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Meta-Analysis: 
A Tool for Evidence Synthesis 

in Plant Pathology

L. V. Madden
P. A. Paul

Ohio State University

WORKSHOP

Meta-analysis workshop : Outline
• Basic concepts (with demonstration)

– A little history and the goals of meta-analysis

– Effect sizes: results from multiple studies

– Graphical appraisal of the effect sizes

– Fixed vs. random-effect meta-analysis

– Heterogeneity among studies, impact of heterogeneity

– Confidence intervals, prediction intervals

• Example: use of SAS procedures and macros

• Risk prediction

• Power of meta-analysis
– Fallacy of counting P values (avoid vote counting)

• Bias of meta-analysis and how to assess

• Moderator variables in a meta-analysis

Genesis of Meta-Analysis
• The psychotherapy debate (1952-1977)
• Glass (1976); Smith & Glass (1977)

– “META-ANALYSIS”

• Rosenthal; Rosenthal & Rubin (1978)

• Schmidt & Hunter (1977)

• Precursors:
– Pearson (1904): correlations

– Fisher (1932): P values

– Yates & Cochran (1938, …): “Ag” experiments

• Medical research (1980s-): heart disease, 
cancer, etc. – ubiquitous since the 1990s
– “It is obvious that the new scientific discipline of meta-

analysis is here to stay” -- Chalmers & Lau (1993)

Social 
sciences:
psychology, 
education, 

Employment 
testing, 

personnel 
evaluation, etc,
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Meta-Analysis
• “The statistical analysis of a large collection of analysis 

results from individual studies for the purpose of integrating 
the findings” -- Glass (1976)

• “Averaging results across studies” -- Hunter & Schmidt (2004)

• “…the combination of results from multiple independent 
studies” -- Sutton & Higgins (2008)

• “[combination of the] results of previous research in order to 
arrive at summary conclusions to resolve uncertainty about 
the underlying medical question”-- Mittlbock & Heinzl (2006)

• Basic concept:
– “…a single study will not resolve a major issue. Indeed, a 

small sample study will not even resolve a minor issue. 
Thus, the foundation of science is the culmination of 
knowledge from the results of many studies.”

-- Hunter & Schmidt (2004)

Meta-Analysis
• Controversy

– “an exercise in mega-silliness” -- Eysenck (1978)

– The problem of “garbage-in, garbage-out”: empirical data in certain 
studies may be untrustworthy

– The problem of “mixing apples and oranges”: studies may differ too 
much from each other (methodology, treatments, measured 
responses, etc.), making synthesis problematic

– Publication bias: only the ‘good’ results get published

•Nevertheless, meta-analysis 
has become the standard for 
evidence synthesis in many 
disciplines

–The above concerns can be 
(mostly) nullified with a formal 
selection of studies for analysis, 
based on clearly defined criteria

An illustration: an individual study
An investigation of the effect of treatment 
T, on severity of crop disease. Example:
– 2+ treatments or factor levels (T, C [=control], …)
– 4 replications
– Response: y (disease severity)
– Estimated Effect Size of interest (estimated 

parameter, or combination of estimated 
parameters, from an individual study): 

• Difference in mean disease for T and C

• Or, % control, C% (relative reduction in disease 
compared to the control)

• Or, transformation of the above for statistical 
reasons (e.g., log-response ratio):

TCTC yyD  ˆˆ

)ˆ/ˆ1(100ˆ/)ˆˆ(100% CTCTCC 

)ˆ/ˆln( CTL 

L is especially 
useful when the 
mean in the 
control could be 
small or large --
e.g., D=3 is large 
when the control 
mean is 5 (C% = 
100·3/5 = 60%), 
but small when 
the control mean 
is 50 (C% = 
100·3/50 = 6%)
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An illustration, continued
• Use z as a generic symbol for the estimated effect size (D, 

C%, L, …)
• z is an estimate of a parameter  (true effect size)

• Record the estimated effect size (z) of interest (e.g., 
difference of two treatment means), and also the variance of z
(label this s2; known as the sampling [within-study] variance) 
for the study

• Note: When the effect size is the difference of means (i.e., 
when z = D), then s2 is the square of the standard error of the 
difference of means (s2 = SED2)

• s2 = SED2 = 2·V/n = (LSD/t*)2

» Where V is the residual variance (mean square error), 
and n is the number of replicates (blocks)

» t* is the critical value for a Student t distribution (~2 for 
a 5% significance level, with large residual df); 
approximate by standard normal if df is large enough

• Examples: 
• LSD = 4, t*=2  s2 = (4/2)2 = 4
• V = 3, n=4  s2 = 2·3/4 = 1.5

An illustration, continued

• Much more to say on different effect sizes (more on this later)
• A single study has the pair of required statistics, (z, s2)

• Now suppose there are several studies, with the same 
treatments. Label the studies with index i. If there are K studies 
(e.g., K=10), then i =1, …, 10

• Estimated effect size for study i is zi, with variance si
2

• The pair (zi, si
2) becomes a “data point” for a meta-analysis, 

and the unknown true effect size (a parameter) for study i is i

• When the effect size is L (z = L), then s2 (VL) is more 
complicated:










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Fusarium head blight of wheat
• As part of the U.S. Wheat and Barley Scab 

Initiative, “Uniform Fungicide Trials” have 
been conducted for 10+ years in several 
states
– Methodology has been standardized, so that all 

studies are conducted in a very similar manner

– Usually, 4-7 treatments (including the control)

• These data have been used for several 
meta-analyses. See: Phytopathology 97: 211-
220; Phytopathology 98: 999-1011.

– Here, we use results for the effect of Folicur 
(tebuconazole) on DON (ppm in grain)

• There were K= 101 studies in this analysis

• y: DON (ppm)

• Two treatments used

– T: Folicur (applied at Feekes 10.5.1)

– C: Check

Primary interest:
Percent Control (C%)

Effect size (zi):
Log-response ratio 

)ˆ/ˆln( ,, iCiTii Lz 
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zi si
2i

K=101 studies:
Each study becomes an 

“observation”

The meta-analytical data set:

Study 
C̂  T̂  

C% )ˆ/ˆln( CT   VL 

1 10.3 4.8 53.4 -0.764 0.029 
2 8.0 4.4 45.0 -0.598 0.017 
3 3.9 3.8   2.8 -0.029 0.011 
4 5.3 2.7 49.1 -0.674 0.036 
5 8.2 7.1 13.4 -0.144 0.019 
      
 

Graphs

“Forest Plot”

Histogram 
of zi

zi and standard error

Forest 
Plot

Once you 
have the 

“data”, then 
you analyze 
with a model
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Model Fitting
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Effect size for 
study i

(the result from 
study i becomes a 
data point in the 
meta-analysis)

Expected
effect size, 

overall

Among-study
variability term.

Random effect of 
study i on the 

effect size.

Within-study variability 
term; residual or 

“sampling variation”.
Assume known.

Distributional assumptions:  2 : among-study variance

si
2: sampling variance (separate for each 

study; assume known).
Assume u and  are independent

One estimates  and 2

Meta-analysis models

• Random-effects model (explicit 
consideration of among-study 
variability)

• σ2 > 0

• Fixed-effects model (assume that 
there is no random variation in the 
true effect size) – the “old-
fashioned” approach

• i.e., ui = 0 for all studies, which 
means that σ2 = 0

• In this case, think of  as a 
common (not expected) effect

iii uz 

),0(~
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Meta-Analysis
• Parameter estimation, for  and 2

– Method of moments (the classical meta-analytical approach, 
but may not be the most general or accurate approach)

– Maximum likelihood (and restricted maximum likelihood): ML
and REML

• Iterative and more computer-intensive, but is usually superior

– Bayesian approach - a useful alternative

• In general, an investigator uses one estimation method (but we 
demonstrate several here, for teaching purposes)

• Tests: Student-t, Standard Normal, F, Chi-square, etc.

• At its core, meta-analysis is a method of obtaining weighted 
averages of effect sizes

22
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 ̂  SE(  ̂ ) 95% CI for  ̂  t = 

 ̂ / SE(  ̂ ) 

 
P value 

Control 
% (C%) 

95% CI for C% 

0.24 0.028 0.30  0.19 8.85 <0.001 21.6% 17.2%   25.8% 

H0:  = 0 (i.e., log response ratio = 0, 
Same as response ratio = 1, or percent control = 0%)

Ha:   0

Random-effect meta-analysis

Results based 
on ML 

estimation

)ˆexp(1(100% C

Estimation methods

Bayesian approaches are becoming more and more 
common. Here, noninformative priors were used. Useful for 

dealing with uncertainty in variance estimate.

Fixed-effect
estimates 
(assumed 

σ2=0), also very 
common, 

should not be 
used, in 

general. False 
sense of 
precision. 
Shown for 

demonstration.

ML (or REML) 
methods are 
very general 
and useful, 

especially for 
those familiar 
with likelihood-
based model 

fitting 
(recommended)

Several methods can be used.
Moment Method is most commonly used in the 

many specialized computer programs

Method (SE) Confidence 
Interval (95%)

ML -0.244 (.0276) -0.299   -0.189

REML -0.244 (.0278) -0.299   -0.189

Moment -0.245 (.0285) -0.301   -0.188

Fixed -0.223 (.0163) -0.255   -0.192

Bayesian -0.242 (.0281) -0.298   -0.184

ζ̂

Heterogeneity and risk probabilities
• The among-study variance (σ2) is of value for:

– Properly estimating the expected effect size and its standard 
error

– Assessing the magnitude of effect-size heterogeneity
• If σ2 = 0, then:

– One could use fixed-effect analysis with σ2 = 0, but there is 
really no reason to do so (random-effect analysis is just as easy 
[now], which automatically takes care of the among-study 
variability [if present])

– Specialized post-model fitting analyses of value:
• Prediction interval for effect size (interval in which future 

(other) individual effect sizes will fall, with specified 
probability [say, 95%])

• The probability that the effect size in a randomly selected 
future study will be less than (or will be greater than) any 
constant of interest  ()
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Heterogeneity and risk probabilities
• One can test for significance of σ2  in several ways, including 

with a likelihood ratio test (but very computationally intensive)

• Often, one simply wants to know the impact of heterogeneity
– Higgins & Thompson developed three (interrelated) indices for 

impact, to ascertain whether among-study heterogeneity is 
having a substantial effect on the results (H2, I2, R2)

• I2: Percentage of total variability that is due to among-study 
heterogeneity (defined directly in terms of moment 
estimates)

• “R2”: Based on ratio of the width of the confidence interval 
for estimated effect size () for a random effect and fixed 
effect analysis

– Larger then 1.5 (or 2) means that among-study variation is 
having a substantial effect on all the results

2

2
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2̂  95% CI for 2̂  P value “R2” 

0.036 0.020  0.063 <0.001 2.9 

H0: 2 = 0 (i.e., no heterogeneity in the [true] effect size 
among studies: there is a common effect size across
studies)

Ha: 2 > 0 (i.e., heterogeneity in the [true] effect size)

Meta-analysis: Among-study variability
ML estimation for DON and 

Folicur;
Profile likelihood CI method

Likelihood-ratio statistic (LRS) and Chi-square test
(one can also use a standard normal Z test).
If interval does not include 0, then variance is 

significantly greater than 0.

Relative impact of 
heterogeneity 
(>1.5 is high)

Higgins and Thompson 
metric: 9.2

0163.

0276.
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 ̂  SE(  ̂ ) 95% CI  t = 

 ̂ / SE(  ̂ ) 

 
P value 

Control 
% (C%) 

95% CI for C%

0.24 0.028 0.30  0.19 8.85 <0.001 21.6% 17.2%  25.8% 

Confidence Interval (for expected value):

)ˆexp(1(100% C

 ̂  SE(  ̂ ) 95% Pred. 
Int.  

t = 

 ̂ / SE(  ̂ ) 

 
P value 

Control 
% (C%) 

95% Pred. Int. 
for C% 

0.24 0.028 0.62  0.13 8.85 <0.001 21.6% -14.3% 46.3%

Prediction Interval (for individual effect sizes):

)ˆ(SE*ˆ  t

  5.022 ˆ)ˆ(SE*ˆ  t

191.0ˆ  ,0365.0ˆ

0276.0)ˆ(
2 

SE
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Other graphical views of effect sizes
• With a large K, some specialized graphs may be useful

– These graphs can simultaneously be used to determine if a fixed-
effects (common-effects) analysis is warranted, and if there is bias 
due to missing studies (publication bias, discussed later)

– Funnel plot: Graph of “precision” (= 1/[sampling variance]1/2) vs. 
estimated effect size for all the studies); 

• 1/[si
2]1/2 vs.  zi

If among-study 
variance is 0 

(justifying 
fixed-effects), 

almost all 
points should 
be inside the 

dashed lines).
Evidence here 
is for random 

effects

If not upside 
down funnel, 

and not 
symmetrical, 
then selective 
reporting of 

results may be 
occurring.

No bias here.

If among-study 
variance is 0 

(justifying 
fixed-effects), 

almost all 
points should 
be inside the 

dashed lines).
Evidence here 
is for random 

effects

If no bias, there 
should be a 

random scatter 
around the line 

(no gaps at 
certain 

precisions or at 
certain effect 

sizes)

These graphs are guides
only, and may not be useful 

with much smaller K

• With a large K, some specialized graphs may be useful
– In addition to funnel plot, a so-called “Radial plot” or “Galbraith 

plot”) may be useful

– Radial plot: Graph of standardized estimated effect size versus 
“precision” (1/[sampling variance]1/2)

• zi /[si
2]1/2 vs. 1/[si

2]1/2 

Other effect sizes: Example analysis

• Before considering applications of meta-analysis and more 
advanced topics, an example analysis will be carried out in 
the workshop

• So far, we have used the log-response ratio (Li) as the effect 
size (zi), and use the estimated expected value to determine 
percent control (through a back transformation)

• There are numerous possible effect sizes, depending on the 
objectives of the investigator and the nature of the studies 
being assembled and analyzed in the meta-analysis

• Many meta-analytical textbooks give details on effect sizes 
and their sampling variances for individual studies
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Effect Sizes: Treatment effects
• Continuous data

– Difference in means (Di )

– Log ratio (Li ), or percent control…
• Valuable when relative changes matter

• May be useful when the response variable 
is not (quite) the same for all studies 
(different scales)

– Standardized mean difference (di )
• Very common in social sciences

• Advocated when the response variable 
differs among studies (different scales)

– (Often overlooked: assumes a linear relation 
among scales)

• Discrete data (not covered)
– Difference of proportions (risk difference), 

relative risk (ratio of proportions), odds ratio, 
and their transformations (log-odds)

iiiD ,T,C ˆˆ 

)ˆ/ˆln( ,C,T iiiL 

ipooled

ii
i S

d
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

deviation standard

study -Within
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Sampling variance 
formula depends on the 
effect size and response 

variable
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Effect sizes for relationships or associations

Correlation coefficient (ri) or the Fisher 
transformation (Zri).

Sampling variance of Zri is si
2 = 1/(ni-3)

Slope (bi) and/or intercept (ai) of model fitted to 
the data for each study (i = 1, …, K). Sampling 
variance: square of estimated standard error of 
slope or intercept

r(Correlation coefficient: DON vs IND)

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0

F
re

q
u

en
cy

0

5

10

15

20

25

30

35

z(Fisher transformation of r to z)

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0 2.5 3.0

F
re

q
u

en
cy

0

5

10

15

20

25

30

35

Regression intercept

-20 -10 0 10 20 30 40

F
re

q
u

e
n

cy

0

10

20

30

40

50

60

Regression slope

-0.4 -0.2 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

F
re

q
u

e
n

c
y

0

10

20

30

40

50













i

i
ri r

r
Zz

i 1

1
log

2

1

ii bz 

ii az 



10

Example:

• Effect size: slope of the regression model for crop loss as a 
function of disease severity (i.e., zi = bi, where bi is the slope 
for the i-th study (i = 1, …, 20)

http://oardc.osu.edu/APS-statsworkshop/downloads/downloads.htm

Heterogeneity and risk probabilities
• The mean effect size and its standard error (or confidence interval) 

are of interest for determining the expected outcome in the long run 
(over many studies [or over many fields]), but these statistics cannot 
be used directly to determine how likely a given effect size will be in 
a single (future) study or in a field treated in the same manner, or in 
a collection of individual fields
– Prediction intervals are useful for dealing with single studies

• More directly, one can estimate the probability that the effect size in 
a randomly selected future study will be less than (or will be greater 
than) any constant of interest  ()
– For instance, with DON control for Fusarium head blight, a grower 

might be most interested in knowing the probability (p0) that C% > 
0% (i.e., L < 0) or maybe that C% > 50% (i.e., L < -0.69)

)ˆ/)ˆ(( p () is the cumulative normal 
distribution, use to obtain probability 

that effect size is less than 

)ˆ/)ˆ(( p
Risk probability for DON 

control:
Determined for log ratio and than 
converted back to percent control

19.0036.0ˆ%,6.21%ˆ,244.0ˆ  C

> C% < L p
0 0 0.90
25% -0.288 0.41
50% -0.693 0.01
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Statistical power: a 
major benefit of 
meta-analysis

• Assume Ha (  0) is true 
(treatment is truly effective)

• Consider statistical power
– Prob. of rejecting H0 when H0

is false (i.e., probability of 
making correct decision 
here)

– To justify the use of meta-
analysis, we can first estimate 
the power for each study 
(assuming Ha is true for every
study (i  0)

• Hypothetical and unrealistic 
here, but useful for 
demonstration purposes

24.0ˆ 

Calculations based on 
assumed normality for zi (Li

here), and (shifted) Student t
distribution for estimated i

One can consider two-sided 
(“not equal”) or one-sided 
(“less than 0”, “greater than 
percent”) alternatives

Ha:
C% ≠ 0%

or
L ≠ 0

Ha:
C% > 25%

or
L < -0.288

Mean
Power 
0.15

Mean
power
0.34

24.0ˆ 

By any definition, power is low for 
the individual studies (in terms of 

treatment effect on DON)

We can estimate the power for the 
meta-analysis of the 101 studies (we 
do not need to assume that Ha is true 
for every study, just that   0)

Power > 0.999

Power in meta-analysis
• One can determine power for 

any number (2K) of randomly-
selected studies:
– Theoretically, assuming a 

normal distribution for zi (with 
known variance terms)

– With simulation, which is a 
better approach to deal with 
unequal sampling variances, 
but computationally demanding

• Reminder:
– Mean individual power 

(assuming that Folicur always 
has an effect) was 0.34

– Meta-analysis Power > 0.999
with 101 studies (no assumption 
about individual studies)

• Even a Power of 0.8 could be 
reached with < 20 studies

Blue: theoretical
Red: simulation

See Littell et al. (2006) for details
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Precision in meta-analysis
• Often, the null hypothesis will 

not be true, and this can be 
shown with a reasonable (or 
small) number of studies.

• It may be more informative to 
consider the estimated mean 
and its 95% confidence interval 
for different number of 
(randomly-selected) studies. 
Easily obtained using 
simulation

• Choose a study number that 
gives a desired width of the 
confidence interval

Log ratio

Back-transformed % 
control

The fallacy of counting P values
(instead of doing a meta-analysis)

• Suppose K independent studies were conducted, and that 
there is truly a significant treatment effect (say, i < 0) in every
study (i.e., Ha is always true) -- returning to our hypothetical 
scenario

• But also suppose that individual-study power is 0.40 (not a very 
high chance of detecting the true effect) 

• A typical “qualitative” (“narrative”) summary is to count the 
number of significant results (studies where P < 0.05): vote 
counting
– Conclude that the treatment is effective if at least half the 

studies are significant
• With a large number of studies (say, K = 150), 40% will have 

significant results (on average) with this power
– Thus, one would falsely conclude here that treatment was not

effective, even though it was (truly) effective in every study.

Fallacy of counting P values
• As the number of studies increases, it becomes less and 

less likely to every find 50+% of the studies with significant 
results (when individual power < 0.5).
– In fact, there is a higher chance of finding 50+% of the 

studies with significant results if fewer studies are 
considered (a major violation of good statistical practice)

• Demonstration:
– Chance of at least half the studies being significant (P < 0.05) when 

Ha is always true and individual-study power is 0.40 (low, but higher 
than in example)

With a small number 
of studies, one 

actually has a better 
chance of finding 

half (or more) of the 
studies being 

significant

Studies Prob  
10 0.17 
20 0.13 
30 0.10 
50 0.06 
100 0.02 

There are valid 
ways to combine 

P values to 
determine overall 

significance 
(going back to 

work by Fisher), 
but these are not 
discussed here.
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Publication Bias
• Most meta-analyses make the tacit assumption that the 

studies under review are a random sample from a 
hypothetical population of possible studies (or the effects in 
each study comprise a random sample of possible effects)
– Unlikely to be true, of course, in a technical sense.

– It is likely that larger studies, or studies with significant results, will 
be published or made available for review

– The “nightmare” of meta-analysis (van Houwelingen, 1997).

• If inclusion of a study in the dataset depends on the realized 
effect size, then the meta-analytical results will be biased:

• Not of concern, for the most part, with Fusarium head blight 
example. The national initiative encouraged the ‘publication’ 
of all studies in proceedings and reports

)ˆ(E

If no bias, there 
should be a 

random scatter 
around the line 

(no gaps at 
certain 

precisions or at 
certain effect 

sizes)

These graphs are guides
only, and may not be useful 

with much smaller K

Publication Bias: Solutions
• Ignore the “selection bias” of studies (usual “solution”)

– The population being analyzed consists of the available (i.e., 
published, found, selected) studies, not an undefined larger 
population -- Limits scope of inference

• Use various analytical methods (including complex weighting of 
effect sizes), based on various assumptions regarding the study 
selection process
– Conduct sensitivity analysis to see consequences of different 

selection choices, which can lead to a bias adjustment, or can show 
how many unused studies would invalidate the results (file drawer 
problem)

• However, it is impossible to determine the study-selection 
mechanism from the available studies

• A very interesting new alternative is to determine the upper 
bound on the bias for any number of unpublished studies
– Copas & Jackson (2004) show that the worst-case bias (for any

selection mechanism) is straight-forward to calculate
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Publication Bias: an upper bound

• Copas & Jackson 
approach:
– Fusarium head 

blight example

– K = 101 studies

– Effect size: log ratio
• mean = -0.24

• Equations not shown

Calculate the absolute value of the 
(worst-possible) bias for different 

numbers of unobserved or 
unpublished studies

Example, if there are 20 unpublished studies, the total number of 
studies is 121 (not 101), and the mean effect size could be as large as 

-0.24+0.077 (-0.163) or as small as -0.24-0.077 (-0.317)

In example, bias is 
not a big issue

Compare |Bias| to |mean| from the 
published studies, or mean-(2SE)

Study heterogeneity (σ2 > 0), continued

• Causes include:
– Differences in study conditions (experimental methods, data 

collection approaches, etc.)

– Environment (broad sense)

• Study conditions/environment can be accounted for in the 
meta-analysis through the incorporation of moderator 
variables in the model
– Moderator variable: study-level characteristic (continuous or 

categorical) that can affect the magnitude of the effect size 
• Examples: cultivar, temperature (degree days), baseline disease 

intensity, etc.

– The approach is analogous to performing a mixed-model 
analysis of covariance

– Accounting for significant moderator variables can lower the 
estimated among-study variance and possibly the standard error 
of the estimated effect sizes

Meta-Analysis

iiii uz  βX

),0(~

),0(~
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sN

Nu





),(~ 22
iii sNz  βX

Effect size for 
study i

Expected effect 
size, overall

Among-study variability 
term.

Random effect of study i on 
the effect size.

Within-study
variability term; 

residual or 
“sampling 
variation”.

Assume known.

2: among-study variance

si
2: sampling variance (separate for 

each study; assume known)

Effect of moderator variable(s) for the i-th study.
Xi: a row vector of p different continuous moderator   
variables (e.g., mean temperature), or “dummy 
variables” to indicate categories or class levels (e.g., 
wheat type)
: vector of effects of the moderator variables on the 
effect size (vector product is a scalar (single value) for 
each study).
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Wheat 
type 

 ̂  SE(  ̂ ) 95% CI for  ̂  t = 

 ̂ / SE(  ̂ ) 

 
P value 

Control 
% (C%) 

95% CI for 
C% 

W 0.17 0.035 0.24  0.11 4.9 <0.001 16% 10%   21% 
S -0.33 0.041 0.42  0.25 8.2 <0.001 28% 22%   34% 

Moderator Variable Example:
Wheat Type (Winter [W] or Spring [S])

Chi-square test indicated a 
highly significant effect of wheat 

type. The estimated among-
study variance, however, was 
only slightly decreased (from 

0.036 to 0.032)

Concluding comments
• With over 25,000 journal articles in print, and numerous 

textbooks, meta-analysis is here to stay
– In many disciplines, it is the standard approach to research 

synthesis
– For some regulatory government agencies, meta-analysis is 

virtually mandatory (e.g., approval of new drugs or treatments)

• Many issues not covered here, including:
– Effects of multiple moderator variables
– Multivariate meta-analytical methods

• Multiple response variables (“endpoints”)
• Multiple treatments
• Complex evidence synthesis

– Missing values
• Imputation (single or multiple)

– Cost-benefits


