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Regression Workshop OutlineRegression Workshop Outline
• Introduction

– Motivating examples

– Statistical models, linear models, and other concepts
• Terminology, notation, rationale, assumptions

• Fitting simple linear models: The Least Squares Principle (and 
other methods)
– Model evaluation or assessment

– Model adjustments

• Robust model-fitting methods (when some assumptions are 
violated)

• Specialized models:
– Quantile regression models, Tobit regression models

• Multiple regression
– Introduction to methods when there are multiple predictor variables

• Penalized splines (“nonparametric” regression)

• Possible future workshops (topics not covered here)…

Examples from plant pathology 
used throughout the workshop

Code in SAS (and R) given for examples
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Regression Workshop:Regression Workshop:

• Workshop assumptions:
– Audience has familiarity with simple data analysis 

• Estimation of means and variances, quantiles (e.g., 
median, 25-th percentile, etc.), frequency distributions, 
hypothesis testing (null and alternative hypotheses), 
interpretation of test statistics, P values

– Audience has some experience using SAS (or similar 
program) for simple data analysis

– Audience has limited (or no) experience with simple 
linear regression analysis 

– Audience has no experience with robust regression, 
quantile regression, penalized splines, multiple 
regression

Nanayakkara et. al.  
Plant Dis 92:870:877 

Pavon et. al.  Plant Dis 92:143:149

Relationships between variables can be Relationships between variables can be 
found everywhere in plant pathologyfound everywhere in plant pathology

Cadle-Davidson. Plant 
Disease 92:1577:1584
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Relationships between variables can be Relationships between variables can be 
found everywhere in plant pathologyfound everywhere in plant pathology

Pusey et. al.  Plant 
Dis 92:137:142
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Paul et al. 
Phytopathology 94: 
1342-1349.

Relationships between variables can be found Relationships between variables can be found 
everywhere in plant pathologyeverywhere in plant pathology: : 

Initial example (wheat yield loss vs. disease intensity)Initial example (wheat yield loss vs. disease intensity)

0.057690.04753<.000123.890.002200.052611FHB

0.376350.031990.02572.730.074670.204171Intercept

95% Confidence 
Limits

Pr > |t|t ValueStandard
Error

Parameter
Estimate

DFVariable

Parameter Estimates

2.96787Coeff Var

0.9845Adj R-Sq1.93450Dependent Mean

0.9862R-Square0.05741Root MSE

1.907879Corrected Total

0.003300.026378Error

<.0001570.791.881501.881501Model

Pr > FF ValueMean
Square

Sum of
Squares

DFSource

Analysis of Variance

XY 0526.0204.0ˆ +=
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ModelModel
• Examples show lines or curves, in addition to the observations

– The lines/curves are predictions from models fitted to the data

– Thus, one represents relationships with models

• Model: Abstraction of a real phenomenon or process that 
emphasizes those aspects relevant to the objectives of the 
user
– Used to describe, understand, predict, compare, and make 

inferences about the phenomenon

• Often, models consist of a systematic (nonrandom) part and a 
stochastic (random) part

• Statistical model:
– Model with stochastic components containing unknown constants 

(i.e., parameters) to be estimated
• In many cases, the parameters consist of the slope and 

intercept

Response = (systematic part) + (random or stochastic part)

Response =    structure +        error

Outcome of interest, being 
measured, counted, or 
classified (Y ); a random 
variable

Mean (or expected
value) of response

Function of 
variables and 
parameters

Statistical ModelStatistical Model:

f(X1,X2,…; β1, β2, …)
e.g.,

β0 + β1X

Difference between 
observed responses (i.e., 
the observations) and mean 
responses based on 
parameters; a random 
variable; estimate known 
as residual (e).

1086420

30
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X

Y

Systematic part: line (or curve)
Random part: difference of each 
point and the line
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Response   =    structure          +      errorResponse   =    structure          +      error
Y        =    f(X1, X2, …; β0, β1, β2, …)  +   e

• Y is the response (random) variable 

– Binary, discrete, or continuous

• We mostly focus on continuous response variable with 
normal distribution

• X1, X2, ... are variables that may affect the mean response 
variable (with only one, call it X [no subscript]) - predictors or 
predictor variables
– May be continuous (emphasis here)

– May be “dummy” variables (ANOVA models)

• “Class” or “category” variables – “factors”
• e.g., X1 = 1 if treatment 1, X1 = 0 if not treatment 1 

• β1, β2, … are constants (parameters) estimated from the data

• e is the error (random variable)

Simple Linear Regression ModelSimple Linear Regression Model
Y = β0 + β1X + e

Response (e.g., lesion 
size, spores/lesion, 
yield, …)

Error, random variable 
(difference between response 
[Y ] and β0 + β1X )

Assume a normal (Gaussian) 
distribution, with mean 0 and 
variance σ2. 

All observations are 
independent (here).

Shorthand: e ~ N(0, σ2 ) 

or e ~ NIID(0, σ2 )

Expected value: Linear 
combination of parameters 
and predictor variables. 

Linear model: consists of a sum of terms, where each term is 
“parameter times variable” ( β01 + β1X ); note that β0 parameter 
multiplies a ‘variable’ that is equal to 1 for all observations

Madden & Esker (APS 2009)



Simple Linear Regression ModelSimple Linear Regression Model
Y = β0 + β1X + e

Note: For a population, each observation may 
have a different Y values (and thus different 
errors [e]). So, we use a subscript to indicate 
the observation:

Yi = β0 + β1Xi + ei , ei ~N(0, σ2)

For this workshop, we mostly consider situations with a single 
predictor variable (X or X1), which can be described by a linear 
model. With one predictor, this model is often known as a simple
linear model.
Note: a linear model does not necessarily mean a straight-line (as 
we shall see later).

Expectations (means):Expectations (means):
Yi = β0 + β1Xi + ei ,       ei ~N(0, σ2)

E(Yi ) = E(β0 + β1Xi ) + E(ei ) 

= β0 + β1Xi + 0

E(Yi ) = β0 + β1Xi

Expectation, 
E(•), or “mean”

Important point: model shows how the mean
response changes with predictor (if the model 
is appropriate).

This will be generalized later for other model 
frameworks.

For convenience, the observation subscript is not 
always shown.

Two equivalent 
ways of writing 
a linear 
regression 
model [in terms 
of Yi or E(Yi ) ]

Madden & Esker (APS 2009)
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Y = β
0
 + β

1
X

Y = β
0
 + β

1
X + e

E(Y) = β
0
 + β

1
X 

Without the 
error term (e), 
there is only 

one possible Y
at any X

β1
Slope: change in Y

with unit change in X
(if X increases from 6 

to 7, then Y
increases by β1)

β0
Intercept or Y-

intercept (value 
of Y when X=0

With the error 
term (e), there is 

a whole 
population of Y
values at any X

The expected (i.e., average) Y
at any X falls on the line

Models (Models (Yi = β0 + β1X + ei ))
• In the real world, the values of the parameters, or even the most 

appropriate model, are unknown

• Thus, one must fit a model to data and evaluate the fit

• Model fitting is the same as parameter estimation (for the types 
of models we are discussing)

• Hats (^) are placed on estimates of parameters 

• When estimated parameters are used in a model, one predicts Y
at a given value of X
– One places a hat (^) on Y for the predictions

is known as predicted Y or fitted Y
– Predicted Y is an estimate of the expected response at a given X

E(Yi ) = β0 + β1Xi ii XY 10
ˆˆˆ β+β=

)ˆ( 1β

Madden & Esker (APS 2009)



Linear Model (putting it together)Linear Model (putting it together)

Yi = β0 + β1X + ei ,    ei ~ N(0,σ2)

E(Yi ) = β0 + β1Xi     → Yi = E(Yi) + ei

ei = Yi - E(Yi ) = Yi - (β0 + β1Xi )

ii XY 10
ˆˆˆ β+β=

]ˆˆ[

ˆˆ

10 ii

ii

XY

YYe

β+β−=

−=

Assumed true 
relationship between 

Y and X

Error term is difference 
between observed and 

expected response

Fitted or predicted response 
determined from model with 

estimated parameters. This is an 
estimate of the expected Y at X

Residual is difference between 
observed and predicted 
response. Also call it r.

Regression Workshop OutlineRegression Workshop Outline
• Introduction

– Motivating examples

– Statistical models, linear models, and other concepts
• Terminology, notation, rationale, assumptions

• Fitting simple linear models: The Least Squares Principle 
(and other methods). Concepts and model fitting.
– Model evaluation or assessment

– Model adjustments

• Robust model-fitting methods (when some assumptions are 
violated)

• Specialized models:
– Quantile regression models, Tobit regression models

• Multiple regression
– Introduction to methods when there are multiple predictor variables

• Penalized splines (“nonparametric” regression)

• Possible future workshops…
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Model fittingModel fitting ((estimation of β0 , β1 , σ2 ))::

2
10 ])[( XYQ

i i β+β−= ∑
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πσ
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2
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2/2 2

])[(
exp

)2(

1 XY
L i i

N

•Least Squares (LS)

Find the parameters (β0 and β1) that 
gives the minimum Q:

Variance (σ2) estimate is then
obtained (here) from Q/(N-2)

•Maximum likelihood (ML)

Find the parameters that give the 
largest joint likelihood (L):

Variance estimate is slightly biased. 

Alternative: use Restricted 
(Residual) Maximum Likelihood 
(REML) – get unbiased variance

•Bayesian estimation

•Robust estimation

An extremely powerful and 
robust method (the usual 

default in computer programs)

When data are normally distributed, 
REML is identical to LS (for the 

models we consider here)

The Least Squares PrincipleThe Least Squares Principle
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One could fit a large 
(infinite?) number of lines 
through the data, and see 

how far each point 
(observation) is from 

each of the lines. 
Demonstrated for one 
point (and just three 

lines).

For each line: one squares the 
vertical distance between each of 
the points and the line [e.g., (.72-
.83)2], and then adds these up. 

This is call the Sum of Squares 
for Error (SSE) or Residual Sum 

of Squares (RSS or SSR).

The line giving the lowest 
SSE is the Least Squares line 
or Ordinary Least Squares
(OLS) line. The parameters 
giving this line are the OLS 

parameter estimates.

In practice, the solution (the OLS parameter 
estimates) are obtained based on calculus

Madden & Esker (APS 2009)



Ordinary Least SquaresOrdinary Least Squares
• If assumptions are (reasonably) met, then the estimates of the 

parameters are normally distributed, with a defined variance 
or standard error: 
– One can calculate confidence intervals for parameters

• The fitted or predicted Y (predicted response) at a given X is 
an estimate of the expected (mean) Y at that X value, which 
is normally distributed, with a defined standard error:
– One can calculated the confidence interval for the mean Y at a 

given X, E(Y)
• The SE for predicted Y is a function of the estimated residual variance

• In addition to a confidence interval, one can calculate the 
prediction interval for an individual observation (not for the 
mean) at a given X
– (Much) wider than the confidence interval, and used for a 

different purpose

)ˆ( iYSE

)ˆ( 1βSE

Ordinary Least Squares: Model fittingOrdinary Least Squares: Model fitting
• Is a reasonable model selected?

– If not, what are some good (empirical) alternatives

• Are statistical assumptions met (to a reasonable degree)?
– Normal distribution (not too important)

• Even if not normal, parameter estimates are still (almost) normal with 
large number of observations

– Constant variance (across all levels of X)

– Independence (especially important when data are collected over 
time)

• Overly influential observations? Possible contamination in the 
data set?
– Outliers (unusually large residuals)

– High leverage (unusually extreme predictor values)

• Is there a significant effect of X on Y (F and t tests)?

• How good is the fit? That is, what is the variation around the 
predicted Y values? 

These latter items are 
usually the ones of 
most interest to the 
investigator (so are 

considered first here). 
However, it is usually 
better to consider the 

other items first. 
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data mes;
input FHB loss FDK;
datalines;
23.8 1.440 14.6
23.9 1.525 15.9
24.8 1.535 19.6
28.5 1.675 18.4
30.8 1.775 19.3
32.4 1.830 27.1
36.5 2.215 29.7
38.2 2.250 33.1
38.2 2.165 32.0
51.8 2.935 43.7
;
proc reg data=mes;
model loss = FHB / r cli clm clb

influence;
run;

Example 1:Example 1:
Wheat yield loss in relation to Fusarium head blight symptomsWheat yield loss in relation to Fusarium head blight symptoms

The intercept (β0) and error term (ei) are implicit 
in the model statement. One specifies the 

predictor variable(s).

In SAS, there are numerous 
procedures (PROCs) for 

ordinary least squares linear 
regression analysis. PROC 
REG is the original flagship 
procedure for this purpose. 

There are many, many, 
options.

regression1.sas

Mesterhazy et al. 
2003. Plant Disease 

87: 1107-1115.

See SAS input and output for Example 1

regression1.sas

Madden & Esker (APS 2009)



0576.00475.0

0022.0306.20526.0

)ˆ(ˆ
1,2/11

↔
⋅±

β±β α− SEt df

For 95% confidence interval, α=0.05, which means use t0.975,df , where df comes from 
Error term in ANOVA table (df = 8 here, known as “error df”)

0022.0

0526.0

)ˆ(

ˆ

1

1 =
β

β
=

SE
t

2σ̂

0β̂

Some Some 
annotated annotated 

output from output from 
PROC REGPROC REG

σ=σ ˆˆ 2

Example 1:Example 1: Yi = β0 + β1X + ei ,    ei ~ N(0,σ2)

H0: β1 = 0
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(SST): sum of squared differences
between observations and 
overall mean Y
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) Error or Residual Sum of Squares 
(SSE): sum of squared differences 
between observations and 
least-squares line

When β1= 0, mean Y is same as β0:
Yi = β0 + ei

E(Yi ) = E(β0 ) + E(ei ) = β0 + 0 = β0

Relative difference between SSE 
and SST, with associated degrees 
of freedom, are the basis for an F
test of:

H0: no relation between X and Y

Ha: linear relation

Small SSE relative to SST means 
that F statistic is large, and one 
rejects H0

For the simple linear model here,  
H0 is same as:

H0: β1 = 0, vs Ha: β1 ≠ 0

Basis for test of significance, and goodness of fit:Basis for test of significance, and goodness of fit:

Generic 
graphs

Y

Y

Ŷ

Ŷ
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) Error or Residual Sum of Squares 
(SSE): sum of squared differences 
between observations and 
least-squares line

Relative difference between 
SSE and SST is also a 
measure of the proportion (or 
percentage) of “explained 
variability”, R2.

Basis for test of significance, and goodness of fit:Basis for test of significance, and goodness of fit:

SST

SSESST

SST

SSE
12 −

=−=R

Generic 
graphs

Y

Y

Small SSE means that R2 is 
large (= 1 when SSE=0).

Large SSE means that R2 is 
small (going towards 0 as SSE 
becomes as large as SST).

Although R2 is a measure of 
variation around the best fitting 
line, this statistic is overused 
and overinterpreted (it is not a 
reflection of significance).

0576.00475.0

0022.0306.20526.0

)ˆ(ˆ
1,2/11

↔
⋅±

β±β α− SEt df
0022.0

0526.0

)ˆ(

ˆ

1

1 =
β

β
=

SE
t

2σ̂

0β̂ R2

σ=σ ˆˆ 2

For simple linear regression, 
t value for slope is same as 

√F for relationship 
[23.89 = √ 570.79]

SST-SSE
SSE
SST

Test of 
general H0

For a good fit, SSE is small 
relative to SST. R2 scales 
this difference between 0 

and 1.
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iŶ )ˆ(SE iY
)ˆ(SEˆ

,2/1 idfi YtY α−± ( )σ+± α− ˆ)ˆ(SEˆ
,2/1 idfi YtY

iii YYr ˆ−=

iY
Confidence interval Prediction interval

)(SE ir

)(SE i

i

r

r

Partial annotation (more later):Partial annotation (more later):

1.456 = 
0.204 + 0.0526×23.8

Studentized residual (s): Scaling of the 
residuals is important because the 

residuals do not have constant variance. 
Plus, scaling makes it much easier to 

detect outliers 

Other parts of the 
output will be 

discussed later

XYi 10
ˆˆˆ β+β=

Ordinary Least Squares: Model fittingOrdinary Least Squares: Model fitting
• Is a reasonable model selected?

– If not, what are some good (empirical) alternatives

• Are statistical assumptions met (to a reasonable degree)?
– Normal distribution (not too important)

• Even if not normal, parameter estimates are still (almost) normal 
with large number of observations

– Constant variance (across all levels of X)

– Independence (especially important when data are collected 
over time)

• Overly influential observations? Possible contamination in the 
data set?
– Outliers (unusually large residuals)

– High leverage (unusually extreme predictor values)

• Is there a significant effect of X on Y (F and t tests)?

• How good is the fit? That is, what is the variation around the 
predicted Y values? 

These questions can be 
addressed by looking at plots of 

the residuals

Madden & Esker (APS 2009)



Model selection and statistical assumptionsModel selection and statistical assumptions
• High priority: Is a reasonable 

model selected?
– If not, what are some good 

(empirical) alternatives

• Are statistical assumptions 
met (to a reasonable 
degree)?
– Normal distribution

• Even if data are not normal, 
parameter estimates are 
still (almost) normal with 
large number of 
observations

– Constant variance (across 
all levels of X)

– Independence (especially 
important when data are 
collected over time)

Plot residuals (r ) or studentized residuals (s) 
versus X or versus predicted Y.

Should be a random scatter.

If problems are identified with first model choice, 
and one does not have (biological) theory to 

support other specific models, try transformations 
of X and/or Y. Fit model to the transformed data, 

and re-evaluate the (new) residuals

Plot residuals versus quantiles from a 
normal distribution (normal probability or 

normal quantile plots). Should be a straight 
line if data are normal. Transformations will 

affect distribution of residuals. 

See Madden et al. (2007). The Study of 
Plant Disease Epidemics. APS Press. 

(Chapter 4).

Plot residuals (r ) or studentized residuals 
versus X or versus predicted Y. Variation in 
vertical direction should be about same at 

different X (or predicted Y) values.

),0(~  , 2
10 σ+β+β= NeeXY iii

Results look 
good for this 
model fit 
(example 1).
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See SAS input and output (graphs for first example, then go 
to second example)

regression1.sas

regression2.sas 
(first variable)

1086420
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Remedial measures when residual plot reveals problems: Remedial measures when residual plot reveals problems: 
If pattern in the residual plot, try other models (typically: transform
either Y or X, based on the Y-X and residual plots), or use weights (i.e., 
weighted least squares). Fit ‘new’ model, get residuals, get plots, etc.

Curving to the right: transform X (try 
sqrt(X) or ln(X).

Yi = β0 + β1ln(Xi) + ei

Curving upwards: transform Y (try 
sqrt(Y) or ln(Y).

ln(Yi) = β0 + β1Xi + ei

May try transformation of both X and Y

With a declining relationship, more difficult to know 
whether to transform X or Y (one can see the bending 

to the right or the bending upwards in each curve). 
May need to try each, and both.

Theory may suggest the best 
transformations

Madden & Esker (APS 2009)



Original data

Square-root 
transformed

Remedial measures when residual plot reveals problems: Remedial measures when residual plot reveals problems: 
Unequal variances often are found with poor choice of model. Finding a 
reasonable model often ‘fixes’ the so-called heteroscedasticity
problem. If still a problem, then use weighted least squares.

Unequal variances, apparently 
increasing with X (or Y )

Yi = β0 + β1Xi + ei

Problem residual plot.
Result: standard errors 

of the parameter 
estimates will be too 

large

Try weights of 1/Xi.
There may not be improvement 
in residual plot, but results are 

more appropriate. Weights must 
always be positive.1086420
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Data a;
Input X Y;
wt = 1/X;
datalines;
…
;
proc reg data=a;
weight wt;
model Y = X
/ r cli clm clb;

run;
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Normality assumption:Normality assumption:
Normality of the residuals can be appraised 
with a so-called normal probability or a 
normal quantile plot . 

Idea: the residuals or studentized residuals 
are ordered from low to high, and then 
graphed versus their order on a scale that 
gives a straight line (if the observations are 
normal).

Lack of normality can affect the P values and 
other statistics for inference.

However, normality is the least important of 
the statistical assumptions (surprisingly). At 
large N, parameter estimates are still (almost) 
normal.

Often, if an appropriate model is chosen, and 
the variances are about equal, and there is no 
auto-correlation of the residuals, the 
estimated residuals will be reasonably close 
to normal.

If assumptions are violatedIf assumptions are violated
• Not normal(not too important if other assumptions are justified)

– May be able to use model-fitting methods appropriate for other 
distributions

• Generalized linear models (Poisson, gamma, negative binomial, beta, 
binomial) [not covered here]

– Use robust methods where distribution is not assumed 
(discussed later)

• Not equal variances (from minor to more substantial importance)

– Weights (theory may suggest weight functions)

– Transformation (common for ANOVA), but this will change the 
relation between Y and X (most important to choose an 
appropriate model)

– Methods appropriate for unequal variances: robust model-fitting -
- see later; explicit unequal variances at different X values -- mixed 
models [not covered]; generalized linear models [not covered])

• Temporally correlated residuals
– Range of corrections to “remove” the correlation, or adjust for it
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Go to SAS programs

regression2.sas
(first variable)

(second variable)
[regression2_2.sas]

Example 3: Johnson et al. 2008. Example 3: Johnson et al. 2008. Plant DisPlant Dis. 93: . 93: 
272272--280.280.

Data courtesy of Dennis Johnson.
(Go to SAS programs)

regression3.sas
(consider 

transformations)
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Ordinary Least Squares: Model fittingOrdinary Least Squares: Model fitting
• Is a reasonable model selected?

– If not, what are some good (empirical) alternatives

• Are statistical assumptions met (to a reasonable degree)?
– Normal distribution (not too important)

• Even if not normal, parameter estimates are still (almost) normal with 
large number of observations

– Constant variance (across all levels of X)

– Independence (especially important when data are collected over 
time)

• Overly influential observations? Possible contamination in 
the data set? Possible existence of a different distribution.
– Outliers (unusually large [extreme] residuals)

– High leverage (unusually extreme predictor values)

• Is there a significant effect of X on Y (F and t tests)?

• How good is the fit? That is, what is the variation around the 
predicted Y values? 

Once a reasonable model is 
selected, it is useful to determine if 

individual observations have an 
excessively large influence on the 

parameter estimates or the 
predicted Y values

Influence AnalysisInfluence Analysis
• Ordinary Least Squares is a very powerful and general method

– By the nature of least squares, however, observations ‘far’ from most X or Y
values may have an unduly large influence on parameter estimates or 
predicted Y values

• Although least squares is known to be fairly robust to moderate violation of 
the statistical assumptions (e.g., normality), results can be distorted if there 
are some extreme observations (“contamination”)

• Influence analysis starts with identifying ‘outlying’ observations:
– Extreme Y values are easily identified with studentized residuals (si).        

|si | > 2 in absolute value is large

– Extreme X values are identified with the so-called leverage (or ‘hat’ or ‘hat 
diagonal’) values (hi):  For models with two parameters, hi > 4/N is large

Altered data
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Influence Analysis, Influence Analysis, continuedcontinued
• Outlying values may not automatically mean large influence

• Consider what would happen if each observation, in turn, was 
deleted from the data set, and then returned to the data set.
– Estimated parameters when observation was deleted: 

• There are N different sets of parameter estimates

– Predicted Yi (response for the i-th observation):
• The observed Yi (or Xi) has no effect on the parameter estimates or, 

thus, predicted Yi for this observation

– Deleted residual (sometimes known as PRESS residual):
• The deleted residuals have great significance in performing a type of 

validation of a model (determining the prediction accuracy for 
observations not used in model fitting)

– Very important: studentized deleted residual (s(i)): 
• A re-scaled version of si, where current observation does not affect 

variance or standard error of the residual

• Has a t distribution (thus, |s(i)| > 2 are large)

• Several statistics have been developed to determine how 
much the parameter estimates or predicted values change (on 
a standardized scale) by deletion of each observation

iiii XY )(1)(0)(
ˆˆˆ β+β=

)(1)(0
ˆ,ˆ

ii ββ

)()(
ˆ

iii YYr −=

)( )(

)(
)(

i

i
i rSE

r
s =

Influence Analysis, Influence Analysis, continuedcontinued
• Cook’s Distance (Di): Overall measure of the impact of the i-

th observation on the vector of parameter estimates, on a 
standardized scale

• Di > 0.4-0.5 are large (some say > 1.0) [a guide only]

– A scaled difference between the parameter estimates when all 
data are used and when the i-th value is not used

– A function of the residual (a measure of outlying Y values)  and 
the leverage (measure of the outlying X values)

– Extremely useful when interest is primarily on the parameters
– A univariate-type of Cook’s distance exists for individual 

parameters (e.g. slope), not the collection of parameters, is 
available (DFBETASi)

• DFFITSi (or DFITSi): Measure of the impact of the i-th
observation on the predicted Yi, on a standardized scale
– A scaled difference between predicted Yi based on all the data 

and when the i-th value is not used
– Extremely useful when interest is primarily on prediction
– Related to Cook’s Distance

• Many other statistics, also…

SCALE

ˆˆ
)(ii YY −

SCALE

ˆˆ
)(iβ−β
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Confidence interval Prediction interval

Example 1: Partial annotation (continued)Example 1: Partial annotation (continued)

1.456 = 
0.204 + 0.0526×23.8

Studentized deleted 
residual

Leverage

Example 1 
(repeated) 
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Example 2Example 2 ((first first 
response variable response variable 
((Y1), with suitable ), with suitable 
transformation(stransformation(s))))

Example 3Example 3 (with (with 
suitable suitable 
transformation for transformation for 
response variable)response variable)

Getting the model “right” sometimes leads to 
discovery of influential observations. 

There is no point in worrying about influential 
observations until a reasonable model is 
selected! Then deal with influence.
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Regression Workshop OutlineRegression Workshop Outline
• Introduction

– Motivating examples

– Statistical models, linear models, and other concepts
• Terminology, notation, rationale, assumptions

• Fitting simple linear models: The Least Squares Principle (and 
other methods). Concepts and model fitting.
– Model evaluation or assessment

– Model adjustments

• Robust model-fitting methods (when some assumptions 
are violated)

• Specialized models:
– Quantile regression models, Tobit regression models

• Multiple regression
– Introduction to methods when there are multiple predictor variables

• Penalized splines (“nonparametric” regression)

• Possible future workshops (topics not covered here) …

Highly influential observations: Highly influential observations: remediesremedies

• Delete ‘problem’ values
– This should only be done with great reluctance (most researchers 

are too willing to delete observations)

• Use a model fitting (parameter estimation) method that is 
more robust to the influence of outlying observations than 
ordinary least squares
– These methods can also be robust to violation of some other 

assumptions (e.g., unequal variances)

– There are many robust estimation methods, including:
• L1-regression or median-regression

• M estimation

• Least Trimmed Squares (LTS) and S estimation

• MM estimation (type of hybrid of M and LTS)

• …
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• Parameter estimation can be viewed as 
minimizing:
– Where ρ(•) is a measure of the difference between 

observed and predicted Y values
• For ordinary least squares:

• Other “distance” functions can be more robust

• Median regression: 

• Huber’s M estimation:
– ρ(•) is one of several possible (simple or complex) 

functions that increase more slowly than the square of 
the residuals (points far from the fitted values are not 
as “big”

• “High breakdown value” methods
– Determine how much contamination that can be 

withstood and still maintain robustness
• Least Trimmed Squares and S estimation

• MM estimation (combination of LTS and M)
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⎠
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2
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][)( 10 XYi β+β−=•ρ

Median and M 
estimation are 
best for outliers 

in the Y direction

LTS, S (& MM) 
are best for 

outliers in Y and 
X direction

Robust model fitting in SASRobust model fitting in SAS
• Median regression: QUANTREG procedure (new and 

experimental in 9.1)

• General robust regression: ROBUSTREG

• Both procedures also have good diagnostic 
capabilities for finding influential points (see example)

• Robust methods are iterative (computer intensive), 
and do not always converge to a solution

proc robustreg data = __    method = MM     plots=all;
model Y = X / diagnostics leverage;

run;

proc quantreg data = __ ;
model Y = X ;

run;

method=
M

LTS
S

MM
regression3.sas

(reconsidered: regression13.sas)
regression4.sas

(just robust analysis)
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σ=σ ˆˆ

:Robust

2

Example 3Example 3
(summary results)(summary results)

A “robust”
form of 

leverage
(unusual 
predictor)

A “robust”
form of 
scaled 

residual
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Red: OLS
Black: Robust (MM)
Blue: Median

Linear model formulations:Linear model formulations:
Yi =  β0 + β1X + ei ,       ei ~N(0, σ2)

E(Yi ) = β0 + β1Xi

One does not have to write the model in terms of expected (mean) values 
at a given X

One could write the model for the median Y at a given X

m(Yi ) = β0 + β1Xi , where m(•) is the median response at Xi 

This is, in fact, what was done previously with QUANTREG.

One can further generalize this, and model any quantile (e.g., 10%, 90%, 
with 50% being the median) of the response as a function of X

q%(Yi ) = β0 + β1Xi , where q%(•) is the % quantile response at Xi

Two equivalent 
ways of writing 
a linear 
regression 
model [in terms 
of Yi or E(Yi ) ]

Reminder: q90(Yi), for example, is the point that divides the lower 90% of 
the observations from the upper 10%. A model for q90(Yi) allows one to 

predict this point based on Xi (and the parameters)
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Quantile regressionQuantile regression

q%(Yi ) = β0 + β1Xi , where q%(•) is the % quantile response at Xi

Quantile regression functions are different model formulations, not just 
different approaches to parameter estimation.

Median regression (a special form of quantile regression) is a robust 
estimation method.

However, quantile regression is not necessarily robust (for all quantiles). 
As one gets farther from the center of the distribution, the method 
becomes less and less robust.

Quantile regression is very valuable for situations with moderate-to-high 
variability, especially when the variability is not constant.

Not shown, but all model 
diagnostics indicate a linear 

relation between Y and X

Example: Random-coefficients 
mixed model for wheat yield, 

based on data from 77 separate 
studies (Madden & Paul, 2009; 

Phytopath. 99: 850-860)

Pretend that there are no separate 
studies (one large SINGLE data set):
Median regression predictions (broken 
red line) are almost indistinguishable 

from the least squares predictions. But, 
one could ask: How do the quantiles

vary with FHB?

Thick blue line: population-
averaged prediction

Thin gray lines: study-specific 
predictions

Madden & Esker (APS 2009)
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Prediction lines for:
90-th percentile
75-th percentile
50-th percentile (median)
25-th percentile
10-th percentile

Quantile regression:Quantile regression:

Quantile regression is especially 
variable for situations with high 
variation at a given X, and where the 
variation changes with X

regression4.sas
(reconsidered; get different 

quantile predictions)
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Regression Workshop OutlineRegression Workshop Outline
• Introduction

– Motivating examples

– Statistical models, linear models, and other concepts
• Terminology, notation, rationale, assumptions

• Fitting simple linear models: The Least Squares Principle (and 
other methods). Concepts and model fitting.
– Model evaluation or assessment

– Model adjustments

• Robust model-fitting methods (when some assumptions are 
violated)

• Specialized models:
– Quantile regression models, Tobit regression models

• Multiple regression
– Introduction to methods when there are multiple predictors

• Penalized splines (“nonparametric” regression)

• Possible future workshops…

Multiple Linear RegressionMultiple Linear Regression
• We have, so far, considered linear models with one 

predictor variables (often called simple linear models)
– We have further considered different estimation (model fitting) 

methods, and how to interpret some of the results
• Different estimation method lead, in some cases, to different model 

formulations (e.g., quantiles rather than expected values as 
functions of predictors)

– It is always important to evaluate the fit of the model (through
the different types of residuals, leverage, etc.) to determine: if a 
reasonable model is selected, if the statistical assumptions are
reasonably met, and if results are overly influenced by particular 
observations

• Often, investigators wish to relate a response variable to 
more than one predictor variable
– Models of this type are known as multiple regression models or 

multiple linear models
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Multiple Linear Regression, Multiple Linear Regression, continuedcontinued
• Example: Fusarium head blight and wheat yield loss 

(Example 1, continued)

984.0,986.0

,)0022.0(053.0)075.0(20.0ˆ

22 ==

+=

aRR

XY

937.0,944.0

)0041.0(048.0)110.0(72.0ˆ

22 ==

+=

aRR

XY

Can yield loss be 
expressed as a 
function of both 
FHB and FDK?

Multiple linear regression model:

Yi = β0 + β1X1i + β2X2i + ei , ei ~N(0, σ2)

FHB and FDK are 
individually 

significant (t tests)

Multiple Regression ModelMultiple Regression Model
Yi = β0 + β1X1i + β2X2i + β3X3i + …+  ei

Response (e.g., lesion 
size, spores/lesion, yield, 
…) for observation i

Error, random variable 
(difference between response 
and constant)

Assume a normal (Gaussian) 
distribution, with mean 0 and 
variance σ2. 

All Y observations are 
independent (here).

Shorthand: e ~ N(0, σ2 )

Linear combination of parameters and predictor 
variables. 

X1: first predictor variable (e.g., FHB)

X2: second predictor variable (e.g., FDK)

X3: third predictor variable, etc., …

β1: parameter for X1 (etc.): change in 
expected Y with unit increase in X1

Note: X3 could be a function of X1 or X2.
Example: if X1 is temperature (T), then X3 could be 
the square of temperature [i.e., X3 = (X1)

2].

X3 could also be a function of 
both X1 and X2.
Example: X3 = X1⋅X2
(interaction or product term)
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proc reg data=mes;
model loss =   FHB FDK / r  clb cli clm influence vif;
plot r.*p.;
plot student.*p.;
plot r.*nqq.;
run;

Simply list the multiple predictor variables

Plots of residuals (or studentized or 
studentized deleted residuals vs. the 
predicted values remain very valuable. Also 
the normal plot of residuals. One could also 
plot residuals vs. each predictor variable.

There is no simple 2-dimensional 
graph of observed and predicted Y. 
One would need much more 
complex 3D graphs (Y and fitted Y) 
vs. X1 and X2 (not done here)

Models can also be fitted with 
ROBUSTREG and QUANTREG (and 

there other procedures)

regression1.sas
(continued)

Test of overall relationship between Y and 
the collection of predictor variables

983.0,987.0

)0081.0(0056.0)0098.0(047.0)113.0(25.0ˆ

22

21

==

++=

aRR

XXY
Tests of individual

parameters (will not 
agree with separate 
simple regressions)--

depends on the 
correlation of the 

predictors

Adjusted R2

Adjusted R2: adjusting for the fact that 
correlated and possibly unimportant 

predictors could be in the model. Could 
decline with additional variables.

MSE (estimate 
of residual 
variance)

VIF or Variance 
Inflation factor: 

Influence of predictor 
correlations on the 

results
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Example 1,

two 
predictor 
variables

0036.0,983.0,987.0

)0081.0(0056.0)0098.0(047.0)113.0(25.0ˆ

22

21

===

++=

MSERR

XXY

a

0033.0,984.0,986.0

)0022.0(053.0)075.0(20.0ˆ

22

1

===

+=

MSERR

XY

a

0133.0,937.0,944.0

)0041.0(048.0)110.0(72.0ˆ

22

2

===

+=

MSERR

XY

a

X1 is a better predictor 
than X2. There is no 

compelling evidence that 
use of both predictors is 

better than just use of X1.

Because of the correlation 
of predictors, individual 

parameter estimates 
depend on what other 
predictors are in the 

model.

Example 1, two predictor variables
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Multiple linear regressionMultiple linear regression

• A vast field, which we cannot cover!

• Just a few general guidelines:
– Always evaluate the model fit (using the various diagnostic statistics)

– For empirical model selection, always choose the model with the fewest
number of predictor variables (when there are competing models with 
the same level of overall goodness of fit)

• In general, the parameters for each predictor should be significant in the 
selected model (don’t judge just using the overall F test).

– With several potential predictors to choose from, there are ‘automated’
ways to find “best subsets” of predictors (where all terms are significant, 
etc.). However, be VERY cautious in using these methods: They are 
misleading. Use these only as preliminary guides.

• There are some special types of multiple linear regression models 
that are especially useful: the temperature-response 
phenomenon

Qin Q.M.  et. al.  Plant Dis 92:69:77
Espinoza J.G. et. al. 
Plant Disease
92:1407-1414

Saude C. et. al. Phytopathology  98:1075-1083

Responses of this type require, in addition to an ‘intercept’, models 
with two parameters (and corresponding predictor terms)R

es
p

o
n

se
: 

g
ro

w
th

, i
n

fe
ct

io
n

 e
ff

ic
ie

n
cy

, s
p

o
ru

la
ti

o
n

, e
tc

.

Madden & Esker (APS 2009)



Multiple Regression ModelMultiple Regression Model
Nonlinear models may be most powerful and flexible Nonlinear models may be most powerful and flexible 

here, but reasonable descriptions can be obtained with here, but reasonable descriptions can be obtained with 
linear modelslinear models

Yi = β0 + β1X1i + β2X2i + …+  ei

Yi = β0 + β1Xi + β2Xi
2 + …+  ei

Yi = β0 + β1Xi + β2Xi
2 + β3Xi

3 +  ei

Yi = β0 + β1Xi
2 + β2Xi

3 + …+  ei
Linear combination of parameters and predictor 
variables. 

X1: first predictor variable (e.g.,temperature [X])

X2: second predictor variable (e.g.,temperature
squared [X2])

… …

These multiple 
regression models are 
known as polynomials

regression5.sas

Try fitting linear (multiple 
regression) models to the data.

Try powers of X (temperature) 
as predictor variables (either 
two or three predictors)

For ‘best’ model, how do 
results change with robust 
estimation?

R2 = 0.966
Ra

2 = 0.966
MSE = 7.14

Growth rate of Colletotrichum 
coccodes on PDA.

Fitted with a nonlinear
‘Beta’ model.
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““NonparametricNonparametric”” RegressionRegression
• As indicated previously, models are useful for several 

purposes
– Sometimes the estimated parameters are of primary interest (to 

test theories or to compare groups)

– Sometimes the predicted responses (fitted Y values) are of 
primary interest (to describe relationships, to summarize data, or to 
predict outcomes)

• Sometimes the responses do not have a clear-cut relationship 
with the predictor variables of interest…
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log[p(1-p)]
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log(V) = -0.8 + 1.29log[p(1-p)]

R2  = 0.995

log(v) = -log(40) + log[p(1-p)]

Binary power law for spatial dispersion Prediction of risk of late blight

• Y may vary with X, but the relationship may be complex, or there may be 
no obvious model (with a small number of parameters) that could 
describe the relationship

Scherm H. et. al. Plant 
Dis  92:47:50 

Reitz S.R. et. al. 
Plant Dis  92:878:886
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Leptosphaeria maculans
and oilseed rape.

Huang et al. 2005. Eur. J. 
Plant Pathol. 111: 263-
277.

Data courtesy of B. Fitt.

Relationship can be 
described with 

increasing precision 
using a type of 

“nonparametric”
regression

““NonparametricNonparametric”” RegressionRegression
• How should one proceed when the data do not suggest a particular

form of (parametric) model?
– One can always choose a polynomial with many terms (many predictor 

variables, consisting of several different powers of X)

• This is an unwieldy and generally unreliable method

– One can avoid any specific parametric specification and just use a 
general model:

Yi = S(Xi) + ei

• Here, S(Xi) is a ‘smooth’ function of X

• Previously, S(Xi) was a relatively simple function, such as β0 + β1Xi or     
β0 + β1ln(Xi) , etc.

– Paraphrasing Schabenberger & Pierce (2002), rather than placing the 
onus on the investigator to select a parametric model (when none is 
obvious or practical for the intended objectives), we let the data directly 
guide us on the form of S(Xi) within the model fitting exercise.

• The particular form of generally remains in the background, and only 
the predicted Y values are of interest (in most circumstances)

– One does not even see the parameter estimates (in normal usage).

Here, “nonparametric” does not mean 
rank-based or distribution-free. In fact, 

normality is often assumed.
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““NonparametricNonparametric”” RegressionRegression
• The general model formulation:

• The smooth function, S(Xi) , can be either:
– A local averaging function, where a low-order polynomial is 

fitted in small neighborhoods of points, and the parameters of 
the polynomial change over the range of X (LOESS methods)

– Penalized or smoothing splines:

• “Knots” (κ) are defined at selected points along the X axis

• From the knots, several new ‘predictor variables’ are created 
(one for each knot), based on how far Xi is from each knot.

– Known as basis functions (many possibilities):

• If the smoothing function was fitted with ordinary least 
squares, a very ‘nonsmooth’ fit would occur (possibly just 
connecting the points), if there were many knots (predictors)
– However, with penalized least squares, the parameters are not 

allowed to vary freely, but take on values that give a smooth fit
• Minimize: 

iii eXSY += )(

∑
=

κ−β+β+β=
p

l
lilii XBXXS

1
110 )()(

B(Xi−κl) = |Xi−κl|3. 

PENALTY))(( 2 +−∑ ii i XSY
The PENALTY prevents 

overfitting of the data (because of 
many “predictor variables”

One PENALTY version: sum of squared 
parameters must be less than a constant.

““NonparametricNonparametric”” RegressionRegression
• One can specify the degree of smoothness desired, in terms of a 

smoothing parameter (λ), or the degrees of freedom of the model fit (dff), 
or estimate the degree of smoothness

• λ: increasing values mean increasing smoothness

• dff: decreasing values mean increasing smoothness
– Recall, with parametric polynomials, dff = 1 for linear (β0+β1Xi), dff = 2 for 

quadratic (β0 + β1Xi+ β2Xi
2 ), dff = 3 for cubic (β0 + β1Xi +β2Xi

2 +β3Xi
3 ), …

• In a sense, dff for a smoothing function summarizes the data to about the 
same extent as a polynomial of order dff

• With smoothing functions, dff is either estimated from the model-fitting 
results or is pre-specified by the user (directly, or indirectly by specifying 
λ)

dff = 4 dff = 16 dff = 66
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Spline model fitting with SASSpline model fitting with SAS
• There are several procedures that can be used to fit penalized or 

smoothing splines, or local averaging (LOESS)
– For LOESS, use PROC LOESS

– For splines, use GAM (generalized additive models) or TPSLINE, or 
GLIMMIX, even in graphics procedures (GPLOT)

• GAM can also be used for distributions other than normal (Poisson, 
etc.) and for combinations of splines and parametric terms in the 
same model (not covered here)

proc gam data=___;
title2 ‘GAM for splines, pre-specified df_f';
model Y = spline(X, df=4) ;
output out=outgam predicted  residual uclm lclm ;

proc gplot data=outgam;
plot (Y P_Y)*X / overlay haxis=axis1 vaxis=axis2; 

proc gam data=___;
title2 ‘GAM for splines, GCV parameter est.';
model Y = spline(X) / method = GCV;
output out=outgamGCV predicted  residual uclm
lclm ;

Define the spline 
function (dff = 4 is 

default)

Output file format is different: 
these options mean that 
predictions are in P_Y, 

residuals in R_Y, …

Estimate the dff or
degree of smoothness 

using Generalized Cross 
Validation

GCV often results in a less than 
smooth fit (in my experience)

regression6.sas

Example: fit a penalized spline to daily 
average air temperature data for 
Wooster, OH, 2008

Option: look at RH also.
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Regression Workshop OutlineRegression Workshop Outline
• Introduction

– Motivating examples

– Statistical models, linear models, and other concepts
• Terminology, notation, rationale, assumptions

• Fitting simple linear models: The Least Squares Principle (and 
other methods)
– Model evaluation or assessment

– Model adjustments

• Robust model-fitting methods (when some assumptions are 
violated)

• Specialized models:
– Quantile regression models, Tobit regression models

• Multiple regression
– Introduction to methods when there are multiple predictor variables

• Penalized splines (“nonparametric” regression)

• Possible future workshops (topics not covered here)…

Regression Analysis:Regression Analysis: SomeSome additional additional 
topics (not covered)topics (not covered)

• Comparing estimated parameters, and fitted Y values, for 
different groups (treatments, years, etc.)
– Covariance analysis

• Mixed-model analysis (more than one random effect, such as 
with repeated measures and split plots) 

• Multivariate regression models (multiple response variables)

• Nonparametric (distribution-free) regression

• Binary and count data for the response variable
– Logistic (or probit or Poisson) regression -- part of generalized linear 

models

• Nonlinear models 
– For instance, when there are thresholds and when Y approaches 

asymptotes or steady-states

• ‘Constraints’ on the observed Y:X relationship (censored data)
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Possible need for a nonlinear model:Possible need for a nonlinear model:

Straight-line linear 
model is a poor 
choice (line is 

“pulled” to the 
right by the 

extreme values)

Typical Y
transformations 

that account for an 
upper limit 

(asymptote) of 100 
don’t help here.

X transformation 
(because 

bending to the 
right) does not 

help either

There is some 
empirical evidence that 
Y approaches a limit of 

100 asymptotically 
(requiring a nonlinear 

model)

( )( )( )γβ−−= /exp1100 ii XY

Nonlinear regression 
analysis is a vast field, 

and much more 
complex than linear 
regression analysis. 
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There is also evidence that Y increases 
linearly with X, but that the observations of 
disease are “truncated” at 100 (that is, the 

measurement scale does not allow any value 
to be recorded above 100)

This would be an example of censoring -- all 
we know is that Y is at least 100. Censoring 

could also be at the lower level (e.g., 0)
Censored regression models, such as Tobit

models, could be utilized.

Censoring (& specialized Censoring (& specialized 
models)models)

Basic model idea:
There is a linear relation between X and 
a “latent” (unobserved) response 
variable Y*: Y* = β0 + β1X
Below (or above) a bound, observed Y
equals this “latent” variable (Y = Y*).
Above the bound, observed Y simply 
equals the bound (Y=100 here). This 
would happen if the measurement scale 
cannot accommodate more extreme 
actual responses.

Fit is better for 
observations below 

the bound.

Although we can reject a simple linear 
model here, there is insufficient evidence 

for this single data set to decide if a 
censored (Tobit) regression model or 

nonlinear model is best.

regression7.sas
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Binary data: Logistic modelsBinary data: Logistic models
• Often, the response variable is binary

– Diseased (1) or not (0)

– Epidemic (1) or not (0)

• One may wish to model the binary response in relation to 
continuous predictors, in an effort to predict the probability of 
a “positive” outcome (e.g., disease outbreak)
– X: Wetness duration, environmental index of favorability, etc.

• Logistic (and other so-called generalized linear) models are often 
appropriate here
– The response is the logit of the expected probability of a 

“positive” outcome (not the actual 0/1 observations)
• The inverse-logit gives the expected probability, p (predict an outbreak 

if p > 0.5, for instance)

• Approach is based on a binomial distribution for the data, not a
normal.
– Methodology is more complicated

Logistic regression example

124 location-years (classified as 
epidemics or not for Fusarium head 
blight (FHB) (0 or 1)

Predictor: an index of environmental 
conditions

A plot of Y vs X is very different from 
what we considered previously

The logistic regression provided a 
“good” fit (based on other criteria) to 
the data.

Using the estimated p values, 80% of 
the epidemics and 80% of the 
nonepidemics were predicted correctly 
(using p > 0.5 as the rule to predict an 
epidemic)

No epidemic

Epidemic

Estimated 
probability of an 

epidemic (p)
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ConclusionsConclusions

• Regression analysis is one of the key tools in all of data 
analysis
– Although ordinary least squares (OLS) is the foundation for most

model fitting and analysis, there are alternatives, such as robust 
regression methods

• It is imperative that a reasonable model is used for 
representing data
– Many graphic methods are of utmost importance in model 

selection

– Model form depends on the objectives of the investigator

• Once a reasonable model is selected, assessment of 
statistical assumptions is justified, possibly leading to 
use of alternative estimation methods
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Madden & Esker (APS 2009)


