Video Conferencing Etiquette, Summary Writing Challenge, and Big Bang AR App!

By: Meghan Thoreau, OSU Extension Educator

Virtual STEM Club: video conferencing in a nutshell Prezi, go.osu.edu/videomeetings.

A significant part of the world population is currently on lock-down in an attempt to contain the coronavirus pandemic. People are turning to technology to go to school, to work, to communicate and stay in touch with their classmates, colleagues, friends, and family.

We held our first virtual STEM Club session last Friday through Zoom! It was great to see everyone’s faces, check-in, and teach video conferencing skills and virtual meeting etiquette; click here to review our presentation again with your child.

Young STEMist learning video conferencing skills.

VIDEO CONFERENCING ETIQUETTE (skill building)

Students learned some quick Dos and Don’ts in participating in virtual meetings:

  • Ensure your technology is working
  • Be on time
  • Mute yourself when not speaking
  • Wear school-appropriate clothing
  • Sit eye-level to camera’s lens, framing yourself from the midsection up
  • Ensuring the right lighting
  • Looking into the camera, giving audience eye-contact
  • Pay attention
  • Have a clean, simple, organized background, or upload a virtual backdrop

SUMMARY WRITING CHALLENGE

Summary writing isn’t simple. It’s a difficult academic skill. As with any new skill, especially writing skills, students need to be explicitly taught and practice. The students went through some basic definitions and discussed why summary writing is important because it improves reading skills as you pick out the main ideas of reading; it also helps with vocabulary skills where you paraphrase a reading, altering the vocabulary and grammar as you do so.

A summary is a long text distilled to its essentials. It summarizes the key points worth noting, without writing examples and lengthy details. The sentence structure and vocabulary has been changed, but the main ideas remain. Critical thinking skills are improved as you decide on the main ideas of the reading to include in the summary. Summary writing also improves editing skills as you draft and edit the summary. It’s helpful to work with peers throughout the writing and revision process – cooperative learning.

Screenshot of Time for Kids reading resource: https://www.timeforkids.com/.

The students were asked to visit, Time for Kids, and read two short expository readings, select one article to write a summary on. (Time for Kids has currently opened it’s a digital library for free!) It’s important to underline or take notes of the main ideas as students read. More details to the assignment and submitting are found in your student’s Google Classroom, logging in with their student Teays Valley email address. If you experience any issues with Google Classroom, contact, Meghan, thoreau.1@osu.edu.

BIG BANG AR APP

The students learned about astronomy, elements, atoms, and virtual reality technology in previous club programs. We thought this free App engages many of the lessons learned in a fun interactive way to learn about the story of our universe. The Big Bang AR App is available on both the Google Play and Apple stores.

This is an immersive learning App designed by Tilda Swinton and CERN scientists to take people on an “epic interactive journey through the birth and evolution of the universe” – in mixed reality and augmented reality. It takes students “back 13.8 billion years and discovers how space, time, and the visible universe came to be.” Students can see the universe form in the palm of their hand and virtually “witness the formation of the very first stars, our solar system, and the planet we call home.” This lesson allows students to learn about the microscopic building blocks that make up everything – and everyone – we know, and find out if we are made of stars. The experience ends with the student able to take a #starselfie and share it with your friends and post it in Google Classroom!

Here are a few of the student #starselfie shares:

STEM Stars!

Please stay tuned while we continue to plan and line up guest speakers for our future Virtual STEM Club programs.

Quotes above from the Apple store description: https://apps.apple.com/us/app/big-bang-ar/id1453396628.

 

Chem Basics and Career Exploration

By: Meghan Thoreau, OSU Extension Educator

Last month our young STEMists tacked chemistry basics, the periodic table, what makes up an atom, and chemical and physical changes. (Note: 360-video @ the end of the post!)

DAY 1

The students started the club session with an interactive presentation highlighting several careers in chemistry. All the careers mentioned have a short career highlight video to provide good visualizes of what the jobs entail, as well as how much additional education is expected. The students also learned the differences between credentials, such as an Associate Degree, a Bachler’s, a Master’s, and having a PhD. We were only able to allow the kids to pick five or six careers during the club, so please sit down and re-explore the interactive presentation with your child at home!

Figure 1: Image from the program presentation by Meghan Thoreau, go.osu.edu/chemistrycareers.

They learned about atoms, which is made up of three tiny kinds of particles called subatomic particles: protons, neutrons, and electrons. The protons and the neutrons make up the center of the atom called the nucleus and the electrons fly around above the nucleus in a small cloud.

Figure 2: Photo by Meghan Thoreau captures one of Ms. Walley’s many chemistry wearables. The sweater shirt depicts the element Helium. Helium’s atomic parts are pictures to the right.

Figure 3: the periodic table.

The students then began exploring the periodic table and how elements are organized and what different forms the elements exist at room temperature. They further familiarized themselves by playing a couple of games: Element Scrabble, spelling words with the element’s symbols and Periodic Table Battleship, strategically call out the period, the group, and the name of each element to sink their opponent’s ships.

Figure 4: Photos by Meghan Thoreau depicting element scrabble and periodic battleship learning games.

DAY 2

Students applied what they learned from Day 1 about chemical and physical changes to the hands-on chem labs. They learned that chemical changes have certain indicators: change in color, gas produced, temperature change, light produced, precipitate forms, or are irreversible.

The students broke up into groups and did a series of chemical experiments to see first hand what chemical changes look, feel, and smell like.

Figure 5: video highlight of STEM Club: Chem Basics by Meghan Thoreau produced in iMovies. Retrieve from: https://youtu.be/peZvyjRWB9s.

If slime is still permitted in your household and you’re looking for a Super Fluffy Slime Recipe try this:

  1. put 3 cups shaving cream in a bowl
  2. Add in 1/4-1/2 tsp of baking soda and stir
  3. Mix in 1/2 cup of glue and stir
  4. Add 1 full tbsp of saline solution and a coating on hands
  5. Mix until mixture forms a fluffy slimeball

Next month Dr. Brooke Beam, OSU Extension Educator from Highland County will lead us into learning about 360 technology and video and photo production. The students will be exposed to 360 educational VR experiences for an immersive learning adventure. Testing out the new 360 camera, here’s a clip below:

Figure 6: 360 short video highlight of STEM Club: Chem Basics by Meghan Thoreau produced in GoPro. Retrieve from: https://youtu.be/6JUQny_TdPI.


 

Club Highlights from 2018-2019

By: Meghan Thoreau, OSU Extension

LED Display Circuit Board Challenge

Elementary STEM Club just started its third year of STEM (science, technology, engineering, math) programming, engaging approximately a hundred 4th and 5th graders in after school hands-on STEM challenges and career exploration throughout the academic school year. Judy Walley, Teays Valley High School Chemistry Teacher, and Meghan Thoreau, OSU Extension Educator, co-teach the program, which also involves over two dozen high school mentor students. The mentors assist with club activities while themselves gaining both soft and technical skills, leadership, community service, and college/career exploration opportunities.

Physics and Center of Gravity Challenges

STEM education programs can have a positive impact on students’ attitudes towards STEM disciplines, 21st century skills, and a greater interest in STEM careers. Educators throughout Pickaway County have been busy in supporting a number of problem-based learning initiatives, business-teacher partnerships, and STEM teaching initiatives.

Foldscope, Origami Microscope Biology Challenge

Elementary STEM Club is one of those local initiatives that employs hands-on learning through a multidisciplinary approach into many subjects and career paths. The program challenges its youth in chemistry, astronomy, biology, coding, drone technology, connected toys, wearable tech, strategic mind games, escape classrooms, electric circuits, physics, renewable energy, beekeeping, aerospace, flight simulations, aviation, fostering a community service mindset, and more.

Strategic Mind Games and Bee Science Challenges

We invite specialists from the community to teach, share, and engage with the students, such as the Scioto Valley Beekeeping Association, OSU Professors, an Extension Energy Specialist, an OSU Health Dietitian, and the Civil Air Patrol to name a few. Next year we’re hoping to bring some virtual reality, 360 photography, and video production challenges to our students. If you’re interested in sharing a skillset, a technology, a career path, or a meaningful life experience to some amazing and eager-minded students, please email, thoreau.1@osu.edu or jwalley@tvsd.us.

We’d like to also thank everyone who has been involved in the program over the last two years. It’s been a pleasure and a plunge into the wild side of STEM education, youth workforce development, and promoting a mindset of lifelong learning – all critical to today’s workforce.

Civil Air Patrol and Aerospace Careers

Civil Air Patrol

We ended last year with a great program partnering with Civil Air Patrol (CAP). Civilian volunteers – with a passion for flight, science, and engineering – led the program highlighting STEM careers in aviation, space, cyber security, emergency services, and the military. The whole organization is powered by a team of dedicated civilian volunteers with a passion for aviation and STEM education. If you know of a student, 12-years and up, that has in interest in aviation, would like a chance to fly a plane, work towards their pilot license, attend leadership encampments, career academies, and more, visit http://www.ohwg.cap.gov/.

Aerospace Officer Donna Herald, Lieutenant Casey Green, and Lieutenant Colonel David Dlugiewicz volunteered their time and aviation skills to lead our youth into exploring the history of the Civil Air Patrol, emphasize the value of civic engagement, and underscore the growing deficient of pilots and aerospace specialist in the workforce.

Physics Concepts, Bernoulli Principle on Air Pressure Differential Theory Challenges

The CAP lessons built on previous STEM Club programming that taught physic concepts, the law of gravity, and re-instilled aircraft principal axes, such as the friction, center of gravity, and coding parrot drones challenges. Lieutenant Colonel Dlugiewicz taught the discussed Bernoulli Principle (an air pressure differential theory) and Sir Isaac Newton and the laws of motion and lift. The students engaged in a hands-on activity such as filling an air bag with one breath, leaving a gap between their mouth and the bag to allow a vacuum to form, demonstrating Bernoulli’s principle.

Part of a Airplane and Axis Challenges

Lieutenant Casey Green discussed the parts of an airplane focusing on the components that control an aircraft’s moment and direction. The students broke into groups and rotated between two stations. The first engaged the students in building paper airplane that they cut strategic slits into. The students experimented by folding different components of their airplanes to change and control the overall direction of their paper airplanes. The second station engaged the students in two different sets of CAP flight simulators to further the students’ understandings of the aviation principles taught in the program. The flight simulators provided a semi authentic experience that helps young pilots learn to fly.

Flight Simulator Challenges

Our community has some amazing young minds that are thinking and embrace the many dynamic career pathways of a STEMist. Please get involved and support more STEM programming in your community, it matters.

 

Halloween STEM Challenges: chemistry of color, vision, and slime

By: Meghan Thoreau, OSU Extension Educator

October’s STEM Club

We thought we’d take advantage of the spooky mystery themes of Halloween and challenge our students to become science detectives, experimenting with hands-on activities involving chromatography, perception of vision, and phosphorescent slime chemistry.

Chromatography

The students became CSI lab technicians, tasked with solving a who-done-it pumpkin theft. All that was left at the scene of the crime was a letter demanding cookies! No fingerprints were found, but six suspects were brought in for questioning and all six had different black markers on their person. The marker evidence was tagged and brought to the CSI lab along with the random letter for further analysis. Marker samples were taken and a chromatography test was performed by our young lab technicians.

Chromatography is a laboratory technique for the separation of a mixture (more specifically separation of molecules) and in our case black marker ink molecules. The ink was dissolved in a water solution process of mobile to stationary phase, revealing distinct ink-finger prints for comparative analysis against an ink sample taken from the random note. The students discovered different ink molecules travel at different speeds, causing them to separate and reveal distinct color patterns that could help identify the pumpkin thief from the six suspects.

People don’t often pick up a marker or pen and think of molecules,  but ink and paints are made up of atoms and the molecules, like everything, follow rules. Ink and paints follow the standard CPK rule, which is a popular color convention for distinguishing atoms of different chemical elements in molecular modeling (named after the chemists Robert Corey, Linus Pauling, and Walter Koltun). Basically, certain elements are associated with different colors. For example,

  • Hydrogen = White
  • Oxygen = Red
  • Chlorine = Green
  • Nitrogen = Blue
  • Carbon = Grey
  • Sulphur = Yellow
  • Phosphorus = Orange
  • Other = Varies – mostly Dark Red/Pink/Maroon

PERSISTENCE OF VISION

Persistence of vision refers to the optical illusion that occurs when visual perception of an object does not cease for some time after the rays of light proceeding from it have ceased to enter the eye. The discovery was first discussed in 1824 when an English-Swiss physicist named Peter Mark Roget presented a paper, “Explanation of an Optical Deception in the Appearance of the Spokes of a Wheel when seen through Vertical Apertures” to the Royal Society in London. Shortly after, in 1832, a Belgian physicist Joseph Plateau built a toy that took advantage of the optical illusion trick. (Photo below source: http://streamline.filmstruck.com/2012/01/07/the-persistence-of-persistence-of-vision/)

The toy made images move independently but overlapped them or when placed in a series made them look as if they were walking, running, juggling, dancing. This concept soon laid the foundation for early filmmaking. (Photo below source be: http://1125996089.rsc.cdn77.org/wp-content/uploads/2011/12/persistence-of-vision-transit.jpg)

The students learned how our eyes report basic imaginary back to the brain, or rather how our eyes perceive shapes, their motion, and their relative position from other objects. The students discovered that eyes are not simple windows to the world. Eyes do not see what is, but instead, see approximations.

PHOSPHORESCENT SLIME

The students learned how different objects glow in the dark. First, students learned that heat is a good emitter of light, such as a fire or an old-fashioned light bulb, but heat isn’t always required to make something appear to glow. For example, bedroom glow-in-the-dark stickers, glow sticks, or fireflies do not require heat. The stickers and even certain types of rocks, like the Bologna Stone, require several hours of light to charge them in order to later glow. But glow sticks and fireflies, do not require heat or light, but instead, deal with chemistry where two different elements are mixed together to make a ‘luminescent’ compound.

We talked about phosphorescence and the process in which energy absorbed by a substance is released slowly in the form of light. Unlike the relatively swift reactions in fluorescence, such as those seen in a common fluorescent tube, phosphorescent materials “store” absorbed energy for a longer time, as the processes required to re-emit energy occur less often.

Finally, we let the students become chemists and make their own phosphorescent slime for later glow in the dark fun after the compound was charged by light. The young chemists used measuring devices to concoct their spooky slime recipe.

Make another batch at home with your young chemist:

  1. Add 20.0 mL of glue to cup
  2. Add 15.0 mL of water to cup
  3. STIR!
  4. Drop of preferred food coloring
  5. STIR!
  6. Add a drop of glow in the dark phosphorescence paint
  7. Add 12.0 mL of BORAX solution
  8. STIR! It will be runny until you take it out of the cup and start to play with it.

Next month we will be challenging our STEMist in Mind and Body Challenges! Stay tuned to learn more about November’s STEM adventures.