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Basic ConceptsBasic Concepts
• In the biological sciences, data (measurements, 

observations) are routinely collected on the same 
experimental units at multiple times
– Data collected over time on the same “units” are called 

1) repeated measures or 2) longitudinal data
• Some draw distinctions between these two labels, but we use 

them interchangeably (for the most part)

• Because of the unique properties of the collected 
data, as discussed soon, proper analysis of 
repeated measurements is more difficult than 
analysis of data collected at a single time
– Under many circumstances, linear mixed model 

analysis is an appropriate approach for data analysis
• This workshop teaches how to use this form of analysis



Broad OutlineBroad Outline

• Present examples of data collected over time 
– Give reasons for collecting data over time and outline the key 

features of such data

– Outline the different approaches, including the typical incorrect
ones, which are often taken to analyze such data

• Show how one type of statistical model--a linear mixed 
model--is used (correctly) to represent data collected over 
time and how one chooses a particular model (i.e., how one 
links up a model with a particular experimental design)

• Show how to use models and statistical software (SAS) to 
analyze fairly typical data sets in plant pathology in which 
data are collected over time

ExamplesExamples
Data collected over time are common in 
field, greenhouse, and laboratory studies

Apple scab, 
with two 
factors:

Management 
practice and 
year (within 

graphs)

Holb et al. 
(2005)



ExamplesExamples

Potato late blight 
severity and logit
transformation—

Different cultivars

From 
Vanderplank

(1963)

ExamplesExamples
Xanthomonas albilineans

on sugarcane 
(greenhouse study).

Different isolates.
Champoiseau et al. (2006)

Fusarium density on roots of tomato 
(field study).

Triky-Dotan et al. (2005)



ExamplesExamples

Effect of Mn
concentration on rate of 

oxidization for G. 
graminis var. tritici.

Thompson et al. (2006)

Spruce dieback (in 
vitro), with different 

fungal isolates.
Borja et al. (2006)

ExamplesExamples
Rice blast.

Quantitative PCR results indicating # fungal cells.
Two factors:

Inoculation method and host resistance.
Berruyer et al. (2006)

Botrytis cinerea and 
Arabidopsis

Elicitor in intercellular fluid.
Govrin et al. (2006)



Many reasons to collect data at Many reasons to collect data at 
multiple timesmultiple times

• Increased information on 
the effects of treatments 
(experimental factors) on 
the response variables of 
interest
– At “short” or “long” times, 

there may be no apparent 
treatment effect

• Determine if the response 
changes with time

• Efficiency in experimental 
design (sometimes 
increased precision)
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Many reasons to collect data at Many reasons to collect data at 
multiple times multiple times (continued)(continued)

• Determine if treatment 
affects the response (over 
all times)

• Determine if the effect of 
treatment depends on time 
(i.e., determine if there is 
an interaction of time & 
treatment)
– Equivalently, determine if 

change in response over 
time depends on 
treatment

• There is often no 
biologically justified single 
time to measure disease
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Key features of repeated measuresKey features of repeated measures

• At least two sources of variation (variability) in the 
response variable
– Between experimental units (plants, plots, etc.)

• “Between-subject variation”
– Within experimental units (between times within units)

• “Within-subject variation”
• Correlation of the response variable between times 

within experimental units
– Because, by definition, time of measurement is not 

randomized (the second measurement must be after the first 
measurement and before the third), the structure or form of 
the correlation cannot be predicted based on the experimental 
design

• Often, the variability is not the same at each time, but 
changes over time
– That is, there is heterogeneity in the variances

More on repeated measuresMore on repeated measures
• Depending on experimental factors, the design could be 

• randomized block repeated measures
– Block, plus treatment, plus time 

• repeated measures factorial 
– Two or more “between-subject” factors, plus time 

• randomized block repeated measures factorial
– Block plus two or more “between-subject” factors, plus 

time

• Split plot repeated measures
– Whole-plot factor, sub-plot factor, plus time

• With these types of experimental designs, there is 
clustering of data, which is the cause of the correlation of 
data within experimental units (the “subjects”)

• Cluster:
– collection of observations that are somehow stochastically 

related (correlated)
• One example: splitting of experimental units



Block (b) 1 Block (b) 2 Block (b) 3

1 2 13 312 3 2

Whole Plot (α) Whole Plot (α) Whole Plot (α)

Sub 
Plot 
(ß) 2 1 2

2 2 11 1 1

2 11

2

2 1

2

1

2

Clustering example: Splitting of experimental unitsClustering example: Splitting of experimental units:
Split Plot (two factors of interest)

Each whole-plot constitutes a cluster, and the sub-plot observations are the 
within-cluster units--variation between and within whole-plots

α: whole-plot (e.g., irrigation method), randomly assigned within each block (large units)
β: sub-plot (e.g., cultivar), randomly assigned within each whole-plot (small units)

Block (b) 1 Block (b) 2 Block (b) 3

1 2 13 312 3 2

Treatment (α) Treatment (α ) Treatment (α)
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More clustering: Same experimental units are More clustering: Same experimental units are 
measured repeatedly measured repeatedly ---- Repeated MeasuresRepeated Measures

Repeated measure

Cluster (the plot; experimental unit) is formed by the collection of 
repeated measurements. Variation between and within units.



Note on Note on ““ClustersClusters”” and and ““SubjectsSubjects””

• “Subjects” are often analogous to “experimental 
units” in experiments

• There can be a hierarchy of “Subjects”:
– Block, whole-plots within blocks, sub-plots within 

whole-plots

– Block, treatment plots within blocks, times within 
treatment plots

– Block, whole-plots within blocks, sub-plots within 
whole-plots, times

• In some cases, there are clear size differences 
in the subjects

Difference between splitDifference between split--plots and plots and 
repeated measuresrepeated measures

• With split-plots, the levels of the sub-plot factor (the 
“small” experimental unit; e.g., cultivar) are randomly
assigned within the whole-plot factor (the “large”
experimental unit; e.g., irrigation method)
– Thus, the correlation of observations within a whole-plot is 

fixed (i.e., same correlation for each pair of cultivars)

• This is a consequence of the experimental design

• With repeated measures, the levels of the “sub-plot”
factor (=time) are not randomly assigned within the 
experimental units (by definition)
– Thus, there is not necessarily a fixed correlation

• The experimental design cannot give more guidance on the 
nature of the correlation (one must assess the correlation 
structure)



Approaches to analysis of repeated measuresApproaches to analysis of repeated measures

• There are several correct ways 
of analyzing data from 
repeated-measures 
experiments
– The correct approaches all 

have different strengths and 
weaknesses

• There are also several 
incorrect ways, or potentially 
incorrect ways, of analyzing 
such data that have been used 
(unfortunately)

• We consider the continuum of 
approaches here (in outline), 
and restrict attention to one 
general appraoch

Approaches to analysis of repeated measuresApproaches to analysis of repeated measures
• The (totally) incorrect method--

– Ignore the unique or special aspects of time as a factor in ANOVA, 
and treat time as a ‘regular’ experimental factor with randomized 
assignment of levels to units (plots, etc.)—ignore clustering

– All tests for significance and standard errors will be wrong under 
most circumstances (P-values and SEs will be too low)

• Most likely outcome: high Type I error rate for tests of experimental 
factors of interest (higher than the nominal α): 

– Too easy to declare significance when, in fact, the effect of the factor 
(treatment) is not significant.

– Too easy to find two means different when they are not, in fact, different

• The other generally incorrect method--
– Analyze data from each time separately

• Ignores the correlation of observations over time within experimental 
units

– Will bias the results in treatment comparisons (affect Type I error rate and 
SEs)

• If done for only one time (e.g., last assessment time), then OK



Approaches to analysis of repeated measuresApproaches to analysis of repeated measures
• The probably incorrect method--

– Consider the experimental design a true (standard) split plot
• Although this approach does address the multiple types of variability 

(between and within experimental units), it does not allow for realistic 
and complicated correlation structures within experimental units

– ‘Forces’ the correlation to be fixed (single value for all pairs of times)

• Does not easily allow for unequal variances

• Will give biased results for P-values and SEs under many 
circumstances

• The acceptable, but inadequate, method--
– Consider the experimental design a split plot, but make post-

model-fitting adjustments to correct for correlation structure
• Greenhouse-Geisser and Huynh-Feldt corrections 

• Before the adoption of modern mixed-model methods, this was a very 
common approach

• Method does not provide adequate flexibility in data analysis (to deal 
with a wide range of designs) and does not have the statistical power
of other approaches 

Approaches to analysis of repeated measuresApproaches to analysis of repeated measures
• A correct method--

– Replace the profiles of Y versus t for each experimental unit (e.g., 
plot, plant) with a  single composite value (a summary response 
variable), such as:

• Area under the disease progress curve (AUDPC)

• Linear contrast of Y values (e.g., last minus the first Y value)
– Or: linear, quadratic, cubic orthogonal polynomial contrasts

» (These are independent, but might be difficult to interpret)

– Then, perform ANOVA on AUDPC (or the contrast), to determine 
the effects of experimental factors (e.g., treatment) on the summary 
response variable

• A popular and valuable approach 

• The within-unit variability and correlation is removed with this approach

• Very useful (and convenient) with many different times

• May not be easily interpreted, especially if one is trying to determine 
how treatments affect the rate of disease development



Approaches to analysis of repeated measuresApproaches to analysis of repeated measures

• A correct but limited method (& not covered here)--
– Perform a multivariate analysis of variance (MANOVA) on the 

data, where Y at each time is considered a separate variable
• There is a vector of responses (one for each time)

• Use one of the multivariate tests (Wilk’s Lambda, etc.) to determine 
treatment effects

– Disadvantages:
• May not be very powerful with typical sample sizes (low probability of 

finding a significant effect of treatment when it really has an effect)

• Sometimes difficult to interpret results when a significant effect is found
– How does Y change with time, for each treatment?

• Difficult to handle complicated experimental designs

• Missing values can cause major difficulties

Approaches to analysis of repeated measuresApproaches to analysis of repeated measures
• A correct and extremely useful contemporary 

approach--
– Use a  linear mixed model to analyze the data

• A very flexible approach and general method that can accommodate
– many possible correlation structures, 

– unequal variances, 

– missing values, 

– multiple sources of variation (i.e., multiple random effects), 

– complex experimental designs (including restrictions of 
randomization), 

– covariance analysis

– and many other features…

– Use a nonlinear mixed model to analyze the data
• A very powerful approach for specialized problems

• Not covered here

• A brief introduction to models, linear models, and linear mixed 
models is covered



Approaches to analysis of repeated measuresApproaches to analysis of repeated measures
• We take a parametric frequentist approach to data analysis 

in this workshop
– Parametric:

• Data can be represented with a statistical-distribution model, with 
parameters to be estimated

– Assume normality here (although many other distributions could 
be used)

– Frequentist:
• Inference is based on the collected data in the experiment or survey 

(and probabilities related to hypothetical repetitions of the 
experimental), and does not use prior believes

• One can take a nonparametric approach to analysis (covered 
in an APS Workshop 2 years ago) – rank-based
– Especially useful for ordinal data (0: no disease; 1: slight; 3: dead)

• One can also take a Bayesian approach to analysis (covered in 
an APS Workshop last year)
– Utilizes prior beliefs in addition to collected data in statistical inference

ModelModel
• Abstraction of a real phenomenon or process that emphasizes 

those aspects relevant to the objectives of the user
– Used to describe, understand, predict, compare, and make 

inferences about the phenomenon

– Models consist of terms that are:
• deterministic (systematic, structural), for the portion of the 

model that does not involve uncertainty; and/or 

• stochastic (random)

– Often, stochastic terms can lead to a parsimonious 
abstraction of the phenomenon

• Statistical model:
– Model with stochastic components (and maybe other 

components [deterministic]), containing unknown 
constants (i.e., parameters) to be estimated

• ANOVA and regression models are statistical models



Response = (systematic part) + (random part)

Response = structure +  error

Outcome of 
interest, being 
measured, 
counted, or 
classified (Y); a 
random variable

Mean (or 
expected value) 
of response

Function of 
variables and 
parameters (often 
of primary interest)

Statistical ModelStatistical Model:

f(X1,X2,…; μ, β1, β2, τ, …)

Difference between 
observed responses 
(i.e., the observations) 
and mean responses 
based on parameters; a 
random variable; 
estimate known as 
residual (e).

Characterize effects of treatments, other 
factors, and continuous variables on Y

Response   =        structure            +              error

Y          =  f(X1,X2,…; μ, β1, β2, τ, α, …)  + e

• Y is the response (random) variable 

– Binary, discrete, or continuous

• We focus on continuous response variable (assume normality)

• X1, X2, ... are variables that may affect the mean response 
variable

– May be continuous (regression models) – e.g., temperature

– May be “dummy” variables (ANOVA models) - “factors”

• “Class” or “category” variables – e.g., treatment
– e.g., X1 = 1 if treatment 1, X1 = 0 if not treatment 1

• Greek letters: parameters
• (Combine class [category, factor] variables and parameters 

into other parameters [e.g., τ])

• e is the error (random variable), normally distributed (here)



Example data set with 10 groups 
(treatments)

Does treatment effect Y?

Which means are different 
from each other?

Answer questions by fitting 
a linear model to data.

Yij = μ+ τi + eij ,      eij ~N(0, σ 2)

Yij: response (dependent variable) for the j-th observation 
in group (treatment) i (e.g., i = 1, 2, …, 10)

μ: constant (“intercept”) – could be zero
τi Group or treatment effect (effect of group i on 

response) - constants (F test if these differ from zero)
eij: Error associated with group (treatment) i and 

observation j. (random variable with Normal distribution)
Estimated σ 2: residual variance.

A classical one-way ANOVA model, in statistical format:

Use subscripts to refer to specific treatment (i) and 
replication (sample; j)

Without showing how (for now), the mean or expected value of Y for group 1 is 
μ + τ1 , The expected value of Y for group 2 is μ + τ2 , etc.



Yij = μ+ τi + eij ,      eij ~N(0, σ 2)

Yij: response (dependent variable) for the j-th observation in 
group (treatment) i

μ: constant (“intercept”)
τi Group or treatment effect (effect of group i on response) -

parameters
eij: Error associated with group (treatment) i and observation j. 

(random variable, normal distribution)
Estimated σ 2: residual variance.

A classical one-way ANOVA model, in statistical format:

This is considered a linear fixed effects model.

Definition: a linear model with only parameters (constants) (e.g., effects of 
treatment) and one random variable (the error [residual], in this case).

Linear: sum of
Variables × constants, 

or just constants

Block (b) 1 Block (b) 2 Block (b) 3

1 2 13 312 3 2

Treatment (τ) Treatment (τ) Treatment (τ)

Randomized Complete BlockRandomized Complete Block
(general schematic)

Treatments randomized within each block -- block can affect Y



Randomized Complete BlockRandomized Complete Block
Yij = μ + τi + bj + eij ,   bj ~N(0,σb

2), eij ~N(0, σe
2) 

Yij: response (dependent variable) in treatment i and block j

μ: constant (“intercept”)
τi: Effect of the i-th level of treatment on Y

bj: Effect of the j-th level of block on Y --consider this a random effect
eij: Error associated with experimental unit in block j that 

received treatment i [residual]

Note: there are now 
two variances

This is considered a linear mixed effects model (“Mixed Model” for short).

Definition: Linear model with at least two random variables (including the 
residual error, e), plus fixed-effects parameters, and possibly an intercept 
constant.

Note: with random effects, at least some observations are correlated!

FixedFixed-- versusversus randomrandom--effects factorseffects factors
• Fixed effects variable (or factor)

– Levels in the study (i.e., the particular groups) represent all 
possible levels of the factor, or all levels of interest by the 
investigator

• e.g., fungicide treatment, biocontrol treatment, inoculum dose, 
cultivar, etc. (often of primary interest)

• Random effects variable (or factor)
– Levels in the study represent only a random sample of a larger 

set of potential levels, or one is not interested in the specific 
result for each level in the study, or the effects on Y are 
stochastic in nature

• e.g., block, location, host or pathogen genotype (sometimes), etc.

Whether or not a variable (factor) produces random effects is not always 
clear, and depends on objectives and assumptions. We only consider 
here random effects that are a consequence of the experimental design 
(i.e., from clustering of data, such as splitting and repeated measures).



Linear Mixed Effects Model Linear Mixed Effects Model 
(“Mixed Model”)—notation

Y = (constant + fixed) + random + error

Fixed effects, 
including 
constant; 
Greek letters 
(τ, α, β)

Random 
effects; 
Roman letters 
(b, d, …)
lower case

Error 
(residual, e)

Response

Investigators are typically interested in estimating fixed-effect parameters 
(e.g., “effect of treatment 1 on Y”). 

However, the estimated fixed-effect parameters and their standard 
errors (or the estimated means and their SEs) depend, in general, on 
the random-effect terms

(e.g., any variance terms affect the estimate of τ [effect of 
treatment] and its SE)

Block (b) 1 Block (b) 2 Block (b) 3

1 2 13 312 3 2

Whole Plot (α) Whole Plot (α) Whole Plot (α)

Sub 
Plot 
(ß) 2 1 2

2 2 11 1 1

2 11

2

2 1

2

1

2

SplittingSplitting of experimental unitsof experimental units:
Split Plot (two fixed-effect factors)

Each block 
constitutes a 
cluster (with 
variation in Y

between clusters)

Each whole plot (within a block) also constitutes a cluster (with associated variation 
in Y between clusters)



Split Plot Design (with blocking)Split Plot Design (with blocking)
Yijk = μ + αi + βj + (αβ)ij + bk + dik + eijk ,

bk~N(0,σb
2) , dik~N(0, σd

2) , eijk ~N(0, σe
2) 

Yijk: response (dependent variable) for the i-th level of whole-plot 
factor,  j-th level of sub-plot factor, and k-th block

μ: constant (“intercept”)

αi: Effect of the i-th level of whole-plot factor on Y

βj: Effect of the j-th level of sub-plot factor on Y 

(αβ)ij Interaction effect (effect of i-th whole plot and j-th subplot on Y)

bk: Effect of the k-th level of block on Y
dik: Effect of ik-th experimental unit (combination of block k and whole-plot i on Y

[could be written as interaction effect, (αb)ik ]--the “whole-plot error term”
or between-subject variability term

eijk: Sub-plot error associated with experimental unit in block k that received whole-
plot  i and sub-plot j [residual--the within-subject variability term]

Note: there are now 
three variances

F tests for sig. of 
fixed effects

Split Plot Design (Split Plot Design (no blocksno blocks, or no effect of block), or no effect of block)

Yijk = μ + αi + βj + (αβ)ij + bk + dik + eijk ,
bk~N(0,σb

2) , dik~N(0, σd
2) , eijk ~N(0, σe

2) 

There is still a random 
effect of ik-th

experimental unit (the 
whole plot) on Y

Correlation:

It can be shown that the correlation of observations 
within the whole-plot experimental unit is given by:

 ρ = σd
2/(σd

2+ σe
2)

σd
2 , the between-subject variance for the whole-

plots, is the covariance of Y within whole-plots 
(same for all pairs of sub-plot levels)

All the sub-plot Y values have the same correlation
within a whole-plot unit

The greater the variation in Y among 
experimental units, the greater the similarity of Y
within experimental units

A constant. 
Not realistic with 

repeated measures

Label the 
denominator as:

σ 2 = σd
2+ σe

2



Split Plot Design [Split Plot Design [no blocksno blocks, ALTERNATIVE , ALTERNATIVE 
but but identicalidentical, representation], representation]

Yijk = μ + αi + βj + (αβ)ij + bk + dik + eijk ,
bk~N(0,σb

2) , dik~N(0, σd
2) , eijk ~N(0, R) 

R: Variance-covariance matrix of variability (incorporates both the 
whole-plot variance (σd

2) and the residual variance (σe
2)

Equals 0 if Y values come from different whole-plot levels  (i.e., observations 
are independent), and equals matrix Σ if observations are from same whole 
plot (=subject).

Simple example of three sub-plot levels (j = 1, 2, 3):
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Known as 
Compound 

Symmetry (CS).
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Each yellow block is Σ

Assume three treatments (i =1,2,3) and three times (j =1,2,3)

σjj’ = σ2.ρ : covariance



SummarySummary:: For mixed models, in general, there may be For mixed models, in general, there may be 
multiplemultiple equivalentequivalent ways of representing the same ways of representing the same 
experimental design and data collection protocolsexperimental design and data collection protocols

Yijk = μ + αi + βj + (αβ)ij + dik + eijk ,

dik~N(0, σd
2) , eijk ~N(0, σe

2) 

Yijk = μ + αi + βj + (αβ)ij + eijk ,

eijk ~N(0, R) 

Example:
Split plot 

design with no 
blocks

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ρρ
ρρ
ρρ

σ=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

σρσρσ
ρσσρσ
ρσρσσ

=
1

1

1
2

222

222

222

Σ

R: 0 if from different whole-plots. For same whole-plot, matrix Σ:

σ 2 = σd
2+ σe

2

True 
equivalence 

holds when σd
2

is positive
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Repeated Measures:Repeated Measures: Same experimental units are Same experimental units are 
measured repeatedlymeasured repeatedly

Repeated measure

Primarily consider one experimental factor (α; treatment) and data collected over time (β)



Repeated Measures (with blocks)Repeated Measures (with blocks)
Yijk = μ + αi + βj + (αβ)ij + bk + dik + eijk ,
bk~N(0,σb

2) , dik~N(0, σd
2), eijk ~N(0,R) or ~N(0,σe

2)

Yijk: response (dependent variable) for the i-th level of treatment (planting 
date [PD] here), j-th time, and k-th block

μ: constant (“intercept”)
αi: Effect of the i-th level of treatment on Y
βj: Effect of the j-th time on Y 

(αβ)ij Interaction effect (treatment x time)
bk: Effect of the k-th block on Y 
dik: Effect of ik-th experimental unit (each plot) on Y

(between-subject variability term)

eijk: Error associated with experimental unit in block k that received 
treatment i at time j [residual] – within-subject variability term

R: A matrix of variances and covariances of Y for each ik experimental 

unit (subject), even a constant σe
2 – but probably more complex 

than CS—many possible choices (see next)

F tests:
Does treatment effect 
the response?
Does the response 
change with time, 
overall?
Does the effect of 
treatment depend on 
time?

Repeated MeasuresRepeated Measures

Yijk = μ + αi + βj + (αβ)ij + bk + dik + eijk ,
bk~N(0,σb

2) , dik~N(0, σd
2), eijk ~N(0,R)

With no blocks, remove the b term

Yijk = μ + αi + βj + (αβ)ij + dik + eijk ,   dik~N(0, σd
2), eijk ~N(0,R)

The dik term generally (with a major exception) is redundant and should not be 
explicitly in the model (i.e., the between-subject variability is incorporated 
directly into R matrix for eijk, as it is for Compound Symmetry). That is, both 
between- and within-subject variability may be modeled directly with the 
residual eijk term (although some possible Rs only deal with within-subject 
variability). One must be careful here, and know the syntax of software! This is 
tricky (will show with examples).

With blocks, remove the d term

Yijk = μ + αi + βj + (αβ)ij + bk + eijk ,  bk~N(0,σb
2) , eijk ~N(0,R)

Without blocks, remove the b and d terms

Yijk = μ + αi + βj + (αβ)ij + eijk , eijk ~N(0,R)



Contemporary linear mixed model Contemporary linear mixed model 
analysisanalysis

• Fit model with combination of 
– Restricted (residual) Maximum Likelihood (“REML”) for random-

effects terms, and

– Estimated Generalized Least Squares (“EGLS”) for fixed effects 
terms

– (Combined methodology loosely called restricted maximum 
likelihood)

• Iterative approach, involving estimating random- and fixed-
effect terms many times. This requires:

• sophisticated computer algorithms, 

• fast computer processing speed,

• ample computer memory

• Warning:
– Until the last decade or so, most “mixed-model analyses” were not 

true mixed-model analyses!

Contemporary (Contemporary (correctcorrect) linear ) linear 
mixed model analysismixed model analysis

• Hypothesis testing and inference regarding fixed effects are 
based primarily on:

– F tests of scaled Wald statistic (“Type 3 Tests”)
• Degrees of freedom (df) may need to be estimated based on 

the data (different from classical df values).

– Satterthwaite or Kenward-Roger (KR) df method is 
recommended

• Tests involve contrasts. There are no Mean Squares or sums 
of squares in the typical analysis!

– An ANOVA table is obtained for the fixed effects only.

• Inference regarding random effects is based on either:
– Standard normal statistics (only as a rough approximation

when sample sizes are small or moderate)

– Likelihood ratio tests – we will not deal with this too much

• We fit mixed models with procedures in SAS



Some good referencesSome good references

Some useful referencesSome useful references
• Littell, Henry, & Ammerman. 1998. Statistical 

analysis of repeated measures data using SAS 
procedures. J. Animal Sci. 76: 1216-1231.

• Littell, Pendergast, & Natarajan. 2000. Modelling
covariance structure in the analysis of repeated 
measures data. Stat. Med. 19: 1793-1814.

Also, Chapter 4 in:
Madden, Hughes, & van den Bosch. 2007. The Study of 
Plant  Disease Epidemics. APS Press, St. Paul, MN.

deals at length on the subject (strictly for analyzing 
epidemics)



SAS for Mixed ModelsSAS for Mixed Models
• PROC MIXED (main choice for linear mixed models & normal 

distribution)

• PROC GLIMMIX (main choice for generalized linear mixed 
models) -- new

– For many types of non-normal distributions (Poisson, 
binomial, etc.)

– Also can be used for normal data
• Has many new options for visualizing data and efficiently 

presenting results

• PROC NLMIXED (main choice for nonlinear mixed models)

Warning (again): many other easy-to-use programs indicate they fit mixed 
models, but, in reality, do not really fit mixed models in the contemporary 
sense used here (many statistics obtained may be incorrect!). There are 
several other specialized programs for true mixed model analysis, but these 
are more for professional statisticians, and typically have far fewer options 
than available in SAS.

Linear Mixed Effects Model with Linear Mixed Effects Model with SAS (Mixed)SAS (Mixed)

PROC MIXED options; 
 CLASS variables; 
 MODEL response = fixed effects terms / options; 
 RANDOM random-effect terms / options; 
 REPEATED within-cluster (exp. unit) terms / options; 
 LSMEANS fixed-effects; 

Model-based 
estimates of 

means
Identify factor 

variables (compared 
with continuous 

variables)

Treat-
ment, 
etc.,α,β,τY

Block, 
whole-plot 
effect, etc.
b, d e

REPEATED statement 
is for indicating the 

structure within-
subject (residual) 

variability: R
Not needed if there is 
just a single residual 

variance, σe
2

Yijk = μ + αi + βj + (αβ)ij + bk + dik + eijk ,              

bk~N(0,σb
2) , dik~N(0, σd

2), eijk ~N(0,R)



Linear Mixed Model (Split Plot) with SAS (Mixed)Linear Mixed Model (Split Plot) with SAS (Mixed)

Split plot with blocks (or repeated 
measures [β for time], and compound 
symmetry [CS]):

Yijk = μ + αi + βj + (αβ)ij + bk + dik + eijk ,     

bk~N(0,σb
2) , dik~N(0, σd

2) , eijk ~N(0, σe
2) 

--or--

Yijk = μ + αi + βj + (αβ)ij + bk + eijk ,     

bk~N(0,σb
2) , eijk ~N(0, R) 

R: matrix of variances and covariances (Y values 
sharing the same whole-plot level, or Y values collected 
over time in same plot [combination of block and α] are 
equally correlated]). If same whole-plot, Σ:

PROC MIXED;
CLASS A B BLOCK;
MODEL Y = A B A*B;
RANDOM BLOCK A*BLOCK;
LSMEANS A B A*B;
RUN;

PROC MIXED;
CLASS A B BLOCK;
MODEL Y = A B A*B;
RANDOM BLOCK;
REPEATED /

SUBJECT=A*BLOCK    
TYPE=CS;

LSMEANS A B A*B;
RUN;

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

ρρ
ρρ
ρρ

σ=
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

σρσρσ
ρσσρσ
ρσρσσ

=
1

1

1
2

222

222

222

Σ
σ 2 = σd

2+ σe
2

Minimal code; 
generic syntax

Linear Mixed Effects Analysis 
(especially for Repeated Measures)

1. Using all the relevant fixed-effect terms in the model (including 
all interactions), find the most appropriate error structure (i.e., 
the form of R)

– Base this on -2*likelihood, and AIC and BIC statistics
• Smaller the better (AIC and BIC correct for number of parameters)

2. With the choice for R, test all the fixed effects (including 
interactions) for significance (F tests, and so on)

– In general, one should use a denominator df based on the data (and not 
just the design): Kenward-Roger (KR) may be best

MODEL Y = A B A*B / DDFM = KR;

– Depending on the study, one can simplify the model by removing 
nonsignificant fixed-effect terms, or considering time as continuous

3. With the choice for R and fixed effects in the model, estimate the 
expected values (i.e., means) of Y, and SEs, for the levels of the 
fixed effects (treatments, time, interactions, …)

– As relevant, use contrasts to evaluate other effects (e.g., pair-wise 
differences of means [multiple comparisons])



Example: Example: 
Early leaf spot of peanut 
(different treatments, locations, 
and years).
Data courtesy of Cantonwine, 
Culbreath, and Stevenson 
(Phytopathology 97: 187-194)

Consider only 1 location/year
Response: incidence (% 

leaves with symptoms)
Treatment: Tillage types (2)
Times:  6 assessment times
Replicates: 4

•Does disease change over time?
•Does treatment affect incidence?
•Does treatment effect change 
over time (do treatment 
differences depend on time)?

0.510.380.64All

0.890.870.9192

0.740.580.9084

0.580.430.7278

0.360.180.5570

0.400.170.6363

0.100.080.1156

21

Alltreat

incidence

Mean
days

Time (days)
90807060

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

90807060

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Conv. Strip

“classical”
graph

A “contemporary” graph, which 
emphasizes the features of the 
experimental design and mixed-
model analysis…..
Each line corresponds to a replicate 
(i.e., a plot) of each treatment. The 
lines are for separate “subjects”—
there is variability within and 
between subjects

Early leaf spot exampleEarly leaf spot example



Time (days)
90807060

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

90807060

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0.0

Conv. Strip

Original incidence data

Transformed to logits
For all analysis, 

Y: logit

Often, data are 
transformed to be 

approximately 
normality, constant 
variance, and/or to 

obtain a linear scale
(we use Y for the 

transformed response, if 
a transformation is used)

Time (days)
90807060

3

2

1

0

-1

-2

-3

-4

-5

90807060

LogitCon LogitStr

Early leaf spot exampleEarly leaf spot example (assume here that (assume here that 
design is completely randomized + time)design is completely randomized + time)

Yijk = μ + αi + βj + (αβ)ij + eijk , eijk ~N(0,R)

Yijk: response (logit of incidence) for the i-th level of treatment (tillage 
here),  j-th time, and k-th replicate

μ: constant (“intercept”)

αi: Effect of the i-th level of treatment on Y (i=1,2)
βj: Effect of the j-th time on Y (j=1,…6)

(αβ)ij Interaction effect (treatment x time)
eijk: Error associated with experimental unit in replicate k that received 

treatment i at time j [residual] – within-subject variability term
R: A matrix of variances and covariances of Y for each ik experimental 

unit (subject) – but probably more complex than CS

Fit model with PROC MIXED—go to SAS file repeatEx1.sas



Early leaf spot exampleEarly leaf spot example
Incorrect: single residual variance

Yijk = μ + αi + βj + (αβ)ij + eijk , 
eijk ~N(0, σe

2)

proc mixed data=b;
class  treat rep days;
model logit = treat|days ;
lsmeans treat|days;
run;

Correct: Many possible covariance 
structures (e.g., Compound Symmetry 
[CS]—see previous slide)

Yijk = μ + αi + βj + (αβ)ij + eijk , 

eijk ~N(0,R)

proc mixed data=b;
class  treat rep days;
model logit = treat|days / 

ddfm=KR ;
repeated / subject=rep*treat 

type=cs;
lsmeans treat|days;
run;

Correct: alternative for CS only

Yijk = μ + αi + βj + (αβ)ij + dik + eijk , 

dik~N(0, σd
2), eijk ~N(0, σe

2)

proc mixed data=b;
class  treat rep days;
model logit = treat|days / 

ddfm=KR ;
random rep*treat;
lsmeans treat|days;
run;

<.00013.870.071480.2768Residual

0.50820.660.045660.03022treat*repCS

Pr ZZ ValueStandard ErrorEstimateSubjectCov Parm

Covariance Parameter Estimates

79.7BIC (smaller is better)

79.9AICC (smaller is better)

79.6AIC (smaller is better)

75.6-2 Res Log Likelihood

Fit Statistics

<.00013.870.071480.2768Residual

0.25410.660.045660.03022treat*rep

Pr ZZ ValueStandard ErrorEstimateCov Parm

Covariance Parameter Estimates

79.7BIC (smaller is better)

79.9AICC (smaller is better)

79.6AIC (smaller is better)

75.6-2 Res Log Likelihood

Fit Statistics

σd
2

σe
2

σd
2

σe
2

Corr. = 
0.030/(0.030+0.2768) 

= 0.098

Using whole-
plot random 
effect, dik, 
with single 
σe

2

Using explicit 
CS



Other residual correlation structures:Other residual correlation structures:
FirstFirst--order autoregressive, AR(1)order autoregressive, AR(1)

Observations close in time are more similar than 

observations farther away in time

ej = ρej-1 + e*j ,

e*j ~ N(0, σ*2) [new error],    ρ: autocorrelation coefficient (|ρ|<1)

It can be shown that correlation in Y between pairs of times is:
Corr[Yj,Yj-1] = ρ1 = ρ

For Y two time periods apart:

Corr[Yj,Yj-2] = ρ2

In general, correlation m time periods 

apart is: Corr[Yj,Yj-m] = ρm

0

0.1

0.2

0.3

0.4

0.5

Covariance is ρmσ2

Repeated MeasuresRepeated Measures –
Observations become more (less) 

variable over time

May need a separate error variance for each time:

σ2 σ1
2,  σ2

2,  σ3
2

Frequently found that variability increases with time, although the 
situation could be more complex.

Can combine separate-variances for each time with different 
correlation structures, such as CS and AR(1)

Subscript indicates the time



Repeated Measures:Repeated Measures:
Covariance in Y between times within each 

experimental unit—some choices:

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

2
3

1
32

2
2

2
31

1
21

2
1

2
3

32
2
2

3121
2
1

1

21

2

2

1

1

1

1

1

1

σ
ρσσσ
ρσσρσσσ

σ
ρσσσ
ρσσρσσσ

ρ
ρρ

σ

ρ
ρρ

σ

Compound symmetry, 
CS

(like a split plot)

1st order 
autoregressive, 

AR(1)

Heterogeneous CS, 
CSH

Fixed correlation 
but changing 

variance

Heterogeneous 
1st order 

autoregressive, 
ARH(1)

Separate 
variances 
for each 

time

With ρ < 1, 
correlation 

declines with 
increasing time 

separation

Repeated Measures:Repeated Measures:
The most general structure for Σ (variance-covariance 

matrix for one plot, a component of R) allows for 
separate variances and covariances

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

2
3

23
2
2

1312
2
1

σ
σσ
σσσ

Unstructured, UN

Separate variance 
for each time and 

separate covariance 
(e.g., σ23) between 
all possible pairs of 

times

In a sense, no model for R; rather any structure is allowed. However, 
this requires estimation of potentially many variances and covariances
(i.e., estimation of many parameters)—this can be a real penalty.

Similar to a  
multivariate 
repeated 
measures



σ3
233

σ23σ2
223

σ13σ12σ1
213

000σ3
232

000σ23σ2
222

000σ13σ12σ1
212

000000σ3
231

000000σ23σ2
221

000000σ13σ12σ1
211

321321321j =

333222111i =

R =

Each yellow block is Σ

Assume three treatments (i =1,2,3) and three times (j =1,2,3)

More on correlation structures:More on correlation structures:
from SAS/STAT Manualfrom SAS/STAT Manual

PROC MIXED has numerous variance-covariance (correlation) 
structures for Σ that can be specified (a table is given in the 
Supplemental material)

The typical first choices may be: AR(1), CS, ARH(1), CSH, UN

If the times are not close to being equally spaced, it is better to use 
SP(POW)(t) instead of AR(1), where t is continuous

Goal: use the simplest structure that is consistent with the data (based 
on AIC or BIC statistics)

Too simple (e.g., CS) leads to excessively high Type I errors

Too complex leads to low power (high Type II errors)

The advantages of choosing the best structure for Σ increase with 
increasing number of times



SAS/MIXED generic syntax (already shown)

Yijk = μ + αi + βj + (αβ)ij + bk + eijk ,              

bk~N(0,σb
2) ,  eijk ~N(0,R)

PROC MIXED;
CLASS A B BLOCK;
MODEL Y = A B A*B / 

ddfm=KR;
RANDOM BLOCK;
REPEATED /

SUBJECT=A*BLOCK    
TYPE=UN;

LSMEANS A B A*B;
RUN;

TYPE= CS
AR(1)
CSH
ARH(1)
UN
TOEP
TOEPH
ARMA(1,1)
ANTE(1)
FA(1)
HF
… If there are no blocks (just 

replicates), then take out the 
RANDOM statement and use:
REPEATED /
SUBJECT=A*REP TYPE=AR(1);

The A*REP term identifies the unique 
plots (the experimental units), 
analogous to whole-plots

--No conver.7H-F

75.853.812FA(1)

75.453.411ANTE(1)

81.858.811TOEPH

85.873.86TOEP

75.961.97ARH(1)

76.862.87CSH

55.213.221UN

80.276.22AR(1)

79.675.62CS

78.376.31(Simple)

AIC-2log-likel. 
(-2ll)

#

Random

Param.

Var-Cov. 
type

At this stage, one is looking for 
a good fit in terms of the 
random effects (covariances
[correlations] and variances)

Smaller “likelihood” statistics 
indicate a better fit.

Goal: find the best fit with the 
fewest number of random-
effect parameters

Use AIC (or 
similar) statistics

In example, unequal variances 
(for different times) provided 
better fits (italics), and 
separate correlations for 
different time lags (see UN)

Ideally, one would like a 
simpler structure than UN 
(because of the many 
parameters)

Example: Finding the Example: Finding the ‘‘bestbest’’ model (covariance structure)model (covariance structure)

Sometimes, a model cannot be fit (no convergence)



--No conver.7H-F

75.853.812FA(1)

75.453.411ANTE(1)

81.858.811TOEPH

85.873.86TOEP

75.961.97ARH(1)

76.862.87CSH

55.213.221UN

80.276.22AR(1)

79.675.62CS

78.376.31(Simple)

AIC-2log-likel. 
(-2ll)

#

Random

Param.

Var-Cov. 
type

One can formally test whether 
one covariance structure fits 
better than another, in some 
cases.

That is, some structures are 
special cases of others, such 
as CS being a special case of 
CSH, etc. 

One uses a likelihood ratio 
test, with a chi-square 
distribution.

However, many potential 
structures are not special 
cases of each other, such as 
CS and AR(1).

Here, there is no 
formal test (just use 
AIC)

Example: Finding the Example: Finding the ‘‘bestbest’’ model (covariance structure)model (covariance structure)

Sometimes, a model cannot be fit (no convergence)

Mixed model analysis, repeated measuresMixed model analysis, repeated measures

• With the chosen covariance structure, perform 
inference on the fixed effects

– Treatment, time, interaction: generally F tests 

– As already mentioned, with repeated measures, it is 
generally recommended to use a degrees-of-freedom 
calculation that is a function of the data (not just of the 
design). There are different options:

• Satterthwaite
model Y = A|B / ddfm=satterth;

• Kenward-Roger (generally, first choice, especially with 
missing data and correlations over time)

model Y = A|B / ddfm=kr;

• Calculate means and SEs (which depend on the 
covariance structure), and other interesting comparisons



Mixed model analysis, Mixed model analysis, 
repeated measuresrepeated measures

(type=UN)(type=UN)

0.017867.481.895treat*days

0.000211197.61.825days

0.000450.6361treat

Pr > FF ValueDen DFNum DFEffect

Type 3 Tests of Fixed Effects

0.01513.3760.15470.5208922921treat*days7

0.01183.5760.52731.8809842841treat*days6

0.00135.6460.22161.2506782781treat*days5

0.00056.7960.25991.7648702701treat*days4

0.00394.5560.49382.2454632631treat*days3

0.23021.3460.50850.6790562561treat*days2

0.00047.1260.19541.3903_2_1treat1

ProbttValueDFStdErrEstimate_days_treatday
s

treatEffectObs

Standard error of the difference (SED). The LSD is 
approximately 2*SED. However, with unequal variances, there 

is no single LSD!

The difference of two 
least squares means 

(logit scale)

-

.0332

.0444

.0584

.0711

.0104

.0135

.0178

.0309

.0138

.0194

Prob.

-

-2.07 (.3324)

-2.07 (.3596)

-2.07 (.3683)

-2.07 (.2789)

-2.07 (.3671)

-2.07 (.3575)

-2.07 (.3596)

-2.07 (.2770)

-2.07 (.2771)

-2.07 (.2771)

Mean

Trt=1,t=56 

(SE)

---H-F

2.388 (.1015)5.115, 6.27FA(1)

2.388 (.1094)4.575, 6.13ANTE(1)

2.388 (.1207)4.615, 5.06TOEPH

2.388 (.2789)2.845, 10.6TOEP

2.388 (.1032)5.285, 10.9ARH(1)

2.388 (.1107)4.745, 11.6CSH

2.388 (.1094)67.485, 1.89UN

2.388 (.2770)2.935, 2.67AR(1)

2.388 (.2771)3.465, 30CS

2.388 (.2771)3.125, 36(Simple)

Mean

Trt=1,t=92 

(SE)

F 

statisticdfN,dfD

Var-Cov. 
type

Example: Effect of covariance on inference and Example: Effect of covariance on inference and SEsSEs

Note: means are for logits; with unbalanced data, means are also affected by covariance



ExampleExample

• Results showed that there was unequal variability at 
different times (but no systematic trend), and that 
correlations (covariances) varied a lot, but not in a simple 
way with time lag

• Treatment, time, and the interaction were significant, the 
latter indicating that the effect of treatment depended on 
time, or the change in Y with time depended on treatment

• More detailed analysis of the data can be performed, 
based on above results
– Determine if the rate of change in Y with time (slope) depends on 

treatment (to be covered later)

• One can also perform various types of residual analysis
to determine if the model assumptions are reasonable
– Normality, outliers, proper transformation, etc.

Example 2: Example 2: 
potato late potato late 
blightblight

Response: logit of disease 
severity

Factors: 
Cultivar (4), 
Time (7),
Block (4)

Data from W. Fry, and given 
in Campbell & Madden 
(1990)

Days

100

75

50

25

0

252015105

100

75

50

25

0

252015105

100

75

50

25

0

100

75

50

25

0

Katahdin Kennebec

Monona Sebago



Example 2: Example 2: 
potato late potato late 
blightblight

Days

100

75

50

25

0

252015105

100

75

50

25

0

252015105

100

75

50

25

0

100

75

50

25

0

Katahdin Kennebec

Monona Sebago

Days

252015105

5

0

-5

252015105

5

0

-5

Kata Kenn

Mono Seba

Severity

logit

Data in: repeatEx2u.sas

Assignment:
Analyze these data.
Find an appropriate 
covariance matrix, test for 
cultivar, time, and 
interaction, get means (and 
SEs). Don’t forget there 
are blocks in this data set.

Late Blight ExampleLate Blight Example

• What is the most appropriate variance-
covariance structure?

• What factors affect the response? How do you 
interpret these F tests?

• What are the least squares means for the 
cultivars? How do they differ?



Linear Mixed Effects Analysis (especially 
for Repeated Measures)

1. Using all the relevant fixed-effect terms in the model (including all 
interactions), find the most appropriate error structure (i.e., the form of R)

– Base this on -2*likelihood, AIC and BIC statistics

2. With the choice for R, test all the fixed effects (including interactions) 
for significance (F tests, and so on)

– In general, one should use a denominator df based on the data (and not 
just the design): Kenward-Roger (KR) may be best

– Depending on the type of study, one can simplify the model by:
• removing nonsignificant fixed-effect terms, or 

• considering time as continuous

3. With the choice for R and fixed effects in the model, estimate the 
expected values (i.e., means) of Y, and SEs, for the levels of the fixed 
effects (treatments, time, interactions, …)

– As relevant, use contrasts to evaluate other effects (e.g., pair-wise 
differences of means [multiple comparisons])

Repeated MeasuresRepeated Measures, continued

For some situations, it is very 
informative to determine the rate
of disease increase over time for 
each level of the class (factor) 
variable(s). 

In other words, one performs a 
linear mixed-model analysis of 
COVARIANCE .

One can determine, among 
other things: are the slopes 
and/or intercepts (curve heights) 
different among treatments?

0 10 20 30 40 50 60 70

Time (days)

-2

-1

0

1

2

T
ra

ns
fo

rm
ed

 d
is

ea
se

 in
ci

de
nc

e

Covariance analysis: one or 
more fixed-effects variables in 
the model are factors (class, 
category variables), and one 

or more are continuousDo not confuse Covariance Analysis with the 
covariance matrix that exists for all the mixed models



Why not just perform a Why not just perform a ““regularregular”” regression analysis regression analysis 
to get intercepts and slopes?to get intercepts and slopes?

1. For a single profile of Y vs t, this would fine, if one tested for temporal 
autocorrelation of residuals (i.e., test for independence), and made 
adjustments when correlation was not zero.

• There are other specialized programs for this (PROC AUTOREG), but these 
assume only a 1st order autoregressive process [AR(1)]

2. With several subjects (e.g., plots), there are profiles of Y vs t for each, with 
variation between subjects and within subjects, with associated correlation 
of residuals within subjects.

• This is the fundamental basis for a mixed-model analysis

3. One could obtain intercepts and slopes for each of the subjects (as well as 
for all treatments, if relevant), and then perform mixed-model analysis on 
the estimated intercepts and slopes as dependent variables

• These estimates are correlated however, causing problems

4. However, the mixed-model covariance analysis works in one step, deals 
with all relevant statistical issues, and is more efficient in utilizing all data at 
once

– There is actually a different mixed-model covariance-analysis (“Empirical Bayes”)
model, different from the main approach of this workshop, which mimics closely in 
one step the multiple steps of #3 – accounts for correlations, different sources of 
variability, etc.

Early leaf spot (example 1), Early leaf spot (example 1), revisitedrevisited

Time (days)
90807060

3

2

1

0

-1

-2

-3

-4

-5

90807060

LogitCon LogitS tr

On a logit scale, it appears 
that a straight line provides a 
reasonable fit to the disease 

progress curves

It also appears that 
the heights of the 
lines are different, 

and maybe the 
slopes (rates)

This can all be addressed by 
using linear mixed models



Repeated Measures: covariance analysisRepeated Measures: covariance analysis

Yijk = μ + αi + βj + (αβ)ij + eijk , eijk ~N(0,R), unstructured cov.matrix

Yijk = μ + αi + βtj + (δitj ) + eijk , eijk ~N(0,R), unstructured cov.matrix

Yijk = μ + αi + βj + (αβ)ij + bk + dik + eijk ,
bk~N(0,σb

2) , dik~N(0, σd
2), eijk ~N(0,R)

Time as a 
continuous 
variable (t)

Always maintain 
the same R

structure chosen 
for the fuller model

β is now a single 
parameter 

(constant), giving 
an overall slope 

for all data

δi Is the effect of
the i-th treatment 
on the slope (an 
interaction term)

Can be fitted with PROC MIXED 
using almost identical syntax as 

before

Repeated Measures: covariance analysis Repeated Measures: covariance analysis 
(another view)(another view)

Yijk = μ + αi + βj + (αβ)ij + eijk , eijk ~N(0,R)

Yijk = μ + αi + βtj + (δitj ) + eijk , eijk ~N(0,R)

-- or --

Yijk = (μ + αi)+ (β + δi)tj + eijk , eijk ~N(0,R)

Intercept for 
treatment i

Slope for 
treatment i

t: time in days

proc mixed data=b;
class  treat rep days;
model logit = treat|t / ddfm=kr solution ;
repeated / subject=rep*treat type=un;
run;

Variable t is not a “class” factor

Need “solution” option to see 
all parameters



Mixed Models (Mixed Models (an asidean aside):):
Must consider parameterizationMust consider parameterization

Yik = μ + αi + eik , eik ~N(0,σe
2)

Example: one-way layout 
(with only residual 

variance)

A constant 
(parameter). If there 
were no treatments, 
then this would be 

the overall mean for 
all data

Effect of each 
treatment on 
expected Y. However, with 4

treatments, for example, 
there are 5 fixed-effects 
parameters, μ, α1, α2, α3, 
α4. The model is 
overparameterized,
meaning there is no unique 
set of parameters for a 
given data set. This 
overparameterization is 
necessary for calculating 
valid F tests, etc., for effects, 
and causes no problems in 
determining means and SEs. 

There are several ways of dealing with this 
overparameterization. The SAS approach is to 
always assign 0 to the last level of the factor 
(factors), e.g., α4 = 0.
Expected (means) for four treatments are, 
thus: 
E(Y1 ) =μ + α1 E(Y2 ) =μ + α2

E(Y13) =μ + α3 E(Y4 ) =μ + α4 = μ + 0 = μ

Repeated Measures: covariance analysisRepeated Measures: covariance analysis
Example: 2 treatments (factor levels)Example: 2 treatments (factor levels)

Yijk = μ + αi + βtj + δitj + eijk , eijk ~N(0,R)

Treatment 1: Y1jk = (μ + α1) + (β + δ1)tj + e1jk

Treatment 2: Y2jk = (μ + α2) + (β + δ2)tj + e2jk = (μ+0) + (β +0)tj +e2jk

proc mixed data=b covtest ;
class  treat rep days; *---Time (t) is not a factor;
model logit = treat|t / ddfm=KR solution ; *---Or: treat t treat*t ;
repeated / subject=rep*treat type=un;
run;

....02t*treat

0.0002-8.1960.002698-0.022101t*treat

<.000181.8260.0019080.1561t

....02treat

<.000111.0360.26762.95051treat

<.0001-66.6960.1892-12.6180Intercept

Pr > |t|t ValueDFStandard ErrorEstimatetreatEffect

Solution for Fixed Effects Intercepts are:
1) -12.6180 + 2.9505 = -9.668
2) -12.6180 + 0 = -12.618

Slopes are:
1) 0.1561 – 0.02210 = 0.134
2) 0.1561 + 0 = 0.1561

μ
α1

α2

β
δ1

δ2



Repeated Measures: covariance analysisRepeated Measures: covariance analysis

Yijk = μ + αi + βtj + δitj + eijk , eijk ~N(0,R)

PROC MIXED can be used directly to obtain all slopes and intercepts directly.

Remove the “intercept” and the “main effect” of time: the investigator 
must understand the parameterization and software syntax. 

Continue analysis of the early leaf spot data (Example 1), and learn how to 
directly obtain intercepts and slopes, and compare them with contrast 
statements.

repeatEx3.sas

Continue analysis of potato 
late blight data (Example 2):

Obtain slopes and intercepts for 
each cultivar, and compare 

these…

Days

252015105

5

0

-5

252015105

5

0

-5

Kata Kenn

Mono Seba

repeatEx2u.sas

Covariance analysis (general points)Covariance analysis (general points)
• PROC MIXED statements are very similar to those already used 

(time is no longer a factor (not in CLASS statement))

• However, unlike the situation with only class (factor) variables, the 
actual solution to the fixed-effect terms in the model (e.g., α1, α2, 
…, β, etc.) is needed, not just means (i.e., linear combinations of 
the terms).

• Generally, the fit will be ‘poorer’ if time is continuous (since one is 
fitting a model with a straight-line through the points) than when it 
is a factor 
– With time as a factor, much more complicated relationships 

between Y and time are allowed (quadratic, asymptotic)

– Note: always find the covariance matrix structure with time as a
factor, and then switch to time as continuous (no need to reassess 
the best covariance structure)

• Other continuous variables can be incorporated in the model from
the start (never considered as a factor):
– e.g., weather variables for each experimental unit



More complex experimental designsMore complex experimental designs
• Factorial + time (with or without blocks)

• Split plot + time (with or without blocks)

• Time + subsampling (within plots)

• Doubly repeated measures
– (e.g., collect samples (“harvest”) of leaves or fruit at 

several times from same plots, then measure disease 
on these samples at several times (for each “harvest”))

• Spatially repeated measures, with or without 
temporal repeated measures

• Random-effect factors of direct interest
– e.g., random location effect or random pathogen strain 

effect

Repeated measures example (factorial)Repeated measures example (factorial)
• Data set:

– Effects of planting date and cultivar on 
disease progress of soybean bud blight

• Almeida et al. (1994)

• A subset of dataset was used in 
Madden et al. textbook (2007), 
with a different transformation

• Terms in model:
– Block, b (random)

– Planting date, α (fixed)

– Time, β (fixed), use just last 4 dates 
(no variation on first assessment)

– Cultivar or “var”, γ (fixed)

– Interactions 

• Response: transformed incidence (Y) 
[“Gompertz” transformation here]

repeatEx4.sas

Numerous questions to ask 
about the main effects and 

interactions



Factorial Repeated Measures (with blocks)Factorial Repeated Measures (with blocks)

Yijkl = μ + αi + βj + γl +(αβ)ij +(αγ)il +(βγ)jl +(αβγ)ijl + bk + eijkl

bk ~ N(0,σb
2), eijkl ~N(0,R)

Yijk: response (dependent variable) –Gompit of incidence

μ: constant (“intercept”)
αi: Effect of the i-th level of planting date on Y

βj: Effect of the j-th time (days) on Y 
γl: Effect of the l-th variety on Y
bk: Effect of the k-th block 

(αβ)ij ,etc.:  Interactions
eijkl: Residual
R: A matrix of variances and covariances of Y for each ikl experimental 

unit (subject) 
proc mixed data=alv covtest;
title2 'repeated measures, cs' ;
class var PD dayc block ;
model ystar = var|PD|dayc / ddfm=kr ;
random block;
repeated / sub=block*var*PD type=CS;

Try different 
structures

ExampleExample
Data set:

Effects of Wetness duration (W), Temperature (T), and leaflet age (A) on 
incidence (and severity) of Phomopsis leaf blight of strawberry (Nita et al., 
Plant Dis. 87: 579-584).

Terms:
R:  repetition (block) – random
T:  (6 levels)
W: (6 levels)
A:  (3 levels)
+ Interactions, + random effects

Although disease only measured once, 
both W and A are repeated measures, 
since there is, by definition, no 
randomization of wetness durations or 
leaflet ages. Moreover, the clustering of 
W (and A) within T*R experimental units 
results in correlations. But selected plants 
at each W were randomly selected from 
the total, so W might be considered a 
sub-plot in a split-plot design, + time. 

Groups of plants inoculated at single temperatures, and plants 
removed from chamber after different periods of time 
(wetness durations). Leaflets of three ages were assessed for 
disease.

Multiple levels of subjects:
blocks, 
block*temperature (“Whole plot” variation), 
block*temperatue*wetness (“sub-plot”

variation), 
block*temperature*wetness*age 

(residual)

Wetness dur.

repeatEx5.sas



Doubly Repeated Measures Doubly Repeated Measures (as split(as split--splitsplit--plot)plot)

Yijkl = μ + αi + βj + γl +(αβ)ij +(αγ)il +(βγ)jl +(αβγ)ijl

+ bk + dik + fijk + eijkl , 

bk~N(0,σb
2) , dik~N(0, σd

2), fijk~N(0, σf
2), eijkl ~N(0, σe

2)

Yijk: response (dependent variable) – logit of incidence

μ: constant (“intercept”)
αi: Effect of the i-th level of temperature on Y (whole plot)

βj: Effect of the j-th wetness duration on Y  (sub plot)
γl: Effect of the l-th leaflet age on Y  (sub-sub plot = “time”-like term)

(αβ)ij ,etc.:  Interactions
bk: Effect of the k-th block on Y 
dik: Effect of ik-th experimental unit on Y (“whole plot” error) (run of the 

exp. at a given temp.)
fijk: Effect of ijk-th experimental unit on Y (“sub-plot” error) (run of exp. 

at a given temp. at a given wetness duration)
eijkl: Residual (“sub-sub plot” error)

Doubly Repeated Measures Doubly Repeated Measures (as split(as split--plot + time)plot + time)

Yijkl = μ + αi + βj + γl +(αβ)ij +(αγ)il +(βγ)jl +(αβγ)ijl

+ bk + dik + eijkl , 

bk~N(0,σb
2) , dik~N(0, σd

2), eijkl ~N(0, R)

Yijk: response (dependent variable) – logit of incidence

μ: constant (“intercept”)
αi: Effect of the i-th level of temperature on Y (whole plot)

βj: Effect of the j-th wetness duration on Y  (sub plot)
γl: Effect of the l-th leaflet age on Y (“time”-like term)

(αβ)ij ,etc.:  Interactions
bk: Effect of the k-th block on Y 
dik: Effect of ik-th experimental unit (run of exp. in chamber at a temp.) on 

Y 
eijkl: Residual
R: A matrix of variances and covariances of Y for each ijk experimental 

unit (subject) -- try different structures

Could expand more, by considering 
structure for the sub-plot variability term



Repeated MeasuresRepeated Measures——doubly repeated (again)doubly repeated (again)
One could argue that there is no natural hierarchy—age within wetness or

wetness within age—but a simultaneous clustering within block-temp.

Yijkl = μ + αi + βj + γl +(αβ)ij +(αγ)il +(βγ)jl +(αβγ)ijl + bk + eijkl

bk~N(0,σb
2) , eijkl ~N(0,R)

Yijk: response (dependent variable) – logit of incidence

μ: constant (“intercept”)
αi: Effect of the i-th level of temperature on Y

βj: Effect of the j-th wetness duration on Y 
γl: Effect of the l-th leaflet age on Y

(αβ)ij ,etc.:  Interactions
bk: Effect of the k-th block on Y 
eijkl: Residual
R: A matrix of variances and covariances of Y for each ik experimental unit 

(subject). Requires a MULTIVARIATE covariance structure
… type=un@ar(1) or type=un@cs or type=un@un;

(See SAS Manual for more details -- this is the approach in Nita et al. -- not covered here)

Repeated Measures: ConclusionsRepeated Measures: Conclusions

• In general, mixed models are extremely valuable for analyzing 
data collected over time in multiple experimental units 
(subjects)
– Although there are other useful approaches, for most 

investigators, mixed models should be used (especially, linear 
mixed models)

• With programs such as PROC MIXED of SAS (and others), 
investigators have extremely powerful tools available for 
properly analyzing data from all kinds of experimental designs 
(including repeated measures)

• The key to proper analysis is to choose an appropriate mixed 
model, which entails specifying the fixed and random effects in 
the model, as well as the structure of the variance-covariance 
matrix of the residuals (R) 



Repeated Measures: Conclusions, Repeated Measures: Conclusions, 
continuedcontinued

• With repeated measures, the experimental design alone 
cannot be used to decide on the structure for R -- one must 
allow the data to indicate which structure is reasonable
– Statistical inference and interpretation (for the fixed and the 

random effects) follow naturally, once a reasonable model is 
chosen (including R)

• As indicated at the beginning of the workshop, nonlinear 
mixed models and generalized linear mixed models are also of 
great value for many analyses (maybe the subject of another 
workshop)

• As always in data analysis, investigators should consult with a 
statistician whenever possible

Repeated Measures:Repeated Measures:
AddendumAddendum

• Longer list of covariance matrix structures 
available in PROC MIXED of SAS

• Introduction to Estimation and Hypothesis 
Testing: the use ESTIMATE and CONTRAST
statements with PROC MIXED of SAS
– See separate file (…supplemental) for this 

information



From SAS/STAT Manual, 
version 9.1


