingly permissive
annealing temperatures (e.g., 351C) to obtain products. In fact, the
potential for biases (summarized in Table 1) may have, for at least
some of these markers, led to limited ecological relevance, as they
fail to correlate with any measured environmental parameter
(e.g., T4 phage g20 in Sullivan et al. (2008)). Such marker-based
efforts coupled to quantitative PCR (Matteson et al., 2011; Short
et al., 2011; Hewson et al., 2012) are likely to improve a
researcher’s chances of being quantitative in a natural setting,
particularly where extensive sequence data are available for well-
contextualized primer design that allows non-degenerate primer
sets to be used. To date, however, it has been financially and
practically impossible to quantitatively evaluate these markers’
PCR conditions across diverse target templates. New sequencing
technologies and isolate collections change this.

As environmentally-relevant cultures became available, genomics
partnered with experiments, modeling and metagenomics began
to more comprehensively map out phage–host interactions in
the environment, with a prominent example being virus-encoded
photosynthesis genes (Mann et al., 2003). Cyanobacterial viruses
(cyanophage) encode photosynthesis genes (Mann et al., 2003;
Lindell et al., 2004; Millard et al., 2004; Sharon et al., 2009) that are
expressed during infection (Lindell et al., 2005; Clokie et al., 2006;
Dammeyer et al., 2008), aid phage fitness (Bragg and Chisholm, 2008;
Hellweger, 2009), and impact photosystem evolution globally
(Zeidner et al., 2005; Sullivan et al., 2006). Cyanophage genomics
has highlighted other ‘‘auxiliary metabolic genes’’ (AMGs, Breitbart
et al., 2007), including AMGs involved in scavenging commonly
limiting nutrients like phosphate and nitrogen (Sullivan et al., 2005,
2010; Weigele et al., 2007; Millard et al., 2009). Metagenomic studies
bring in the ability to document the ubiquity of these observations in
the surface oceans (Dammeyer et al., 2008; Dinsdale et al., 2008;
Williamson et al., 2008), while also revealing other AMGs that viruses
may use to influence microbial metabolism (Sharon et al., 2011).

Indeed, metagenomics represents the best current means of
documenting the taxonomic composition and genetic potential of
uncultured virus communities. However, analytical tools are
surprisingly lacking and viral metagenomic datasets are challen-
ging to obtain. Tools are now emerging such as metaVir (Roux
et al., 2011) and VIROME (Wommack et al., 2011), but for the
most part, two datasets have, particularly in the oceans, been
routinely utilized to provide ecological context for new genetic
findings in viral ecology (e.g., 363 and 334 google scholar citations
on 20th September 2012 for Angly et al. (2006), Dinsdale et al.
(2008)). These datasets offer qualitative information that can
powerfully help one evaluate ubiquity of a new gene or viral type
in surface ocean viral communities. However, they are now
known to suffer from a number of issues that render them non-
quantitative with respect to taxon or gene abundances (artifacts
summarized below).

Recent critique of the broad scientific endeavor warns of the
increasing threat of the ‘creeping cracks of bias’ (Sarewitz 2012),
as ‘‘science0s internal controls on bias [are] failing, and bias and
error [are] trending in the same direction towards the pervasive
over-selection and over-reporting of false positive results.’’
As viral ecologists, this warns us to take heed as we forge new
territory applying emerging technologies to tackle age-old pro-
blems and theories. Comfortingly, modern sequencing and com-
putational capabilities coupled with newly developed informatics
provide the opportunity to bring rigor into what are likely to
become foundational sequence-based methods in viral ecology.
Here, we review a series of recent papers that provide a roadmap
towards a nearly quantitative metagenomic sample-to-sequence
toolkit for studying environmental virus communities.

From sample to metagenome, knowledgeably

The viral ecology metagenomic sample-to-sequence pipeline
(overview in Fig. 1) is experimentally challenging at each step, as
a sample progresses from concentration and purification of viral
particles to amplification of the resulting DNA for sequencing
preparation. However, enough knowledge is amassing that this
pipeline is primed to advance to ‘routine’ use in environmental
virology studies.
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Concentration: At 106–108 viruses per ml, viruses are abundant
with respect to other biological entities; yet, many lab-based assays
(e.g., metagenomics, proteomics, cultivation of less abundant
viruses) require concentration to obtain sufficient material. Tangen-
tial Flow Filtration (TFF) has served as the gold standard for over two
decades (Suttle et al., 1991; Wommack et al., 2010), in spite of costly
set-up requirements, as well as minimally repeatable and inefficient
concentration success (Fuhrman et al., 2005; Colombet et al., 2007;
Wommack et al., 2010; John et al., 2011). Recently, a new chemistry-
based concentration method—FeCl3-precipitation—has emerged
that captures nearly all SYBR-stainable viral particles, is easy to
implement, and requires a relatively inexpensive set of filters and
chemicals (John et al., 2011). For these reasons, FeCl3-precipitation is
fastly becoming the standard viral concentration technique on
global oceanographic research campaigns (e.g., Tara Oceans, Mala-
spina, LineP), as well as studies in bioreactors (e.g., EBPR sludge) and
freshwater lakes (e.g., the Great Lakes in USA). New publications are
forthcoming that will show the applicability of this technique to a
variety of aquatic environments.

In a study designed to quantitatively evaluate biases of TFF and
FeCl3-precipitation concentration methods, DNA was extracted
from 1080 L of viruses purified from the viral-fraction (particles
o0.2 mm) of a large-scale ocean analog, the Biosphere2 Ocean,
and used to generate triplicate metagenomes from each con-
centration treatment. Analyses of these data showed that TFF
concentrated viral metagenomes were prone to trace bacterial
DNA contamination, with the viral-to-bacteria ratio of taxonomi-
cally assigned reads from the optimal FeCl3 protocol were 42,
while that of the TFF treatments was o1 (Hurwitz et al., in press).
A finer taxonomic evaluation revealed that TFF concentrated viral
metagenomes contained significantly fewer abundant viral types
(Podoviridae and Phycodnaviridae) and more variable Myoviridae

signals, as compared to their FeCl3-precipitated counterparts
(Hurwitz et al., in press). However, these taxonomic evaluations
must be interpreted cautiously, as they are based upon the less
than one-third of the data with database ‘hits’. Alternative
methods, such as ‘protein clustering’—grouping predicted proteins
by sequence similarity to use as discreet units, regardless of known
function (Yooseph et al., 2007, 2008)—and ‘shared k-mer’—relating
sequences based on shared DNA words of ‘k’ length—analyses, use
more or all of the data, respectively. These more comprehensive
methods suggest the concentration efficiencies of FeCl3 and TFF are
likely broadly comparable. Notably, attention to TFF pore sizes
(100 kDa was used, but smaller 30 kDa or 50 kDa pore sizes may
have minimized the loss of Podoviridae), and choice of pre-filter
(0.2 mm pre-filter was used, which may undersample the larger
Phycodnaviridae, also observed in (Wommack et al. (2010) critically
depends upon the target virus group.

Purification: Once a viral concentrate is obtained, the
researcher must consider the nature of their research questions
to make decisions about how to purify the viral particles away
from co-concentrated materials. For example, viral ecologists
commonly want to be able to link observations made in
sequenced metagenomes back to the uncultured viruses, yet to
do so requires confidence in being able to purify viral particles
away from contaminating environmental or microbial DNA. To
date, concentrated viral DNA preparations have been screened by
amplifying with universal 16S microbial rDNA PCR primer sets to
evaluate the presence of any contaminating microbial DNA prior
to further purification, or the resulting metagenomes are exam-
ined by looking at genetic markers to estimate bacterial genome
equivalents (McDaniel et al., 2008; Schoenfeld et al., 2008;
Steward and Preston 2011). To this end, three purification
procedures have become commonplace in viral ecology—DNAse
alone, sucrose plus DNAse, and CsCl plus DNAse—and the deci-
sion about which method to use has largely been based on
anecdotal observations.

A new study uses triplicate metagenomes made from the
above 1080 L viral concentrate for each of these three purification
methods to evaluate the impacts of purification (Hurwitz et al.,
in press). These analyses suggest that purification procedures
resulted in metagenomes that were statistically indistinguishable
at taxonomic levels of family, genus and species (taxonomy could
only be assigned to �30% of reads), suggesting that choice of
purification method had much less impact than that of concen-
tration method or polymerase used in amplification. Both ‘protein
clustering’ and ‘shared k-mer’ analyses (again, both use more or
all of the reads, respectively) suggested that any two samples
within a treatment tended to share �80% of the reads between
them, differing predominantly at the level of ‘rare’ (k-mer¼1)
reads. Comfortingly, this suggests that purification method choice
only minimally impacts the resulting viral metagenomic sequence
data. Further, while the most repeatable (e.g., inferred virus-to-
bacteria read ratio) metagenomes were those that were purified
using DNAse plus CsCl, DNAse alone was comparable for two out
of three replicates. This latter finding is promising as viral
ecologists seek to expand beyond dsDNA viruses to those with
buoyant densities outside the density range normally collected
from CsCl purification gradients (e.g., ssDNA phages; Thurber
et al., 2009; Holmfeldt et al., 2012).

Amplification and library construction: Though often an order of
magnitude more abundant than the microbes they infect, the
typical viral genome size is 1–2 orders smaller than their hosts’.
As such, viral DNA needed for metagenomic sequencing library
preparation is often limiting and must be amplified. Most virus
metagenome sequencing projects to date have turned to either
linker amplification shotgun libraries (LASLs) or whole genome
amplification methods, e.g., multiple displacement amplification
(MDA). These methods suffer from being prohibitively low-
throughput, in the case of LASLs, or, in the case of MDA, are
prone to systematic biases particularly relevant for viruses (e.g.,
selection for single-stranded and circular DNA templates; Kim
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et al., 2008; Kim and Bae, 2011), as well as stochastic biases (e.g.,
100s–10,000 s-fold biases in coverage; Zhang et al., 2006; Woyke
et al., 2009), which skew the taxonomic representation of a
community in non-repeatable ways (Yilmaz et al., 2010).

New methods, such as linker amplification for deep sequen-
cing (LADS; Hoeijmakers et al., 2011) and Nextera, have offered
more quantitative amplification options for samples with limiting
DNA (but note the documented Nextera bias against low % GþC
content; Marine et al., 2011). However, these methods still may
suffer from PCR amplification issues (see Table 1) or require too
much DNA. Linker amplification of tightly sized products has long
been considered relatively robust to amplification issues (Rohwer
et al., 2001), as it is designed to avoid most of these known PCR
biases. LADS requires 3–40 ng (Hoeijmakers et al., 2011) and
Nextera 450 ng (Marine et al., 2011) of DNA, whereas a typical
20 L open ocean viral-fraction metagenomic sample might yield
much less than this (�1 pg to 1 ng DNA). Clearly, further study is
still needed.

Thus, by further optimizing and rigorously assessing Henn
et al., 2010 existing high-throughput linker amplification (LA)
technique, Duhaime et al. (2012) provide an option for such
‘ultra-low’ DNA samples. Specifically, using the above 1080 L
seawater sample, replicate 454-sequenced viral genomes and
metagenomes were generated and analyzed. Together, these data
suggest LA to be highly replicable with minimal systematic biases,
i.e., o1.5-fold biases due to % GþC content (Duhaime et al.,
2012). Thus, while not as high-throughput as some library prep
methods (e.g., Nextera), the optimized LA method is now docu-
mented to provide precise, nearly-quantitative next-generation
sequencing-ready DNA (1–5 mg) from sub-nanogram DNA
amounts.

Though most extensively demonstrated for 454 sequencing,
the LA method can also be used on other next-generation plat-
forms, such as Illumina and Ion Torrent (Duhaime et al., 2012).
For Ion Torrent, one need alter only shearing conditions to
generate appropriately sized templates, as the barcodes do not
pose a problem for this technology. For Illumina, the adaptations
are more substantive, though commonly worked around, as there
is a need to overcome problems with Illumina base-calling soft-
ware due to the non-random nature of the barcodes present on LA
(or any multiplexed) DNA. Strategies around this include
(i) pooling with a known template, (ii) introducing a mechanism
to cleave these non-random motifs for linker-free DNA (sensu
Rodrigue et al., 2009), or (iii) introducing a string of four
degenerate bases (i.e., ‘‘NNNN,’’ sensu Bartram et al., 2011)
between the Illumina sequencing primer and the LA primer
(e.g., ‘‘Primer-A’’; Duhaime et al., 2012), which targets the
LA linker sequence and introduces a barcode when sample
pooling is desired. As has been used for Illumina amplicon
sequencing (Bartram et al., 2011; Caporaso et al., 2011), a possible
modification to LA for optimal success with pooled samples may
be the inclusion of a third sequencing primer, the ‘‘index sequen-
cing primer’’, to ensure efficient indexing and minimal barcode
loss. Finally, efforts by the DOE Joint Genome Institute to identify
library construction inefficiencies are resulting in successful
Illumina sequencing from DNA amounts approaching those com-
mon in environmental virology. Specifically, current amplification
protocols successfully amplify less than 1 ng DNA in only five
cycles, while unamplified libraries can now be made from as little
as 25 ng of DNA (Chia-Lin Wei, personal communication).

Given the limiting nature of environmental sampling,
improvements in amplification and library construction efficiency
offer opportunity for substantive gain. We posit that the most
promising areas for improvement are systematic evaluation of
high-fidelity polymerases, as well as reducing DNA sizing losses
and linker ligation inefficiencies in library construction.
Conclusions

Viruses appear critical to community dynamics and ecosystem
function in any environment, yet remain the most understudied
and mysterious component of microbial communities due to
sampling, experimental and informatic challenges. Our tools are
now approaching the quantitative rigor and throughput needed to
map their myriad forms and functions–at least for double-
stranded DNA viruses. Current studies aimed at evaluating
inter-comparability of metagenomic datasets across myriad
sequencing platforms and library preparation techniques, as well
as those enabling access to single-stranded DNA and all RNA
viruses (e.g., Andrews-Pfannkoch et al., 2010), will fill other
critical voids in this toolkit. Looking forward, these efforts to
develop quantitative rigor, along with emerging game-changing
methods (e.g., Allen et al., 2011; Tadmor et al., 2011; Allers et al.,
submitted for publication; Deng et al., in preparation) and the
required body of theory to interpret new data scales and types
(e.g., Flores et al., 2011) will undoubtedly transform our ability
to ‘‘see’’ in viral ecology. These advances portend a time when
viral ecology will advance from a descriptive to a predictive
science for the most abundant and likely most diverse biological
entities on Earth.

Protocol availability

The most current versions of protocols for the FeCl3-precipita-
tion, the purification and LA methods discussed above are at
http://eebweb.arizona.edu/Faculty/mbsulli/protocols.htm, main-
tained and complete with suggestions and updates from the
scientific community.
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