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Regression Workshop Outline
Introduction
— Motivating examples
— Statistical models, linear models, and other concepts

* Terminology, notation, rationale, assumptions

Fitting simple linear models: The Least Squares Principle (and
other methOdS) . Examples from plant pathology

— Model evaluation or assessment used throughout the workshop

— Model adjustments

Robust model-fitting methods (when some assumptions are
violated)

Specialized models:
— Quantile regression models, Tobit regression models

Multiple regression

— Introduction to methods when there are multiple predictor variables
Penalized splines (“nonparametric” regression)

Possible future workshops (topics not covered here)...

Code in SAS (and R) given for examples
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Regression Workshop:

 Workshop assumptions:
— Audience has familiarity with simple data analysis

» Estimation of means and variances, quantiles (e.g.,
median, 25-th percentile, etc.), frequency distributions,
hypothesis testing (null and alternative hypotheses),
interpretation of test statistics, P values

— Audience has some experience using SAS (or similar
program) for simple data analysis

— Audience has limited (or no) experience with simple
linear regression analysis

— Audience has no experience with robust regression,
quantile regression, penalized splines, multiple
regression
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Relationships between variables can be
found everywhere in plant pathology
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Relationships between variables can be

found everywhere in plant pathology

Pusey et. al. Plant
Dis 92:137:142
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Relationships between variables can be found
everywhere in plant pathology:
Initial example (wheat yield loss vs. disease intensity)

20 . Root MSE 0.05741 | R-Square | 0.9862
Y =0.204+0.0526.X Dependent Mean | 1.93450 | Adj R-Sq | 0.9845
Coeff Var 2.96787
8
= Analysis of Variance
Source DF | Sum of Mean | FValue | Pr>F
Squares | Square
Model 1 1.88150 | 1.88150 | 570.79 | <.0001
Error 8 0.02637 | 0.00330
a0 0 50 Corrected Total | 9 | 1.90787
FHB
Parameter Estimates
Variable | DF | Parameter | Standard | t Value | Pr> |t| 95% Confidence
Estimate Error Limits
Intercept | 1 | 0.20417 0.07467 2.73 0.0257 | 0.03199 0.37635
FHB 1 | 0.05261 0.00220 23.89 <.0001 | 0.04753 0.05769

Madden & Esker (APS 2009)




Model

* Examples show lines or curves, in addition to the observations
— The lines/curves are predictions from models fitted to the data
— Thus, one represents relationships with models

* Model: Abstraction of a real phenomenon or process that

emphasizes those aspects relevant to the objectives of the
user
— Used to describe, understand, predict, compare, and make
inferences about the phenomenon
» Often, models consist of a systematic (nonrandom) part and a
stochastic (random) part

« Statistical model:
— Model with stochastic components containing unknown constants
(i.e., parameters) to be estimated
* In many cases, the parameters consist of the slope and
intercept

Statistical Model:

Response = (systematic part) + (random or stochastic part)

Response = structure St error
‘ Mean (or expected \

» : value) of response Difference between
Outcome of interest, being observed responses (i.e.,
meas.l,!red, counted, or the observations) and mean
classified (Y ); a random responses based on
variable ENcHo oee parameters; a random

variables and variable; estimate known

30 as residual (e).

parameters

25
20
TRE N BB, 8)
Systematic part: line ( ) %<
. ystematic part: line (or curve
Random part: difference of each BO + ﬁlx

15

10

point and the line
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Response = structure + error
TR T o G T B

Y is the response (random) variable
— Binary, discrete, or continuous

» We mostly focus on continuous response variable with
normal distribution

X,, X,, ... are variables that may affect the mean response
variable (with only one, call it X [no subscript]) - predictors or
predictor variables

— May be continuous (emphasis here)
— May be “dummy” variables (ANOVA models)
» “Class” or “category” variables — “factors”
* e.g., X, = lif treatment 1, X, = 0 if not treatment 1
B, B,, ... are constants (parameters) estimated from the data

e is the error (random variable)

Simple Linear Regression Model
Y=PB,+BX+e

H_}

Error, random variable

Response (e.g., lesion (difference between response
size, spores/lesion, [Y]and B, +B,X)
yield, ...)

Assume a normal (Gaussian)
distribution, with mean 0 and

variance o2.
Expected value: Linear

combination of parameters
and predictor variables.

All observations are
independent (here).

Shorthand: e ~ N(0, 62)
ore ~NIID(0, 6%)

Linear model: consists of a sum of terms, where each term is
“parameter times variable” ( 3,1 + 3,X'); note that B, parameter

multiplies a ‘variable’ that is equal to 1 for all observations
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Simple Linear Regression Model
Y=B,+BX+e

Note: For a population, each observation may
have a different Y values (and thus different

errors [€]). So, we use a subscript to indicate
the observation:

Y.=B,+ B Xi+e, e-~N(©, o?)

For this workshop, we mostly consider situations with a single
predictor variable (X or X,), which can be described by a linear
model. With one predictor, this model is often known as a simple

linear model.
Note: a linear model does not necessarily mean a straight-line (as
we shall see later).

Expectations (means):
S8 R i B TR O e; ~N(0, c?)

i
Two equivalent
e ways of writing

E(K) = E(BO = ﬁl)(z) + E(el_) a linear

regression

RGNSl -
E(Y;) =B+ BiX,

Important point: model shows how the mean
Expectation, response changes with predictor (if the model
E(e), or “mean” is appropriate).

This will be generalized later for other model
frameworks.

For convenience, the observation subscript is not
always shown.
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Without the

error term (e),
there is only
one possible Y
atany X

Response variable (Y)

P4

- - - Slope: change in Y
Bo 0 3 6 o with unit change in X
Intercept or Y- Predictor variable (X) (if X increases from 6
intercept (value é to7,then Y

of Y when X=0 increases by f34)

Y=BO+B]X+e
I E(),)=B0+B1X i

301

With the error
term (e), there is
a whole
15 population of Y
values at any X

Response variable (Y)

3 6 9 12

Predictor variable (X)

The expected (i.e., average) Y

at any X falls on the line

Models (v,=8,+p.xX+¢)

* In the real world, the values of the parameters, or even the most
appropriate model, are unknown

* Thus, one must fit a model to data and evaluate the fit

* Model fitting is the same as parameter estimation (for the types
of models we are discussing)

« Hats (") are placed on estimates of parameters (ﬁl)

* When estimated parameters are used in a model, one predicts Y
at a given value of X
— One places a hat (*) on Y for the predictions
f’, is known as predicted Y or fitted Y
— Predicted Y is an estimate of the expected response at a given X

EY) =Pyt PiXy <y’ Y =f 5B X
| 1

>
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Linear Model (putting it together)

Assumed true
relationship between

Yj:BO—i_BlX—i_ €, e;~ N(0,6°) Yand X

BB = Bren B m i E (e e
.= Yl - E(Yl) = Yl 3 (BO + Bl)(z) Error term is difference

between observed and
expected response

Fitted or predicted response
determined from model with
estimated parameters. This is an
estimate of the expected Y at X

Residual is difference between
observed and predicted
response. Also call it r.

Regression Workshop Outline
Introduction
— Motivating examples
— Statistical models, linear models, and other concepts
* Terminology, notation, rationale, assumptions
Fitting simple linear models: The Least Squares Principle
(and other methods). Concepts and model fitting.
— Model evaluation or assessment
— Model adjustments
Robust model-fitting methods (when some assumptions are
violated)
Specialized models:
— Quantile regression models, Tobit regression models
Multiple regression
— Introduction to methods when there are multiple predictor variables
Penalized splines (“nonparametric” regression)

Possible future workshops...
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Model fitting (estimation of B, , B, o?):
sLeast Squares (LS)

Find the parameters (B, and B3,) that
gives the minimum Q:

- A 2
Variance (0?) estimate is then O Zi (¥; =[Bo + P XD
obtained (here) from Q/(N-2)

An extremely powerful and

robust method (the usual
default in computer programs)

Maximum likelihood (ML)

Find the parameters that give the
largest joint likelihood (L):

Variance estimate is slightly biased.

el +BlX])2}

1
(2n02)N/2 eXp|:

Alternative: use Restricted
(Residual) Maximum Likelihood
(REML) — get unbiased variance

) 4 p When data are normally distributed,
*Bayesian estimation REML is identical to LS (for the

models we consider here)

*Robust estimation

The Least Squares Principle

1.00 The line giving the lowest One could fit a large
SSE is the Least Squares line (infinite?) number of lines
080 - or Ordinary Least Squares through the data, and see
. . (OLS) line. The parameters how far each point
060 - giving this line are the OLS (observation) is from

parameter estimates. each of the lines.
Demonstrated for one
. point (and just three
lines).

040

Response variable (Y)

0.20 : : ‘
0 10 20 30

1.00

Predictor variable (X)

E X=10,Y=0.72
. 9 0.80
For each line: one squares the xS
vertical distance between each of =
the points and the line [e.g., (.72- > 060
.83)?], and then adds these up. g
This is call the Sum of Squares 5 a_
for Error (SSE) or Residual Sum & 040 | Jo0 083
of Squares (RSS or SSR). & 0.72-0.75 . s
0.72-0.68
0.20 : ! !
0 10 20 30 40

In practice, the solution (the OLS parameter
estimates) are obtained based on calculus

Predictor variable (X)
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Ordinary Least Squares

» If assumptions are (reasonably) met, then the estimates of the
parameters are normally distributed, with a defined variance
or standard error: SE(B,)

— One can calculate confidence intervals for parameters

» The fitted or predicted Y (predicted response) at a given X'is
an estimate of the expected (mean) Y at that X value, which
is normally distributed, with a defined standard error: SE(Y,)

— One can calculated the confidence interval for the mean Y at a
given X, E(Y)
» The SE for predicted Y is a function of the estimated residual variance

* |n addition to a confidence interval, one can calculate the
prediction interval for an individual observation (not for the
mean) at a given X

— (Much) wider than the confidence interval, and used for a
different purpose

Ordinary Least Squares: Model fitting

Is a reasonable model selected?
— If not, what are some good (empirical) alternatives
Are statistical assumptions met (to a reasonable degree)?

— Normal distribution (not too important)

» Even if not normal, parameter estimates are still (almost) normal with
large number of observations

— Constant variance (across all levels of X) These latter items are
: : | usually the ones of
- I_ndependence (especially important when data arc s nen
time) investigator (so are

d . : : considered first here).

Overly influential observations? Possible contarjtsssgm B

data set? better to consider the

; A T CINERITS
— Outliers (unusually large residuals)

— High leverage (unusually extreme predictor values)
Is there a significant effect of Xon Y (F and t tests)?

How good is the fit? That is, what is the variation around the
predicted Y values?
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Example 1.

Wheat yield loss in relation to Fusarium head blight symptoms

data mes;
input FHB loss FDK; In SAS, there are numerous
procedures (PROCs) for

datalines; ) )
ordinary least squares linear

Mesterhazy et al.

2003. Plant Disease
87:1107-1115.

23.8 1.440 14.6 . :
regression analysis. PROC
23.9 18852 5REISEG . . .
048 1535 19.6 REG is the original flagship
4 3 Y procedure for this purpose.
28.5 1.675 18.4 There are many, many,
30.8 IETS » . K& options.
32.4 1.830 27.1
36.5 2.215 29.7
38.2 2.250 33.1
38.2 2.165 32.0
8 2.935 43.7

Bl

proc reg data=mes;

model loss = FHB 7/ r cli cIm clb
influence;

Wheat yield loss (MT/ha)

The intercept (B,) and error term (e;) are implicit

in the model statement. One specifies the
predictor variable(s).

X0 40 50 &0
FHB figld severity (incex’)

regressioni.sas

See SAS input and output for Example 1

regressioni.sas
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Example 1: Y, =B, +BX+e,

B Qutput - (Untitled)

Some
annotated

e;~ N(0,6%)

The SAS System

09:54 Monday, March 23, 2009.

The REG Procedure
Model: MODEL1
Dependent VYariable: loss

Humber of Observations Read 10
ou pu rom Humber of Observations Used 10
- = -
PROC REG ¢ fnalysis of Variance )
= =smor— Mean
Source DF Squares Square F Value Pr > F
Model 1 1.88150 1.88150 570.79 <.0001
Error 0.02637 0.00330 @
AD A Corrected Total 3 1.90787
o =0 T
Root MSE 0.05741 R-Square 0.9862
A Dependent Mean 1.93450 Adj R=-Sq 0.9845%
Coeff Var 2.96787
BO =

Intercept 1
FHB 1

B2t o ySEB)
0.0526+2.306-0.0022
0.0475 < 0.0576 g

Variable DI

Parameter Estimates

Parameter Standard
Estimate Error t Value Pr > it} 95% Confidence Limits
0.20417 0.07467 2.73 0.0257 0.03199 0.3763
0.05261 0.00220 23.89 <.0001 0.04753 0.0576
B 0052
=—l—= | [:p,=0
SEB,)  0.0022 o b1

4

»

| output - wntitted) ] Log - funtitied)

| [ regression.sas * 5§ GRAPH1 WORK.G‘..| [# Results wiswer - C.

For 95% confidence interval, a=0.05, which means use t ¢75 4; » Where df comes from
Error term in ANOVA table (df = 8 here, known as “error df’’)

Basis for test of significance, and goodness of fit:

1.00
< Error or Residual Sum of Squares
\>_', (SSE): sum of sqqared differences
2 080 eastaquares e
e A
[
> 060 — ¥
(2]
5
g 040 \ _
2 Y
0.20 '

0 5 10 15 20 25 30 35 40 45
Generic Predictor variable (X)
graphs

1.00
—_— Corrected Total Sum of Squares
> (SST): sum of squared differences
~ between observations and
o 080 r overall mean Y
Qo
3 YA
®©
> 060 [ —
(2]
5
2 040 [N\
o —
x Y
0.20 '

0 5 10 15 20 25 30 35 40

Predictor variable (X)

45

Relative difference between SSE
and SST, with associated degrees
of freedom, are the basis for an F
test of:

Hy: no relation between X and Y
H,: linear relation

Small SSE relative to SST means
that F statistic is large, and one
rejects H,

For the simple linear model here,
H, is same as:

Ho: B1=0,vs H,: B, #0

When B,= 0, mean Y is same as f3:

Y=y t+e
E(Y,) = EB,) + E(e;) =B+ 0=,

Madden & Esker (APS 2009)




Basis for test of significance, and goodness of fit:

< 100 Error or Residual Sum of Squares Relatlve dlfference between
>- . Sum of square ifferences "
3 o080 Iifivf’qbflw“tddéf SSE and SSTis also a
8 measure of the proportion (or
E 0.60 | percentage) of “explained
. g »9 2
g o \ variability”’, R~
g v SSE SST -SSE
’ R =T~ sst
0.20
0 5 10 15 20 25 30 35 40 45
G;"i:;c Predictor variable (X) Small SSE means that R? is
g p1_00 large (= 1 when SSE=0).
< (33T sum of squared diftrences .
3 o080l between abseruaions and Large SSE means that R? is
2 small (going towards 0 as SSE
E 060 |- becomes as large as SST).
(2]
S 0.40 \ Although R? is a measure of
a . 6o ofAa
e a variation around the best fitting
0.20 — line, this statistic is overused

0 5 10 15 20 25 30 35 40 45

and overinterpreted (it is not a
Predictor variable (X)

reflection of significance).

For a good fit, SSE is small
relative to SST. R? scales i output - (Untitied)
this difference between 0 The SAS System 09:54 Monday, March 23, 2009.

The REG Procedure
and 1. Mode1: MODEL 1 Test of
" Dependent Variable: loss

general H,

Humber of Observations Read

Humber of Observations Used
SST-SSE \ finalysis of Variance
SSE \\ Sun of Mean
Source DF Squares Square F Value Pr > F
N Popm L, tmm e com (DR
~2D ] Corrected Total 3 1.90787 ’ o
(e) =0 — -------"""'--j>
Root MSE 0.05741 R-Square 0.9862
A Dependent Mean 1.93450 adj R-Sq 0.9845 \ R2
Coeff W 2.96787
BO \ os ar
Parameter Estinates
Parameter Standard
Variable Di Estimate Error t Value Pr > [t} 95% Confidence Limits
Intercept 1 0.20417 0.07467 2.73 0.0257 0.03199 0.3763
FHB 1 0.05261 0.00220 23.89 <.0001 0.04753 0.0576
(3 i deE(Bl) . B, _0.0526 For simple linear regression,
; SEB,) 0.0022 t value for slope is same as
0.0526+2.306-0.0022 vF for relationship
[23.89 =V 570.79]
0.0475 <> 0.0576 <
| Output - (Untitted) [E] Log - {Untitled) [# regression.sas * 5 GRAPH1 WORK.G‘..| [#] Results Wiewer - C.
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Partial annotation (more later):

7 SE(Y) Confidence interval Prediction interval
Y, + + 5
Y, —tl—on/Z,deE(Y;) Y, g SE(Y)+6
The BEG Prodedure A
Y Model: MODEL1 il 4
0 + l Dependent Yariable: loss }’2 = Yl —YL
Output Statisdics /
Dependent Predicted Std Error
1 456 = Variable Value Mean Predict 95% CL Mean 95% CL Predict Residual
1 1.4400 1.4563 0.0270 1.3940 1.5186 1.3099 1.6026 =0.0163
0204 + 00526)(238 2 1.5250 1.4615 0.0269 1.3996 1.5235 1.3154 1.6077 0.0635
3 1.5350 1.5089 0.0254 1.4502 1.5675 1.3641 1.6537 0.9261
4 1.6750 1.7035 0.0206 1.6561 1.7510 1.5629 1.8442 -0.0285
5 1.7750 1.8245 0.0187 1.7814 1.8677 1.6853 1.9638 =0.0495
[ 1.8300 1.9087 0.0182 1.8668 1.9507 1.7698 2.0476 =0.0787
7 2.2150 2.1244 0.0198 2.0787 2.1701 1.9844 2.2645 0.0906
SE(I’,.) 8 2.25%00 2.2139 0.02186 2.1641 2.2637 2.0724 2.3553 0.0361
9 2.1650 2.2139 0.02186 2.1641 2.2637 2.0724 2.3553 -0.0489
10 2.9350 2.9293 0.0454 2.8246 3.0341 2.7605 3.0982 0.005652
ODutput Statistics
Std Error Student Cook's Hat Diag Cov
Obs Residual Residual -2-1 012 D RStudent H Ratio DFFITS
1 0.0507 -0.321 | i i 0.015 -0.3026 0.2215 1.6348 -0.1614
2 0.0507 1.251 | (EL) i 0.219 1.3043 0.2189 1.0822 0.6905
3 0.0515 0.507 | 1* i 0.031 0.4824 0.1963 1.5222 0.2384
4 0.90536 -0.533 | * | i 0.021 -0.5072 0.1284 1.3941 -90.1946
5 0.0543 -0.913 | *| i 0.050 =0.9022 0.1064 1.1730 =0.3114
6 0.0545 =1.446 | LLY] i 0117 =-1.5732 0.1004 0.7924 =0.5254
7 0.0539 1.681 | PR i 0o.191 1.9552 0.1192 0.6203 0.7192
8 0.0532 0.679 | i* i 0.038 0.6547 0.1415 1.3508 0.2658
9 0.0532 -0.918 | *| i 0.069 -0.9083 0.1415 1.2175 =-0.3687
7 10 0.0351 0.161 | i i 0.022 0.1508 0.6260 3.4700 0.1951
: Dutput Statistics
SE(ri) ------- DFBETAS= === ===
Obs Intercept FHB
1 -0.1423 0.1196
2 0.6071 -0.5089
. . . . 3 0.2033 -0.1669
Studentized residual (s): Scaling of the 4+ 01305 0.0915 oth g
. o 5  -0.1476 0.0765 er parts of the
residuals is important because the 6 -0.1578 0.0312 ¢ pt b
. q 7 -0.1196 0.2884 output will be
residuals do not have constant variance. 8 -0.0853 0.1439 o p I
. . . 9 0.1183 -0.1996 IScusse ater
Plus, scaling makes it much easier to 10 -0.1545 0.1789

detect outliers

Ordinary Least Squares: Model fitting

* Is areasonable model selected?
— If not, what are some good (empirical) alternatives
» Are statistical assumptions met (to a reasonable degree)?

— Normal distribution (not too important)

* Even if not normal, parameter estimates are still (almost) normal
with large number of observations

— Constant variance (across all levels of X)
— Independence (especially important when data are collected
over time)

» Overly influential observa

data set? These questions can be
addressed by looking at plots of
the residuals

— Outliers (unusually large residuals)
— High leverage (unusually extreme prediciC
* |s there a significant effect of Xon Y (F and t tests)?

* How good is the fit? That is, what is the variation around the
predicted Y values?
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Model selection and statistical assumptions

« High priority: Is a reasonable Plot residuals (r ) or studentized residuals (S)

model selected? versus X or versus predicted Y.

: Should be a random scatter.
— If not, what are some good
(empirical) alternatives If problems are identified with first model choice,
T . and one does not have (biological) theory to

* Are statistical assumptlons support other specific models, try transformations
met (tO a reasonable of X and/or Y. Fit model to the transformed data,

and re-evaluate the (new) residuals

degree)?

— Normal distribution Plot residuals versus quantiles from a

+ Even if data are not normal, normal distribution (normal probability or
parameter estimates are normal quantile plots). Should be a straight
still (almost) normal with line if data are normal. Transformations will
large number of affect distribution of residuals.

observations

— Constant variance (across Plot residuals (r ) or studentized residuals
versus X or versus predicted Y. Variation in
all levels of X)

vertical direction should be about same at
— Independence (especially different X (or predicted Y) values.

important when data are

collected over time See Madden et al. (2007). The Study of
2 Plant Disease Epidemics. APS Press.
Y, =B,+B X, +e, e~ N(0,07)

(Chapter 4).

MODEL1 Fit Diagnostics for loss
0.1 o 2 o 2
< o [+]
= 0054 2 14 2 19 o
3 8 o [ A o [ o
b= T T 04 ©
o ° e "3 ° o E _Joo
-0.05 4 o o -1 o o .
] ] )
T T T T T T T T T T T T T
15 2 25 3 15 2 25 3 0102 03 0.4 05 06
Predicted Value Predicted Value Hat Diagonal
0.1 o 3 N 0.4
el
5 0.05 p 254 a 034
3 @ wn L
w0 s 3 o8 X 024
@ = i o
'3 oo E 4 (5] 014
0054 e P | ‘
o 154 0 L L
T T T T T T T T T T T T
0 1 15 2 25 3 2 4 B B 10
Quantile Predicted Value Observation Number
40 Fit-Mean||Residual
14 @
= 309 0.75 -
@ 054 MObs 10
o 20+ ) - MNParm 2
g 20 s EDF 8
10 0 o | ™™ MSE 00033
0254 e RSquare 0.9862
0 050 AdiRSq  0.9845
T T T °
-0.175 -0.025 0.125 02 08 02 oa Results look
Residual Proportion Less good for this
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(example 1).
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See SAS input and output (graphs for first example, then go

to second example)

regressioni.sas

regression2.sas

(first variable)

Remedial measures when residual plot reveals problems:
If pattern in the residual plot, try other models (typically: transform
either Y or X, based on the Y-X and residual plots), or use weights (i.e.,
weighted least squares). Fit “new” model, get residuals, get plots, etc.

Curving to the right: transform X (try
sqrt(X) or In(X).
Y; =By + ByIn(X) + ¢

May try transformation of both X and Y

100
\\.
Aty
80 % e
\ N
z LN
g *® e, ‘\\
< ANRN .
2 e ~
@ © N AN
o S e S
So ... ~
20 LIS e ‘\
Se N .
i N
: i
0 2 4 3
Predictor (X)

Theory may suggest the best
transformations

Response (Y)

4 6
Predictor (X)

Curving upwards: transform Y (try
sqrt(Y) or In(Y).
In(Y;) =By + BiX; + ¢

With a declining relationship, more difficult to know
whether to transform X or Y (one can see the bending
to the right or the bending upwards in each curve).
May need to try each, and both.
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OLS: Simgle lintar

1= -5.73 +5. 6718 %

teqression madel, Y1 [with graphs)

0
L]
&0
Original data
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. - }
417 .
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o T
L]
27 .
204 g
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&
101 - ’ L ]
-
! ' T T T T T T
1 i 4 5 & ] 9 10
X
OL5: Simple Iinear reqression madel, sqrif¥l{wiih grophs]
sl = 04626 +0. 6754 ¢
]
, Square-root
. transformed * e
. ]
.
-
B . L ]
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- s - ..
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,
11a .
i ; : : : ; : M
)

OLS: Simple linear reqression madel, T1 {with grophs)
T1= -3.73 #5.6718 X
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2 w
:E] Ryg
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= .
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. .
.
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Predicted ¥
OL5: Simple |ieear regrecsion medel, sqri(Y}inith graphs)
sl = 04676 40 6754 %
0
L]
1.4
L] . .
1.0 -
.
2 s . . L
2 o0 L
- -
T 05 m
= .
- M - -
1.0
L]
5 - -
Lo T T T T T T T
1 2 1 1) ] & 7 &

Predicled Yalue

Remedial measures when residual plot reveals problems:
Unequal variances often are found with poor choice of model. Finding a
reasonable model often “fixes” the so-called heteroscedasticity

problem. If still a problem, then use weighted least squares.

120
100
80
Q
1)
c
S 0
0
2
40
20
0 T T T T T
2 4 6 8 10
Predictor (X)
3
.
2 d M
.
. . °
1 . . .
.
= [ . ]
< s ] .
S ° i s [} * o 3 .
b s 8 ° .
7 L4 . .
@ -1 .
© . d
L)
B
.
-3
.
-4 T T
2 8 10

4 6
Predictor (X)

Unequal variances, apparently
increasing with X (or Y)
Y;=Bot B X; T e

Try weights of 1/X;.
There may not be improvement
in residual plot, but results are
more appropriate. Weights must
always be positive.

Data a;

Input X Y;
wt = 1/X;
datalines;

Problem residual plot.

Result: standard errors
of the parameter
estimates will be too
large

proc reg data=a;
weight wt;

model Y = X
/ r cli clm clb;
run;
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Normality assumption:

Normality of the residuals can be appraised
with a so-called normal probability or a
normal quantile plot .

MNormal Quantiles for y

Idea: the residuals or studentized residuals it ;
are ordered from low to high, and then A /
graphed versus their order on a scale that ) /
gives a straight line (if the observations are -~
normal).

Lack of normality can affect the P values and
other statistics for inference.

However, normality is the least important of
the statistical assumptions (surprisingly). At

MNormal Quantiles for y

large N, parameter estimates are still (almost) o
normal. il /
Often, if an appropriate model is chosen, and ' -

the variances are about equal, and there is no
auto-correlation of the residuals, the
estimated residuals will be reasonably close
to normal.

If assumptions are violated

* Not normal(not too important if other assumptions are justified)
— May be able to use model-fitting methods appropriate for other
distributions

» Generalized linear models (Poisson, gamma, negative binomial, beta,
binomial) [not covered here]

— Use robust methods where distribution is not assumed
(discussed later)
* Not equal variances (from minor to more substantial importance)
— Weights (theory may suggest weight functions)

— Transformation (common for ANOVA), but this will change the
relation between Y and X (most important to choose an
appropriate model)

— Methods appropriate for unequal variances: robust model-fitting -
- see later; explicit unequal variances at different X values -- mixed
models [not covered]; generalized linear models [not covered])

+ Temporally correlated residuals
— Range of corrections to “remove” the correlation, or adjust for it
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Go to SAS programs

regression2.sas
(first variable)

(second variable)
[regression2_2.sas]

Late blight incidence

Example 3: Johnson et al. 2008. Plant Dis. 93:
272-280.

Data courtesy of Dennis Johnson.
(Go to SAS programs)

100
%

80 .

70 . :

0 . regression3.sas
50 (consider

o .« ° transformations)

L]

30

20 T

‘ﬂ .

0 ) ¢ ¢ % 3

2600 2700 2800 2900 3000
Solar irradiance

g
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Ordinary Least Squares: Model fitting

» Is a reasonable model selected?
— If not, what are some good (empirical) alternatives
» Are statistical assumptions met (to a reasonable degree)?

— Normal distribution (not too importg

» Even if not normal, parameter e
large number of observations

— Constant variance (across all Ig
— Independence (especiallyg
time)
« Overly influential observations? Possible contamination in
the data set? Possible existence of a different distribution.
— Outliers (unusually large [extreme] residuals)
— High leverage (unusually extreme predictor values)
« Is there a significant effect of Xon Y (F and t tests)?

* How good is the fit? That is, what is the variation around the
predicted Y values?

Once a reasonable model is
selected, it is useful to determine if
individual observations have an
excessively large influence on the
parameter estimates or the
predicted Y values

with

Influence Analysis

» Ordinary Least Squares is a very powerful and general method
— By the nature of least squares, however, observations ‘far’ from most X or Y
values may have an unduly large influence on parameter estimates or
predicted Y values

» Although least squares is known to be fairly robust to moderate violation of
the statistical assumptions (e.g., normality), results can be distorted if there
are some extreme observations (“contamination”)

* Influence analysis starts with identifying ‘outlying’ observations:

— Extreme Y values are easily identified with studentized residuals (s;).
[s; | > 2 in absolute value is large

— Extreme X values are identified with the so-called leverage (or ‘hat’ or ‘hat
diagonal’) values (h;): For models with two parameters, h;, > 4/N is large

W
[

o
(=]

[
o

L]
L=]

w

Altered data

5

Studentized residual

Studentized residual

1

op

=1

-2

-3

HYPOTHETICAL Wheat yield loss (MT/ha)

8

30 40 50
FHB field severity (findex”)

30 40 50
FHB fieid severity (finclex”)

80

01 02 03 04 05 08 07 08

Leverage
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Influence Analysis, continued

Outlying values may not automatically mean large influence

Consider what would happen if each observation, in turn, was
deleted from the data set, and then returned to the data set.
Estimated parameters when observation was deleted: Qo(i),ﬁl(i)
+ There are N different sets of parameter estimates 3 K 3
Predicted Y, (response for the i-th observation): Yo = Bowy + B X
* The observed Y, (or X,) has no effect on the parameter estimates or,
thus, predicted Y, for this observation

Deleted residual (sometimes known as PRESS residual): 7= Y; _i}(i)

» The deleted residuals have great significance in performing a type of
validation of a model (determining the prediction accuracy for
observations not used in model fitting)

Very important: studentized deleted residual (s;):

» Are-scaled version of s,, where current observation does not affect
variance or standard error of the residual

* Has a t distribution (thus, |s| > 2 are large)
Several statistics have been developed to determine how

much the parameter estimates or predicted values change (on
a standardized scale) by deletion of each observation

T

(V(,'))

Influence Analysis, continued

Cook’s Distance (D;): Overall measure of the impact of the i-
th observation on the vector of parameter estimates, on a
standardized scale

* D,>0.4-0.5 are large (some say > 1.0) [a guide only]

— A scaled difference between the parameter estimates when all
data are used and when the i-th value is not used

— A function of the residual (a measure of outlying Y values) and
the leverage (measure of the outlying X values)

— Extremely useful when interest is primarily on the parameters
— A univariate-type of Cook’s distance exists for individual A

parameters (e.g. slope), not the collection of parameters, is B-B

available (DFBETAS;) SCALE

DFFITS,; (or DFITS,): Measure of the impact of the i-th !
observation on the predicted Y,, on a standardized scale VA
— A scaled difference between predicted Y, based on all the data SCALE

and when the i-th value is not used
— Extremely useful when interest is primarily on prediction
— Related to Cook’s Distance
Many other statistics, also...
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Example 1: Partial annotation (continued)

SE();) Confidence interval Prediction interval
Y. y ; n 2 e S
) P4, 0, SEQ) T, (SE@)+6)

The REG Procgdure
Mode1: MODRL1 i >
Dependent Variable: loss }’2 = Y: . YL

Output Statis

Dependent. Predicted Std Error
1.456 = Dbs Variable Value Mean Predict 95% CL Mean 95% CL Predict Residual
1 1.4400 1.4563 0.0270 1.3940 1.5186 1.2099 1.6026 -0.0163
0.204 + 0.0526x23.8 2 1.5250 1.4615 0.0269 1.3996 1.5235 1.3154 1.6077 0.0635
3 1.5350 1.5089 0.0254 1.4502 1.5675 1.3641 1.6537 0.0261
4 1.6750 1.7035 0.0208 1.6561 1.7510 1.5629 1.8442  -0.0285
5 1.7750 1.8245 0.0187 1.7814 1.8677 1.6853 1.9638  =0.0495
B 1.8300 1.9087 0.0182 1.8B668 1.9507 1.7698 ?.0476  =0.07B7
7 2.2150 71244 0.0198 2.0787 21701 1.9844 77645 0.0906
8 2.2500 2.2139 0.0216 21641 2.2637 2. 0724 2.3553 0.0361
9 21650 2.2139 0.0216 21641 2.2637 2. 0724 2.3553  -0,0489
10 2.9350 2.9293 0.0454 2.8246 3.0341 2.7605 3.0982 0.005652
Output Statj ics
Std Error Student Hat Diag Cou
Dbs Residual Residual -2-1 0 1 2 RS tudent H Ratio
1 0.0507  -0.321 | | H 0.015  -0.3026 0.2215 1.6348 -0.1614
2 0.0507 1.251 | BT | 6.219 1.3043  0.2189  1.0822  0.6905
3 0.0515 0.507 | i* ! 0031 0.4824 0.1963 1.5232 0.2384
4 0.0536 -0.533 | i ! 0.021 -0.5072 0.1284 1.3841 -0.1946
5 0.0543 -0.913 | i ! 0.050 -0.9027 0.1064 1.1730 -0.3114
6 0.0545  =1.446 | LLY ! 0,117 =1.5732 0.1004 0.7974 -0.5254
7 0.0539 1.681 | Pere 0.1391 1.9552  0.1192  0.6208 0.7192
8 0.0532 0.679 | K ! 0.038 0.B547  0.1415 1.3509 0.2?658
9 0.0532  -0.918 | ® ! 0.069 -0.9083 0.1415 1.2175 -0.3687
10 6.0351 6161 | | | 0.022 0.1508 0.6260 3.4700 0.1951
Dutput
Dbs Inte
1 -0
2 0
3 0
4 -0
5 -0
B -0
7 o-0
8 -0 :
3 o Studentized deleted
10 -0 .
residual
MODEL1 Fit Diagnostics for loss
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0254 e RSquare 0.9862
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Example 2 (first

MODEL1 Fit Diagnostics for srY1
L]
response variable & Nt ol
© o5 o o o ° 0® ©
- - w 054 - @ £ 14 ° o = 14 " & o
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104 o R-Square 04764
ol =4 o Adi R-Square 04436
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- Getting the model ““right”” sometimes leads to
264 A . . !
discovery of influential observations.
100 There is no point in worrying about influential

T T T T
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sr

observations until a reasonable model is
selected! Then deal with influence.
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Regression Workshop Outline
Introduction

— Motivating examples

— Statistical models, linear models, and other concepts
* Terminology, notation, rationale, assumptions

Fitting simple linear models: The Least Squares Principle (and
other methods). Concepts and model fitting.

— Model evaluation or assessment

— Model adjustments

Robust model-fitting methods (when some assumptions
are violated)

Specialized models:

— Quantile regression models, Tobit regression models

Multiple regression

— Introduction to methods when there are multiple predictor variables
Penalized splines (“nonparametric” regression)

Possible future workshops (topics not covered here) ...

Highly influential observations: remedies

Delete ‘problem’ values

— This should only be done with great reluctance (most researchers
are too willing to delete observations)

Use a model fitting (parameter estimation) method that is

more robust to the influence of outlying observations than

ordinary least squares

— These methods can also be robust to violation of some other
assumptions (e.g., unequal variances)
— There are many robust estimation methods, including:
+ L,-regression or median-regression
* M estimation
* Least Trimmed Squares (LTS) and S estimation
* MM estimation (type of hybrid of M and LTS)
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Pgrjclrr?e.ter estimation can be viewed as " Y —[B, + B, X]
minimizing: Q=% b %
— Where p(e) is a measure of the difference between

observed and predicted Y values

2
+ For ordinary least squares: p(®) =, —[B, +B, XD
* Other “distance” functions can be more robust
Median regression: p(e) =Y, —[B, +B,X]

Huber's M estimation:

— p(e) is one of several possible (simple or complex) Median and M
functions that increase more slowly than the square Of |

the residuals (points far from the fitted values are not best for outliers
as “big” in the Y direction

“High breakdown value” methods

— Determine how much contamination that can be
withstood and still maintain robustness LTS, S (& MM)
i i ) are best for
* Least Trimmed Squares and S estimation outliers in Y and

MM estimation (combination of LTS and M) Sl

Robust model fitting in SAS

» Median regression: QUANTREG procedure (new and
experimental in 9.1)

» General robust regression: ROBUSTREG

» Both procedures also have good diagnostic
capabilities for finding influential points (see example)

» Robust methods are iterative (computer intensive),
and do not always converge to a solution

proc robustreg data = method = MM plots=all;
model Y = X / diagnostics leverage;
run, method=
M
proc quantreg data = __ ; LTS
) model Y = X ; regression3.sas MSM
run, (reconsidered: regression13.sas)

regression4.sas

(just robust analysis)
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finalysis of Variance
Sum of Mean
Source DF Squares Square F Value Pr > F Example 3
Model 1 40.10678 40.10678 14.55 0.0015
Error 16 44.08879 2.75555 lt
Eorvected Total o (summary results
Root MSE 1.65998 R-Square 0.4764
Dependent Mean -2.01978 Adj R=-Sq 0.4436
Coeff Var -B2.18656
Parameter Estinates
Paraneter Standard
Variable DF Estimate Error t Value Pr > iti ust regression, MM nethod 13:48 Tuesday, Ju
Intercept 1 39.31411 10.84138 3.63 0.0023 he ROBUSTREG Procedure
sr 1 =0.01515 0.00397 -3.82 0.0015
Parameter Estimates
Standard 95% Confidence Chi-
Parameter DF Estimate Error Limits Square Pr > ChiSqg
Intercept 1 44.9153 8.4536 28.3467 61.4840 28.23 <.0001
Robust - sr 1 -0.0171 0.0031 -0.0231 -0.0110 30.61 <.0001
K Scale 0 1.4468
A/
Wi 4 Diagnostics
=0
Robust Standardized
Mahalanobis MCD Robust
Obs Distance Distance Leverage Residual Outlier
5 0.6943 0.5161 -3.4683 ¥
18 2.1956 2.8229 ¥ 0.2735
Diagnost ics Summary
Observation
Ouantile and Objective Function Type Proportion Cutoff
. Dutlier 0.0556 3.0000
Quantile 0.5
Objective Function 10.0387 Leverage 0.0556 2.2414
Predicted Value at Mean -1.9216
Goodness-of-Fit
Parameter Estimates Statistic Value
Standard 95% Confidence R-Square 0.5485
Paraneter DF Estimate Error Linmits t Value Pr > it! AICR 14.8427
BICR 18.6576
Intercept 1 38.3930 12.1865 12.5588 64.2273 3.15 0.0062 Deviance 26.9547
sr 1 =-0.0148 0.0044 -0.0241 -0.0055 -3.38 0.0038
Outlier and Leverage Diagnostics for logit
24
=
[+]
i o
H =]
& o o @ ° 18
k 0 a * Observations 18
-g a o Outliers 1
-3 s} Leverage Pts 1
z L ° ° Res Cutoff 3
4 Lev Cutoff 2241
=
g
Q
T 24
=
w
.5
T T T T T
0s 1.0 1.5 20
Robust MCD Distance
13 L1 173 1]
A rObUSt + Outlier x Leverage a Outlier_Leverage A rObUSt

form of

form of
scaled
residual

leverage
(unusual
predictor)
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Linear model formulations: iyt
a linear

Y, = Byt B X+e, e; ~N(0, c2) regression

1

model [in terms

E(Y;) =By +BiX; of Y, or E(Y,)]

One does not have to write the model in terms of expected (mean) values
at a given X

One could write the model for the median Y at a given X
m(Y;) = By + B, X;, where m(e) is the median response at X;

This is, in fact, what was done previously with QUANTREG.

One can further generalize this, and model any quantile (e.g., 10%, 90%,
with 50% being the median) of the response as a function of X

Ao, (Yi) = By + B X, where qy,(e) is the % quantile response at X;

Reminder: g,,(Y,), for example, is the point that divides the lower 90% of

the observations from the upper 10%. A model for g,(Y,) allows one to
predict this point based on X; (and the parameters)
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Quantile regression

qo,(Y;) = By + B1X,. where q,(e) is the % quantile response at X;

Quantile regression functions are different model formulations, not just
different approaches to parameter estimation.

Median regression (a special form of quantile regression) is a robust
estimation method.

However, quantile regression is not necessarily robust (for all quantiles).
As one gets farther from the center of the distribution, the method
becomes less and less robust.

Quantile regression is very valuable for situations with moderate-to-high
variability, especially when the variability is not constant.

Example: Random-coefficients

rca mixed model for wheat yield,
= based on data from 77 separate
= studies (Madden & Paul, 2009;
; Phytopath. 99: 850-860)
Q@
>
et
(0]
Q
=
0 T T T T T T
O 10 20 30 40 50 60 8
1 [H [} =y
FHB field severity ('index") g
|_
=
o
Q
>
Pretend that there are no separate a—
studies (one large SINGLE data set): g
Median regression predictions (broken §
red line) are almost indistinguishable 0
from the least squares predictions. But, ' ' ' ' ' ' '
one could ask: How do the quantiles 0 10 20 30 40 50 60
VELR7 T [7lal 5 FHB field severity (‘index")
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Quantile regression:

Qo

*2]

4J

Wheat yield (MT/ha)

o

o

O 10 20 30 40 50 60

FHB field severity ('index")

Quantile regression is especially
variable for situations with high

variation at a given X, and where the

variation changes with X

Prediction lines for:

90-th percentile

75-th percentile

50-th percentile (median)
25-th percentile

10-th percentile

Goy =5.96—0.061.X
G,s =4.82-0.042X
Gsy =4.03-0.039.X
Grs =3.36—0.035X
G0 =2.96-0.042.X

Y =4.16-0.039.X [OLS]
Y =3.88-0.033.X [Robust]

regression4.sas

(reconsidered; get different

quantile predictions)
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Regression Workshop Outline
Introduction

— Motivating examples

— Statistical models, linear models, and other concepts
* Terminology, notation, rationale, assumptions

Fitting simple linear models: The Least Squares Principle (and
other methods). Concepts and model fitting.

— Model evaluation or assessment
— Model adjustments

Robust model-fitting methods (when some assumptions are
violated)

Specialized models:

— Quantile regression models, Tobit regression models

Multiple regression

— Introduction to methods when there are multiple predictors
Penalized splines (“nonparametric” regression)

Possible future workshops...

Multiple Linear Regression

We have, so far, considered linear models with one
predictor variables (often called simple linear models)

— We have further considered different estimation (model fitting)
methods, and how to interpret some of the results

+ Different estimation method lead, in some cases, to different model
formulations (e.g., quantiles rather than expected values as
functions of predictors)

— It is always important to evaluate the fit of the model (through
the different types of residuals, leverage, etc.) to determine: if a
reasonable model is selected, if the statistical assumptions are
reasonably met, and if results are overly influenced by particular
observations

« Often, investigators wish to relate a response variable to
more than one predictor variable

— Models of this type are known as multiple regression models or
multiple linear models
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Multiple Linear Regression, continued

as a5
E 30 ) g 30 .
S Can yield loss be =
l'gﬂ' 25 expressed as a g 25
- o2 function of both 5 *t
2 20 ) FHB and FDK? =% .
a e .
£ 15| o £s| e

10 10

0 e pa = ) 0 20 40

Example: Fusarium head blight and wheat yield loss
(Example 1, continued)

Fusarium damaged kernels (FDK)

FHB field severity (index’)
¥ =0.20(0.075) +0.053(0.0022) X,
R*> =0.986,R> =0.984

¥ =0.72(0.110) +0.048(0.0041) X
R*=0.944,R> =0.937

FHB and FDK are

individually
significant (t tests)

Multiple linear regression model:

Yi=Bo T B Xy + By Xy +e,

ei ~N(0, 62)

Multiple Regression Model
Yi=Bo + BiXpi + BXy + B3Xy + .t g

/ w _J N
\ Error, random variable

Response (e.g., lesion (difference between response
size, spores/lesion, yield, and constant)
...) for observation i

Assume a normal (Gaussian)
distribution, with mean 0 and

i 2
! n o P variance o-.
Linear combination of parameters and predictor

variables. All Y observations are
X first predictor variable (e.g., FHB) incenpudentiiers).
X5 second predictor variable (e.g., FDK) Dbyl B, )
Xi: third predictor variable, etc., ...

B parameter for X, (etc.): change in

expected Y with unit increase in X, X, could also be a function of

Note: X, could be a function of X, or X,. both X, and X,

Example: X3 = X;-X,

Example: if X, is temperature (T), then X5 could be (interaction or product term)

the square of temperature [i.e., X5 = (X;)?].
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Simply list the multiple predictor variables

clb cli clIm influence

proc reg data=mes;
model loss = FHB FDK / r
plot r.*p.;

plot student.*p.;
plot r.*nqq-;
run;

Plots of residuals (or studentized or
There is no simple 2-dimensional studentized deleted residuals vs. the

graph of observed and predicted Y predicted values remain very valuable. Also
One would need much more ' the normal plot of residuals. One could also

complex 3D graphs (Y and fitted Y) plot residuals vs. each predictor variable.
vs. X, and X, (not done here)

Models can also be fitted with
ROBUSTREG and QUANTREG (and
there other procedures)

regressioni.sas

(continued)

Test of overall relationship between Y and
the collection of predictor variables

finalyzis of Variance

Sum of Mean
Source DF Squares Square F WYalue Pr > F
Mode1 2 1.88283 0.94141 263.12 <.0001
Error 7 0.02505 0.00358
Corrected Total 9 1.90787 MSE (estimate
of residual
Root MSE 0.05982 R=-Square 0.9869 Variance)
Dependent Mean 1.93450 fidj RA-S5q 0.9831
Coeff Var 3.09204

Adjusted R2

Parameter Estimates

Standard
Variable DF Estimate Error t Yalue Pr > it} Inflation
Intercept 1 0.25443 0.11345 2.24 0.0598 0
FHB 0.04680 0.00982 4.77 0.0020 18.31603
FDK 1 0.00556 0.00913 0.61 0.5620 18.31603
N Tests of individual
¥ =0.25(0.113) +0.047(0.0098).X, +0.0056(0.0081) X, Darametm (el ot
agree with separate
R*=0.987,R? =0.983 J o

simple regressions)--
depends on the
correlation of the
predictors

Adjusted R2: adjusting for the fact that
correlated and possibly unimportant

VIF or Variance
Inflation factor:

predictors could be in the model. Could
decline with additional variables.

Influence of predictor
correlations on the
results
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MODEL1 Fit Diagnostics for loss
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40 Fit-Mean||Residual
14 @
= 309 0.75
@ 0.54 MObs 10
e 20 . - MParm 3
g 20 s - EDF 7
104 0 e 0000 MSE 0.0036
0254 o RSguare 0.9869
i AdjRSg_ 0.9831
‘ ! ! ' .0_5—<:0I° T T T ==
-01758 -0.0?5 0125 07 08 02 08
Residual Proportion Less

Example 1,

two
predictor
variables

Example 1, two predictor variables

X, is a better predictor
than X,. There is no

Y =0.20(0.075) +0.053(0.0022) X, compelling evidence that
3 3 use of both predictors is
R = 0.986,Ra =0.984, MSE = 0.0033 better than just use of X,.

¥ =0.72(0.110) +0.048(0.0041) X,
R* =0.944, R = 0.937, MSE = 0.0133

¥ =0.25(0.113) +0.047(0.0098).X, +0.0056(0.0081).X,
R*>=0.987,R? =0.983, MSE = 0.0036

Because of the correlation
of predictors, individual
parameter estimates

depend on what other
predictors are in the
model.
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Multiple linear regression

A vast field, which we cannot cover!

Just a few general guidelines:
— Always evaluate the model fit (using the various diagnostic statistics)

— For empirical model selection, always choose the model with the fewest
number of predictor variables (when there are competing models with
the same level of overall goodness of fit)

* In general, the parameters for each predictor should be significant in the
selected model (don’t judge just using the overall F test).

— With several potential predictors to choose from, there are ‘automated’
ways to find “best subsets” of predictors (where all terms are significant,
etc.). However, be VERY cautious in using these methods: They are
misleading. Use these only as preliminary guides.

There are some special types of multiple linear regression models

that are especially useful: the temperature-response
phenomenon

Response: growth, infection efficiency, sporulation, etc.

. . Espinoza J.G. et. al.
Qin Q.M. et. al. Plant Dis 92:69:77 Plant Disease

92:1407-1414
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Saude C. et. al. Phytopathology 98:1075-1083 . A
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Responses of this type require, in addition to an “intercept”, models
with two parameters (and corresponding predictor terms)
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Multiple Regression Model

Nonlinear models may be most powerful and flexible
here, but reasonable descriptions can be obtained with
linear models

Yi=Bo+ BiXyi + BXpi oot
Yi =By + By Xi + BX% .t g
Yi =By + BiXi + BX + BXP + g
ool § i B R O o B

Linear combination of parameters and predictor
variables.

These multiple

iy first predictor variable (e.g.,temperature [X]) regression models are
known as polynomials

X, second predictor variable (e.g.,temperature
squared [X?])

Growth rate of Colletotrichum

36 coccodes on PDA.
-'g Fitted with a nonlinear
% 27 “Beta” model.
5
T 18
)
=

9 R?2=0.966

R,2=0.966
0 MSE =7.14

Temperature (X)

Try fitting linear (multiple
regression) models to the data.

Try powers of X (temperature)
as predictor variables (either

two or three predictors)

For “best” model, how do

results change with robust
estimation?
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“Nonparametric” Regression

» As indicated previously, models are useful for several
purposes
— Sometimes the estimated parameters are of primary interest (to
test theories or to compare groups)
— Sometimes the predicted responses (fitted Y values) are of
primary interest (to describe relationships, to summarize data, or to
predict outcomes)

+ Sometimes the responses do not have a clear-cut relationship
with the predictor variables of interest...

1 s
log(V) =-0.8 + 1.29log[p(1-p)] 3 3
2T R? =0.995 _-1 3
§ L g 1
g 3 £
ke -— 3
5 log(v) = -log(40) + log[p(1-p)] 'é
S =5
% ‘ ‘ ‘ ‘
-3.50 -2.90 -2.30 -1.70 -1.10 -0.50 -7
|OQ[P(1'P)] 2800 2600 2700 2800 2900 3000
Scler iradance
Binary power law for spatial dispersion Prediction of risk of late blight

* Y may vary with X, but the relationship may be complex, or there may be
no obvious model (with a small number of parameters) that could

describe the relationship Scherm H. et. al. Plant

Dis 92:47:
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€00 . | Leptosphaeria maculans
500 —p 600 and oilseed rape.
2>
2 400 2 500 Huang et al. 2005. Eur. J.
@ @ : -
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“Nonparametric” Regression

How should one proceed when the data do not suggest a particular
form of (parametric) model?
— One can always choose a polynomial with many terms (many predictor
variables, consisting of several different powers of X)
* This is an unwieldy and generally unreliable method

— One can avoid any specific parametric specification and just use a

general model: )
Here, “nonparametric’” does not mean

Yi = S(XI) (<] rank-based or distribution-free. In fact,
* Here, S(X,) is a ‘smooth’ function of X
* Previously, S(X;) was a relatively simple function, such as 3, + X, or
B, + B;In(X)), etc.

— Paraphrasing Schabenberger & Pierce (2002), rather than placing the
onus on the investigator to select a parametric model (when none is
obvious or practical for the intended objectives), we let the data directly
guide us on the form of S(X,) within the model fitting exercise.

* The particular form of generally remains in the background, and only
the predicted Y values are of interest (in most circumstances)
— One does not even see the parameter estimates (in normal usage).

normality is often assumed.
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“Nonparametric” Regression

* The general model formulation: Y, =S(X,)+e,
+ The smooth function, S(X;) , can be either:

— Alocal averaging function, where a low-order polynomial is
fitted in small neighborhoods of points, and the parameters of
the polynomial change over the range of X (LOESS methods)

P
— Penalized or smoothing splines: S(X)=PBo+B X, +D ByB(X,—x))
=1

+ “Knots” (k) are defined at selected points along the X axis

» From the knots, several new ‘predictor variables’ are created
(one for each knot), based on how far X; is from each knot.

— Known as basis functions (many possibilities): BX—x) = |X—/>.
+ If the smoothing function was fitted with ordinary least
squares, a very ‘nonsmooth’ fit would occur (possibly just
connecting the points), if there were many knots (predictors)

— However, with penalized least squares, the parameters are not
allowed to vary freely, but take on values that give a smooth fit

* Minimize: %" (Y, - S(X,))’ + PENALTY

One PENALTY version: sum of squared
parameters must be less than a constant.

The PENALTY prevents
overfitting of the data (because of
many ““predictor variables™

“Nonparametric” Regression

* One can specify the degree of smoothness desired, in terms of a
smoothing parameter (A), or the degrees of freedom of the model fit (df;),
or estimate the degree of smoothness

* A:increasing values mean increasing smoothness
dfi: decreasing values mean increasing smoothness
— Recall, with parametric polynomials, df; = 1 for linear (B,+,X;), df; = 2 for
quadratic (B, + B, X;+ B,X?), df = 3 for cubic (B, + B,X; +P,X7? +B3X7), ...

In a sense, df; for a smoothing function summarizes the data to about the

same extent as a polynomial of order df;

With smoothing functions, df; is either estimated from the model-fitting

results or is pre-specified by the user (directly, or indirectly by specifying

A)
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il | b © [
o I o o
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Spline model fitting with SAS

* There are several procedures that can be used to fit penalized or
smoothing splines, or local averaging (LOESS)
— For LOESS, use PROC LOESS

— For splines, use GAM (generalized additive models) or TPSLINE, or
GLIMMIX, even in graphics procedures (GPLOT)

* GAM can also be used for distributions other than normal (Poisson,
etc.) and for combinations of splines and parametric terms in the

same model (not covered here)

Define the spline

proc gam data=___; o function (df;= 4 is
title2 “GAM for splines, pre-specified df _f~; default)

model Y = spline(X, df=4) ;

output out=outgam predicted residual uclm Iclm ;

Output file format is different:
these options mean that
predictions are in P_Y,
residuals in R_Y, ..

proc gplot data=outgam;
plot (Y P_Y)*X / overlay haxis=axisl vaxis=axis2;

proc gam data=___ ;

title2 “GAM for splines, GCV parameter est.”;
model Y = spline(X) /7 method = GCV;

output out=outgamGCV predicted residual uclm Estimate the df; or

Icim ; degree of smoothness
GCV often results in a less than using Generalized Cross
smooth fit (in my experience) Validation

&8
%
oo L . o . g ]

c ™ gt S Example: fit a penalized spline to daily
@ 09 B2 S average air temperature data for
K F T Wooster, OH, 2008
= P .:
8 wloag Option: look at RH also.
* . .::n
45

0 20 40 &0 80 100 120 140
Time (days since May 1)

regression6.sas
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Regression Workshop Outline
Introduction

— Motivating examples

— Statistical models, linear models, and other concepts
* Terminology, notation, rationale, assumptions

Fitting simple linear models: The Least Squares Principle (and
other methods)

— Model evaluation or assessment
— Model adjustments

Robust model-fitting methods (when some assumptions are
violated)

Specialized models:

— Quantile regression models, Tobit regression models

Multiple regression

— Introduction to methods when there are multiple predictor variables
Penalized splines (“nonparametric” regression)

Possible future workshops (topics not covered here)...

Regression Analysis: Some additional
topics (not covered)

« Comparing estimated parameters, and fitted Y values, for
different groups (treatments, years, etc.)
— Covariance analysis
* Mixed-model analysis (more than one random effect, such as
with repeated measures and split plots)
» Multivariate regression models (multiple response variables)
* Nonparametric (distribution-free) regression
« Binary and count data for the response variable

— Logistic (or probit or Poisson) regression -- part of generalized linear
models

* Nonlinear models

— For instance, when there are thresholds and when Y approaches
asymptotes or steady-states

» ‘Constraints’ on the observed Y:X relationship (censored data)
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Possible need for a nonlinear model:
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Nonlinear regression
analysis is a vast field,
and much more

Disease response (Y)
8 5 88

complex than linear
regression analysis.

o
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Censoring (& speCialized There is also evidence that Y increases

linearly with X, but that the observations of
mOdels) disease are “truncated” at 100 (that is, the

measurement scale does not allow any value

s 100 ® ¥ T

i to be recorded above 100)
g &0 . 8
2 60 HE B
@ . This would be an example of censoring -- all
o 40 . we know is that Y is at least 100. Censoring
E 20| ¥ i could also be at the lower level (e.g., 0)
R ; Censored regression models, such as Tobit
0 ot models, could be utilized.

o
(]

15 3.0 4.5
Predictor (X)

6.0

8

Basic model idea:

There is a linear relation between X and
a “latent” (unobserved) response
variable Y*: Y* = B, + B,X

Below (or above) a bound, observed Y
equals this “latent’ variable (Y = Y*).

Fit is better for
observations below
the bound.

Above the bound, observed Y simply
equals the bound (Y=100 here). This
would happen if the measurement scale
cannot accommodate more extreme

actual responses. 0.0 15 3.0 45 6.0
Predictor (X)

Disease response (Y)
8 83838

censored (Tobit) regression model or
nonlinear model is best.

20

s 100

Q80

C . . .

8_ 60 Although we can reject a simple linear
) model here, there is insufficient evidence
Qo 40 for this single data set to decide if a
O

[43]

]

0]

]

O

o9

0 15 3.0 4.5 6.0
Predictor (X)
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Binary data: Logistic models

Often, the response variable is binary

— Diseased (1) or not (0)

— Epidemic (1) or not (0)

One may wish to model the binary response in relation to
continuous predictors, in an effort to predict the probability of
a “positive” outcome (e.g., disease outbreak)

— X: Wetness duration, environmental index of favorability, etc.
Logistic (and other so-called generalized linear) models are often
appropriate here

— The response is the logit of the expected probability of a
“positive” outcome (not the actual 0/1 observations)
* The inverse-logit gives the expected probability, p (predict an outbreak
if p> 0.5, for instance)
Approach is based on a binomial distribution for the data, not a
normal.

— Methodology is more complicated

Logistic regression example .. W
124 location-years (classified as "
epidemics or not for Fusarium head

blight (FHB) (0 or 1)

Predictor: an index of environmental

conditions » No epidemic
A plot of Y vs X is very different from 02
what we considered previously o

10 ¢ HBIENED L SRR S - (I

Estimated
probability of an
epidemic (p) The logistic regression provided a

““good” fit (based on other criteria) to

the data.

Using the estimated p values, 80% of
the epidemics and 80% of the
nonepidemics were predicted correctly
(using p > 0.5 as the rule to predict an
epidemic)

PREDICTOR
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Conclusions

» Regression analysis is one of the key tools in all of data
analysis
— Although ordinary least squares (OLS) is the foundation for most
model fitting and analysis, there are alternatives, such as robust
regression methods
» It is imperative that a reasonable model is used for
representing data

— Many graphic methods are of utmost importance in model
selection

— Model form depends on the objectives of the investigator

* Once a reasonable model is selected, assessment of
statistical assumptions is justified, possibly leading to
use of alternative estimation methods
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