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What we will cover

•Ordinal rating scales
•Nonparametric model
•Hypotheses, relative effects, test statistics
•SAS programs and macros

3

What we will assume you know

•(Some) experimental design
•Some familiarity with SAS (not necessarily

with Proc Mixed)
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Goals

•Appreciation of what experimental designs
can be used if collecting ordinal data
•How to run the analyses
•How to interpret the output
•What to present in your publications
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Experimental Design & Data
Analysis

•1-way
•2-way factorial
•Split plot
•Repeated measures

•Continuous
•Discrete (count)
•Binary (0, 1)
•Ordinal (ordered

categories)

Layouts Measurement scales

How will the data be analyzed?
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Common measurement scales

•Continuous (e.g. yield, weight)
•Count (0,1,2,…)
•Proportional/percent (0-1, 0-100%)
•Nominal (numbers serve only to ‘name’ a 

category)
•Ordinal scale (numerical order has

meaning)
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Properties of an ordinal scale

•The comparisons between measurements
is relevant (>, =, <)
•Numeric values are used only to arrange

the measurements from smallest to largest
•Ordering based on relative size
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Some nonparametric tests for ordinal (or
continuous) data

Median test
Kruskal-Wallis test

Several random samples (but
only one factor–not factorial)

Mann-WhitneyTwo random samples
(groups)

FreidmanRandomized complete block
(with single treatment factor)

Sign testPaired observations

Quantile testOne random sample

Test (example)Type of experimental
layout

Rank-based tests

None of these
are for

factorials, split-
plots, etc.
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What is a ‘factorial’?

•A class of experiments in
which the treatments
have a well-defined
structure
•Factorial treatments are

formed from
combinations of two or
more different factors
•Each treatment

combination must contain
one level of every factor

a1b1 a1b2

a2b1 a2b2
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Other nonparametric tests

•Other tests, such as aligned ranks, are
available for more complicated designs
(multivariate, split plot etc.)
•Generally assume that data are obtained

on a continuous scale (i.e. not applicable
to ordinal data)

Not covered in this workshop

Examples of ordinal scales
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Wong/Baker Faces Pain Scale
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Clinical study of multiple sclerosis

14
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Ordinal rating scales are common
in plant pathology

•Root diseases
•Foliar diseases
•Diseases of fruit, berries etc…..
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Fusarium root-rot severity

1 No visible symptoms
3 One to 3 leaves, representing no more than 10% of the

total foliage, are wilted and chlorotic
5 Approximately 25% of leaves and branches exhibit

wilting and chlorosis
7 Approximately 50% of leaves and branches exhibit

wilting and chlorosis
9 Approximately 75% or more of the leaves and branches

exhibit wilting, chlorosis, and defoliation, with eventually
plant death

17

Ceballos et al. 2004. Effect of five postemergence herbicides on red
clover shoot and root growth in greenhouse studies. Phytoprotection
85:153-160.

•Root injury
–1 = no symptoms
–2 = lesions present
–3 = necrosis
•Shoot phytotoxicity
–1 = no visible damage
–…
–5 = plant is dead
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Carrot Incidence and Severity of RKN Infection

1 2 3 4 5 6
Marketable Unmarketable


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Symptom development of bitter rot

1 3

4

Disease Rating Scale

No infection0

≥51% infection4

16–50 % infection3

6–15 % infection2

1–5 % infection1

J. G. Miranda, 2003
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Russet on snap bean pods

•0 = no symptoms
•1 = a few flecks
•2 = 2-5% of pod covered
•3 = 5-10%
•4 = 10-25%
•5 = 25-50%
•6 =50-70%
•7 = 70-90%
•8 = 90-<100%
•9 = 100%

21

Stagonospora nodorum leaf blotch of wheat.

Liu et al. 2004. Phytopathology 94: 1061-1067.
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Horsfall-Barratt Scale

0 to 11 rating scale representing percent disease
severity

0 = no disease 1 = 1-3% 2 = 4-6%

3 = 7-12% 4 = 13-24% 5 = 25-50%

6 = 51-75% 7 = 76-88% 8 = 89-94%

9 = 95-97% 10 = 98-99% 11 = 100%

Barratt, R.W. and J. G. Horsfall. 1945. An Improved Grading System for
Measuring Plant Disease. Connecticut Agricultural Experiment Station.
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Carrot Forecasting Trial - Hancock, 2002-
03

•2 cultivars: Bolero & Fontana

•4 Treatments: chlorothalonil (1.2 lb ai/A) alt.
azoxystrobin (0.15 lb ai/A)

•Treatment initiation at 1 % severity threshold

•Foliar disease severity (%) rated every 7 days on H-B
scale (0-11)

•Treatments evaluation:

Disease severity (weekly)

AUDPC (season)

Yield, quality and value

P. M. Rogers

24

Stripe rust on wheat

Australian Cereal Rust Control Program
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Table 2. Results of new product testing for control of Cercospora and
Alternaria blights of carrot.

a
b

25.0a
b

4.2a
b
c

2.0ab1.8abc18.4Bravo Weather Stik 6SC 1 pt (1-10)

a
b

25.1c13.8b
c

3.3b2.5de74.6Bravo Weather Stik 6SC 1.5 pt (1,3,5,7,9)

a
b

24.6a
b
c

5.5a
b

1.8ab1.5abcd22.0Bravo Weather Stik 6SC 1.5 pt (1-10)

c14.7d68.2d7.5c5.0eu97.9Untreated

SeverityxIncidence (%)y

Yield per 10-ft
row (lb)

Leaf blight
(%)v

Petiole
healthw

Petiole blightTreatment and rate/A (application sequencez)

x Petiole blight severity rated on a 1 to 5 scale; where 1 = 0 petiole
lesions per plant, 2 = 1-10, 3 = 11-21, 4 = 21-50, and 5 = > 50.
w Petiole health rated on a 1 to 10 scale; where 1 = healthy and vigorous
to 10 = necrotic or dead.

26

Mackill & Bonman. 1986. New hosts of Pyricularia oryzae. Plant Dis.
70: 125-127.

•0 = no infection
•1 = small brown specks of pinhead size
•2 = 1.5 mm brown specks
•3 = small, roundish to slightly elongated,

necrotic gray spots about 2-3 mm in diameter
with brown margins
•4 = typical blast lesions infecting 50% or more

of the leaf area

27

Bosland & Lindsey. 1991. A seedling screen for Phytophthora root rot
of pepper, Capsicum annuum. Plant Dis. 75: 1048-1050.
(0-10 scale)

•0 = no response
•3 = brown roots, slight stunting, very

small lesions on stems
•7 = brown roots, large lesions on stems,

girdling, whole plant wilted, and stunted
•10 = death
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Van Toai et al. 1994. Genetic variability for flooding tolerance in
soybeans. Crop Sci. 34:1112-1115.

B. Nelson, NDSU

•1 = healthy plants with no
root root

•…

•10 = all seedlings killed

29

Pratt et al. 1994. Maize responses to a severe isolate of maize
chlorotic dwarf virus. Crop Sci. 34:635-641.

U. Of Georgia Cooperative Extension Guide

Chlorosis
•1 = no symptoms
•2 = Chlorosis just beginning
•3 = Chlorosis is clearly visible in base of two youngest

leaves
•4 = In addition to 3, chlorosis on at least one-half the

length of three to four youngest leaves
•5 = Chlorosis more severe than in 4, leaves are yellow

and are beginning to turn white

30

Dealing with ordinal data

•Differences between scores (or mean scores) do
not make sense
•Therefore, methods based on the analysis of

means (ANOVA) are not appropriate
•The results should not depend on the values
assigned to the categories (the ‘labels’).  i.e. the 
results should be invariant (same) under
monotonic transformations of the rating scale.
Analysis based on rank transformations can
meet these criteria.
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Difference between scores do not
make sense (in any quantitative or
physical way)
1 2 3 4 5

For all we know, the scale could look like this:
1 2 3 4 5

Or this: 1 2 3 4 5

Or even this: A B C D E

32

Defining ranks

41

20

31

Trt 2Trt 1

E.g., 2 treatments, effect measured on a 0-4 ordinal scale

6.02.5

4.01.0

5.02.5

Trt2Trt1

Go to SAS…

33

Rank-based tests
•Have been around for a long time (Kruskal-

Wallis, Friedman)
•But generally limited to the one-way layout

(i.e., there had been sound statistical theory for
ordinal data only for the one-way layout)

•Given the desirable properties of rank
transformations, why not use ANOVA on
the ranks (i.e. Rank Transform Method)?
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Don’t just use ANOVA on ranks!

•Hypotheses in ANOVA are based on
differences between means, or shifts in
means (“expected values”).  These are 
affected by monotonic data transformations.
Rank statistics are invariant, so inappropriate
to use them to test hypotheses that are
transformation-dependent.
–Looked at another way, if one uses ranks of

data, one is not testing the equality of means
(expected values) for different treatments

35

Don’tjust use ANOVA on ranks!

•Assumption of normality in classical
ANOVA: ranks are not normally
distributed
•Ranked data have unequal variances,

even if the variances were constant in the
original data

36

Getting around ordinal data: the disease index
•A common approach in plant

pathology
Example: Kora et al. CJPP 2005
0 = 0%
1 = 1-25%
2 = 26-50%
3 = 51-75%
4 = 76-100%

Statistical issues

“Roots were washed and evaluated for disease
using a 0 to 4 rating scale. A disease severity
index (DSI) was calculated for each plot
by: (mean severity X incidence %) / 4. “

Another example

Bradley et al. (web document)

 
  100

No.classhighestrootstotal

classinrootsno.classseverity
Dindex 






It is debatable if
such an approach
is justified.
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A new approach (subject of this workshop)

•Applicable to continuous, discrete,
dichotomous or ordinal data
•Robust with respect to outliers
•Results are invariant under strictly

monotone transformations of the data
•Missing values are allowable
•Very good approximate test statistics are

available for small sample sizes

38

A new approach (M. Akritas, Edgar Brunner
& several colleagues)

•Most (routine) experimental designs
(layouts) can be handled with specialized,
free macros (SAS or R)
•Designs (plus contrasts) can be generally

handled with SAS Proc Mixed (with
appropriate options)

39

Assumptions

•Nonparametric does not mean there are
no assumptions
–All statistical methods are based on

assumptions

•The Brunner approach has the least
restrictive assumptions of all possible
statistical methods for testing hypotheses
about random variables
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Assumptions
•Other nonparametric tests have more restrictive

assumptions:
E.g., K-W (which is strictly for a one-way layout)

assumes:
– constant variance across groups: S2 = N(N+1)/12

when there are no ties (i.e., for continuous data).
–Distributions of observations have the same shape

for all groups (treatments, etc.), when one is testing
for equality of medians

•K-W can be regarded as a special case of the
Brunner one-way layout.

41

Assumptions in the Brunner
approach

•Observations have a distribution!
–(no restrictions on shape of distributions, nor

on similarity of distributions among groups)

•There are sufficient number of
observations (replications) to apply
certain test statistics.
–In fact, simulations show that the approach

works for small sample sizes

•Essentially, no other assumptions.

42

Nonparametric statistical
analysis

•Approach depends on normalized
distributions, and so-called relative
treatment effects
•Thus, a little review is provided….
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Distributions
•Histogram

– Division of a sample of observations of a
random variable into a number of classes,
together with the number (or proportion) of
observations in each class

•Probability density function (pdf) or
probability mass function (pmf)
– The probability of each value of a variable in

a population (discrete)
– Probability that a variable falls within a

particular interval in a population when
integrated over interval (continuous)

–Sometimes just called the ‘distribution’ (but 
not here)

•Estimated probability density function
– Estimated pdf from a sample
– Often called empirical probability density
– Equivalent (graphically) to scaled histogram

X
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Distributions
• Probability density function (pdf) or

probability mass function (pmf)
– The probability of each value of a variable

in a population (discrete)
– Probability that a variable falls within a

particular interval in a population
(continuous), when integrated over interval

•Distribution
– Cumulative probability of values of a

variable in a population

•Labeled as F(x) or simply F
– Sometimes called cumulative

distribution

•Estimated distribution
– Sometimes called empirical distribution
•Labeled as

X

d
F(

x)
/

dx
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FxF ˆ)(̂ With F(x) for distribution,
pdf is thus written as:

dF(x)/dx

X
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x
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X
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xdF )(
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xFd )(̂
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Distributions
•The foundation of parametric

statistical analysis is that the
distribution (F) of a variable can
be represented by a function
(i.e., model) with one or more
parameters
– Normal distribution
•Mean (μ)
•Variance (σ2)

– Exponential, gamma, log-
normal, Poisson, negative
binomial, etc.…

•Descriptions, comparisons,
predictions, and in general,
inference, are performed in
terms of estimated parameters

•With ordinal data, however, this
is not possible.

X
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e
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N 200

Normal
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Distributions
• In fully nonparametric

statistical analysis, one does
not (generally) assume any
function (model) for F or dF/dx
–The measurement scale (i.e.,

type of random variable)
precludes use of functions such
as the normal, Poisson, and
other models for F.
•Ordinal data

–Conditions or assumptions
needed (desired) to use certain
functions for F are violated

•However, with nonparametric
statistics, one can base analyses
directly on distributions and their
estimates
–Basis for this workshop…..
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y
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Distributions
• It turns out that investigators do not actually have to estimate Fs

explicitly
•However, since the principles and concepts are based on Fs, it is

worth spending a little time working through some calculations for a
small data set
– The calculations lead to a useful summary statistic that is used in the

nonparametric analyses of this workshop.

•Consider the following 10 points, for a single group (e.g., treatment)
•Xk = 1, 2, 2, 4 , 5, 6, 7, 7, 9, 10 (n = 10; k= 1, 2, …, n)

–What is the empirical (estimated) F(x)?
•Note: Upper case X for the random variable, and lower case x for a

specific (fixed) value
•So far, we have deliberately been a little vague about the

cumulative aspect of the probability.
–The “usual” or “classical” definition is: Prob[X < x]
•Example: Probability that an observation is less than or equal to x=1, 2, …

–However, there are actually three versions of the distribution.
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Distributions
•Before calculating the distribution, first consider the ranks of

the observations
•Ranks:

–The relative positions of observations in a sample with respect to
some characteristic (e.g., some measurement)

–Representation of the underlying order of the values of a sample

10

9

7.5

7.5

6

5

4

2.5

2.5

1

Mid-
rank, R

10

9

7

7

6

5

4

2

2

1

X There are different types of
ranks, but the methods that

follow are based completely on
mid-ranks (R)

With mid-ranks, ties
have the same value

For simplicity,
we refer to

mid-ranks as
ranks

When needed for clarity, use k subscript to
indicate the specific observation (k= 1, …n):

Xk, Rk
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Distributions: Three versions
Right Continuous, F+(x) = Prob[X<x]

10

9

7.5

7.5

6

5

4

2.5

2.5

1

R

10/10=1.010

9/10 = 0.99
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8/10 = 0.87

6/10 = 0.66

5/10 = 0.55

4/10 = 0.44

3/10 = 0.32

3/10 = 0.32

1/10 = 0.11

Prob[X < x]X

)(ˆ xF Empirical
distribution
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Variable (X)

0.00

0.20

0.40

0.60

0.80

1.00

F
+ (
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51

10

9
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R

10/10=1.09/10 = 0.910

9/10 = 0.98/10 = 0.89

8/10 = 0.86/10 = 0.67

8/10 = 0.86/10 = 0.67

6/10 = 0.65/10 = 0.56

5/10 = 0.54/10 = 0.45

4/10 = 0.43/10 = 0.34

3/10 = 0.31/10 = 0.12

3/10 = 0.31/10 = 0.12

1/10 = 0.10/10 = 0.01

Prob[X < x]Prob[X < x]X

)(ˆ xF

Distributions: Three versions
Left Continuous, F–(x) = Prob[X<x]

Empirical
distribution
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Variable (X)
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F
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)
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10/10=1.00.959/10 = 0.910

9/10 = 0.90.858/10 = 0.89

8/10 = 0.80.76/10 = 0.67

8/10 = 0.80.76/10 = 0.67

6/10 = 0.60.555/10 = 0.56

5/10 = 0.50.454/10 = 0.45

4/10 = 0.40.353/10 = 0.34

3/10 = 0.30.21/10 = 0.12

3/10 = 0.30.21/10 = 0.12

1/10 = 0.10.050/10 = 0.01

Prob[X < x]
Prob[X < x] +
0.5Prob[X=x]Prob[X <

x]
X

)(̂xF

Distributions: Three versions
Normalized,

F(x) = 0.5{Prob[X<x] + Prob[X<x]} = 0.5{F–(x) + F+(x)}

Prob[X<x] + 0.5Prob[X=x]

Empirical
distribution
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Normalized
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Distributions: summary (so far)
•F(x) or F represents the normalized

distribution
•Estimated (empirical) normalized
distribution indicated with a “hat”
•Density (pdf), and hence histogram,

is given by dF/dx
•F gives a full description of the

observations
•In nonparametric analysis, no

assumptions are needed about the
nature of F
–Variable can be continuous or discrete,

including ordinal and categorical
–Ties are permitted
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Distributions: several groups
•What if there are several groups (treatments)?
•Place a subscript on F to indicate the group

•F1, F2, …., FA for a different groups
–Use i as a label for a specific group
•Fi, i= 1,…a

–The random variable and rank now have two
subscripts, Xik and Rik (for group and observation)

•One can, if desired, estimate F for each group
(i.e., determine the empirical distribution for
each)
–Analysis does not require explicit estimation of Fi.

•A weighted mean F (= H) can be determined

i
a

iFn
N

HxH 
1

1
)(

iF̂

Total
observations

Observations
in group i

One can determine
empirical H ( ) based on

empirical F
Ĥ
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Example empirical normalized
distributions

Go to SAS file for example of wheat
powdery mildew

(4 cultivars, 20 plants each)

0 <1% leaf area affected on 4th leafa

1 1-50% leaf area affected on 4th leaf
2 1-5% leaf area affected on 3rd leaf
3 5-15% leaf area affected on 3rd leaf
4 >15% leaf area affected on 3rd leaf
5 1-5% leaf area affected on 2nd leaf
6 5-15% leaf area affected on 2nd leaf
7 >15% leaf area affected on 2nd leaf
8 1-5% leaf area affected on flag leaf
9 5-15% leaf area affected on flag leaf
10 >15% leaf area affected on flag leaf

Rating
scale

56

Normalized distributions: comparisons
•Need a summary value for each

distribution to facilitate comparisons of
distributions
– Are the values of X for one group larger

(smaller) than for another group?

•As indicated before, there is no
parameter to compare for
nonparametric analyses

•The median is a useful summary
statistic, corresponding to the value of X
giving F(x) = 0.5.
– Some nonparametric approaches are

based on medians
– However, these approaches are not

applicable for factorials (repeated
measures, etc.), but medians are still
useful summaries

Data
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Effects of treatments
(cultivars, controls,

pathogen races, etc.) are
defined and determined
based on distributions
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Relative treatment effects
•A more informative and useful metric than the median is the

relative treatment effect (also known as the relative marginal
effect for factorials)

 pi = ∫HdFi

–A quantity to represent the probability that one random
variable is larger than the other

–Range: 0 < pi < 1 (not quite 0 or 1 for the limits)

•Formally, pi quantifies the (stochastic) tendency of the
distribution Fi with respect to the mean distribution H
– If Fi tends to lie to the right of H, then pi > 0.5
– If Fi tends to lie to the left of H, then pi < 0.5
–Describes how the observations of one group (with distribution Fi)

are related to observations from a group with distribution H
•If pi < 0.5, there is a tendency of randomly selected observations from

group i to be smaller than randomly selected observations from a
hypothetical group with H as its distribution
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Relative treatment effects
•Relative treatment effect: pi = ∫HdFi

•Estimate:
2.1
3.6
3.7
5.1
5.2
5.5
5.6
5.7
5.8
6.1
6.2
6.5
6.6
7.3
7.6

0.3
0.7
0.9
1.0
1.7
2.7
2.9
3.0
3.1
3.8
4.0
4.1
4.6
4.7
4.8

X2kX1k

0 2 4 6 8 10

Observations (X)

0.00

0.25

0.50

0.75

1.00

E
st

im
at

ed
no

rm
al

iz
ed

di
st

rib
ut

io
n

1̂F

2̂F

)3.0ˆ( 1 p

)7.0ˆ( 2 p

Ĥ
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Definition of estimate, but
not the practical

approach for estimation

It turns out that the estimate
is a simple function of the

mean rank for the i-th group

Reminder:
Rik: Rank of k-th observation in group i
N: Total number of observations
H: Weighted mean normalized distribution
dF/dx: Probability density function
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Relative treatment effects

•When there are only two groups, one can define:
p = p2–p1 + 0.5 = Prob(X1 < X2) + 0.5Prob(X1=X2) = ∫F1dF2

–The relative effect of F2 with respect to F1

–“The probability that the random variable from group 2 is greater
than from group 1”
•p > 0.5 (p2–p1 > 0): Values of X2 tend to be larger than values of X1

•p < 0.5 (p2–p1 < 0): Values of X2 tend to be smaller than values of X1

•p = 0.5 (p2–p1 = 0): No tendency exists for the values of X1 to be either
larger or smaller than those of X2.

–For the wheat mildew example:

•There are several nonparametric methods for statistically comparing
two groups, but most do not generalize to multiple groups, or
factorials, or are not appropriate for ordinal data
– The approach of this workshop covers all of these situations

– Relative treatment effects and their differences (e.g., p1-p2, p3-p4,…) are
applicable for all factorials

9.05.03.07.05.0ˆˆˆ 12  ppp
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Relative treatment effects

Wheat powdery mildew example:

Est.
Rel.
Trt. Eff.

Mean
Rank

MedianCultivar

0.2520.82.04

0.4234.15.03

0.5645.25.52

0.7761.981
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One way layout, completely
randomized (Factor A: a=3
treatments; 3 replications)

A=1 A=2 A=1 A=3 A=3 A=2 A=3 A=1 A=2

3210 FFFH Nonparametric hypothesis
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SAS examples

Go to SAS….
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Test Statistics
•“Wald Type Statistic” (WTS)

–Asymptotically, has an exact chi-square distribution under the
null hypothesis
•Obtain with the /CHISQ option on the model statement of MIXED

–But, very large sample sizes are required
–Do not, in general, use for most data sets

•“ANOVA Type Statistic” (ATS)
–Asymptotically, has an approximate F distribution under the

null hypothesis
•Obtain with the ANOVAF option on the procedure statement of

MIXED

–Simulations have shown that this test works (i.e., the statistic
has the correct properties) even for very small sample sizes

–Use for most data sets

65

One way layout: SAS output

•Version 8.2 output
WTS

ATS

66

One way layout: SAS output

•Ver. 9.1 output



23

67

One way layout, with blocking

Block 1 Block 2 Block 3

A=1 A=2 A=3 A=1 A=3 A=2 A=3 A=1 A=2

68

Dealing with blocking

•Approaches for dealing with blocking are being
developed .. Still an active area of current
research
•Easiest approach would be to add a random

block; statement
•Not accounting for block effects could lead to

inflated standard errors
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Two way factorial: hypotheses
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SAS examples

Go to SAS….
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Two way layout: SAS output (vinca)

•Ver. 8.2 output
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Two way layout: SAS output (vinca)

•Ver. 9.1 output
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Split plot layout
Factor A: a=3 treatments [whole plot];
Factor B: b=4 treatments [sub-plot];
3 replications)

A=2 A=2 A=1 A=3 A=3 A=2 A=3 A=1 A=1

B=1

B=3

B=4

B=2
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Split plot layout, with blocking

Block 1 Block 2 Block 3

A=1 A=2 A=3 A=2 A=1 A=3 A=2 A=3 A=1

B=2

B=3

B=1

B=4
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SAS examples

Go to SAS….
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Significance level corresponding to
ATS (ANOVA Type Statistic)
•For crossed factors (1-way, 2-way, etc.)

–Use calculated numerator and denominator degrees
of freedom (Num DF and Den DF)

•For split plots and repeated measures
–Use calculated numerator degrees of freedom (Num

DF) and infinite denominator degrees of freedom
(“infty”) 
•However, an improved significance level can be obtained

for the whole-plot (the independent groups) by using
calculated denominator degrees of freedom (Den DF)
–Caution: for small sample sizes, one may need to run

PROC MIXED a second time to obtain the correct Den DF
for whole plot–see comments in e-Xtra.
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One way repeated measures

t=1

t=4

t=6

A=1 A=2 A=3

t=1

t=4

t=6

t=1

t=4

t=6
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Two-way factorial repeated measures

t=1
t=2
t=3
t=4

t=1
t=2
t=3
t=4

t=1
t=2
t=3
t=4

Factor A

Factor B

A=1 A=2

B=1

B=2

0

1

2

t=1 t=2 t=3 t=4
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Split plot repeated measures

Factor
A

A=1

A=2

A=3

B=1 B=2 B=3

0

1
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3

4

5

t=1 t=2 t=3 t=4

Factor B

t=1
t=2
t=3
t=4
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Articles which have used the Brunner
nonparametric approach to ordinal data:

•Zhao et al. 2004. Plant Dis. 88:1033-1039
•Khan et al. 2004. Plant Dis. 88:280-286
•Dillard et al. 2005. Plant Dis. 89:700-704
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Presenting your results…



28

82

A possible caveat…
•If you use Windows XP with Service Pack 2
and SAS 9.1, could run into ‘out of memory’ 
problems during model fitting.
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Reference books
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Future workshops: stay tuned!

•Bayesian analysis (2006)
–A. Mila & J. Yuen

•Repeated measures analysis
•Spatial statistics


