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Conceptual Background
• It is common in plant pathology (and in many other fields) to 

investigate the effects of two or more factors on a response
variable of interest

• Factor:
– An explanatory variable that may affect the response variable, which 

is “manipulated” by the investigator in an experiment
• Sometimes a variable that is just measured in an observational study 

and not manipulated in a planned/replicated/randomized experiment 

• May be called a predictor variable or “independent variable”

• Experiments with two or more factors are called factorials

– Often the term “factor” is used for a classification or class variable, 
consisting of two or more discrete levels (treatment 1, treatment 2, 
…; or group 1, group 2, …)

• Note: “treatment” or “group” can refer to a specific level of the factor

• Covariable (in contrast to a factor):
– A continuous explanatory variable that is either manipulated or 

measured by the investigator
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Conceptual Background, continued
• Response variable (dependent variable): 

– A random variable that is measured or observed
• Continuous (normal, etc.) or discrete (binary [0,1], count, ordinal)

• Investigations are carried out to determine if one or more factors or 
covariables (explanatory variables) affect the response variable

• Measurements or observations are obtained from:
– Planned experiments with randomization and replication; or from 

– Observational studies (where randomization is not possible)

• Data analysis (equivalent to fitting a statistical model) is key to 
determining if factors or covariables (explanatory variables, in general) 
affect the response variable
– The analysis (modeling) must take into account both the treatment design

and experimental design
– Treatment design includes the number of factors and/or covariables, 

and whether or not all treatment (factor level) combinations are present

– Experimental design includes the manner in which treatment 
combinations are assigned to experimental units (Examples: 
completely randomized, blocking, split-plots, repeated measures)

Random 
effects are 
key to 
accounting 
for 
experimental 
designs

Effects of density of Verticillium dahliae and Pratylenchus penetrans in 
the soil on potato tuber yield (Rowe et al. [Phytopathology 75:412-418]) 
– a randomized experiment

Does Verticillium (overall) affect yield?
Does Pratylenchus (overall) affect yield?

Does Verticillium (alone) affect yield?
Does Pratylenchus (alone) affect yield?

Does effect of Verticillium depend on 
Pratylenchus? (interaction?)
Does effect of Pratylenchus depend on 
Verticillium? (interaction?)

Two-way
Factorial
(example)

Verticillium
(per 10 g)

Pratylenchus (per 100 cc) All

0 9 30 106

Tuber
weight 
(g)

Tuber
weight 
(g)

Tuber
weight 
(g)

Tuber
weight 
(g)

Tuber
weight 
(g)

0 320 249 325 323 302

30 294 162 107 156 183

300 114 143 78 70 99

All 245 188 160 177 192
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Effects of compost treatment (yes [2] or no [1]) on percent ground 
coverage after seeding with three turfgrass varieties [1,2,3] (Lochinkohl & 
Boehm. HortScience 36:790-794)

• Does compost treatment (overall) affect turf ground cover? 
• Is the compost effect consistent for all turf varieties? (interaction?)

• Does turfgrass variety (overall) affect ground cover? 
• Does the variety effect depend on compost? (interaction?)
• How does one incorporate the experimental layout (split plot) into the 

analysis?

Turf 
variety

Compost
All1 2

%
coverage

%
coverage

%
coverage

1 58.3 78.3 68.3

2 71.7 85.0 78.3

3 63.3 80.0 71.7

All 64.4 81.1 72.8

Two-way
Factorial
(example)

Does the effect of treatment (or strain) depend on time?
Does the change with time depend on treatment?

Two or more factors, including Time

Xanthomonas
albilineans on 
sugarcane (greenhouse 
study). Different strains, 
strain sources, and 
times on disease. 
(Champoiseau et al. 
(2006)

Fusarium density on roots of tomato (field 
study). Different water sources and times. 

Triky-Dotan et al. (2005)
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Multiple factors

• Fusarium head blight severity and DON toxin in wheat 
(Odenbach et al. (2008). Proc. National Fusarium Head Blight 
Forum). 
– Planting date 
– Cultivars (with different levels of quantitative resistance) 
– Time of infection (inoculation) 
– Inoculum density

• Effects of pre- and post-harvest treatments on gray mold of red 
raspberry (Ellis, Madden, Wright, Wilson. (2008). Plant Health 
Progress).
– In-field fungicide treatment (pre-harvest) 
– Harvest time [repeated measure] 
– Post-harvest incubation conditions (room temperature or cold) 
– Incubation time post-harvest [repeated measure]

Outline
• Conceptual overview of factorial treatment structure, and examples

• Statistical linear models

– Notation, especially for means (ij) and effects [i, j, ()ij ]

– Main effects, interactions, simple effects, slices

– Hypotheses, tests

• Example (two factors)
– Use of SAS GLIMMIX procedure (with emphasis on features 

especially useful for factorials), graphs and tables

• Conceptual overview of random effects, experimental structure, 
and mixed effect models
– Hypotheses and tests

• Example: 3 factors

• Contrasts for customized tests

• Examples revisited

• Experiments with a continuous explanatory variable (covariable)

• Conclusions
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Model
• Abstraction of a real phenomenon or process that emphasizes 

those aspects relevant to the objectives of the user
– Used to describe, understand, predict, compare, and make 

inferences about the phenomenon

– Models consist of terms that are:
• deterministic (systematic, structural), for the portion of the 

model that does not involve uncertainty; and/or 

• stochastic (random)

– Often, stochastic terms can lead to a parsimonious 
abstraction of the phenomenon

• Statistical model:
– Model with stochastic (random) components and 

deterministic components, containing unknown constants 
(i.e., parameters) to be estimated

• ANOVA and regression models are statistical models

Response = (systematic part) + (random part)

Response = structure +  error

Outcome of 
interest, being 
measured or 
observed (Y ); a 
random variable.

Mean or 
expected value 
of response ()

Function of 
variables (factors) 
and parameters; 
often of primary 
interest.

Statistical Model:

 =f(X1,X2,…; , , , β, …)

Residual: Difference 
between observed 
responses (i.e., the 
observations) and mean  
responses based on 
parameters (e = Y - ); a 
random variable
(assume normal here). 
Can be expanded for 
more random terms.

Parameters (unknown constants to be 
estimated) given by Greek letters; 
variables given by Roman letters.
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Model for one factor (effects notation):

We need at least two subscripts:

i (for factor [treatment or group] level designation) 

k (observation or replicate designation, 
for each treatment or group)

Thus,

Yik : The k-th observation of the i-th treatment

Y31: The 1st observation of the 3rd treatment (example)

For a situation with one factor, i can represent the effect of the i-th factor 
level (treatment i) on the response variable 

Yik =   + i +  eik ,      eik ~N(0, e
2)

e.g., Effect of treatment 2:
2 is the effect of treatment 2 (could even be zero). 
Indicates how  much the mean for treatment 2 is 

above or below the overall constant ()

: constant 
(intercept)

Yik =   + i +  eik ,      eik ~N(0, e
2)

Determining expected values (population means) for different 
factor levels:

E() Expectation operator: E(Yik ) =  i (i.e., mean for treatment i)
(this notation is just giving the definition of an expected value)

E(Yik) = i = E( + i +  eik ) = E() + E(i )  +  E(eik)
=     +  i +    0         =   +  i

Thus, i =  + i , and Yik = i + eik ,  eik ~N(0, e
2)

Means notation

Effects notation

Hypothesis testing:
Null hypothesis can be 
written in different, but 
equivalent, ways
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Yik = + τi + eik ,  eik ~N(0, e
2)       or

i = + τi ,     Yik = i + eik ,  eik ~N(0,e
2)

Yik: response (dependent variable) for the k-th observation in 
group (or treatment) i

: constant (“intercept”)
i: Group or treatment effect (effect of group or treatment i on 

response) - parameters
eik: Error associated with group (treatment) i and observation k

(random variable, normal distribution). Residual.

A classical one-way linear model

This is considered a linear fixed effects model.

Definition: a linear model with only parameters (constants) (e.g., effects of 
treatment) and one random variable (the error [residual], in this case).

Linear:
Sum of Variables  constants, or just constants

መߠ ൌ 3.00
	ෝ߬ଵ=2.67 
	ෝ߬ଶ=8.33
	ෝ߬ଷ= 0

=መ+߬̂ଵߠ =ොଵߤ
3.00+2.67= 5.67
=መ+߬̂ଶߠ =ොଶߤ
3.00+8.33= 11.33
=መ+߬̂ଷߠ =ොଷߤ
3.00+0 = 3.00

Single-factor example (SAS MIXED) output

The last effect parameter is always 0 (what matters is 
the sum of the intercept and the i).

Madden & Kriss (APS 2012)



8

Two or more fixed-effect factors
• An experiment may include two or more factors, such as:

• Fungicide and plant cultivar

• Irrigation (none, low, high) and crop rotation (corn-corn, corn-soybean)

• Pathogen strain (or genotype), host genotype, tillage

• Temperature and wetness duration

• Fungicide treatment and time of observation (repeated measure)

• Cultivar and distance from an inoculum source (spatially repeated measure)

• Note: the term “treatment” could be used as a label for one of the factors 
(e.g., “fungicide treatment”), but “treatment” can also be used more 
broadly as a general term to encompass the collection of factors

• With > 2 factors, the treatment structure or design is called a factorial 
– The factorial is completely crossed if each level of one factor is combined 

with each level of the other factors
• E.g., if there are 2 cultivars and 2 cropping systems (two factors), then the design 

is crossed if all four combinations (2x2) are included in the study

– If the levels of one factor are not identical at the levels of the other factors, 
then the design is nested (not explicitly considered here)

• E.g., cultivars for the first cropping system are different from the cultivars in the 
second cropping system

Two fixed-effect factors
• The first factor is generically known as A (e.g., plant genotype), 

and the effect of A is given by 
• The second factor is generically known as B (e.g., fungicide 

treatment), and the effect of B is given by 
• Additional factors given by C (), etc. (Greek letters)

• With two factors, we need at least three subscripts:

i (for factor A; i = 1, …, I ). There are I levels of factor A

j (for factor B; j = 1, …, J ). There are J levels of factor B

k (observation [or replicate] designation, for each combination of 
level i of A and level j of B)

Thus,

Yijk : The k-th observation of the i-th level of factor A and the j-th
level of factor B

Y321: The 1st observation of the 3rd level of A and 2nd level of B 
(e.g., first replicate of cultivar 3 and fungicide 2)

Madden & Kriss (APS 2012)
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Two fixed-effect factors: 
Expected values (means): ij, i,  j,  

Main effect means.
“Main Effect” can also describe a contrast 
(e.g., difference) of the main-effect means.

Main effect means.
“Main Effect” can also describe a 
contrast (e.g., difference) of the 
main-effect means Grand mean

Interaction mean

Expected values (= 
LSMEANS) are not 
necessarily simple 
arithmetic averages of 
observations.

Two fixed-effect factors
• With two factors, a standard linear statistical model is:

Yijk =  + i + j + ()ij + eijk ,       eijk ~N(0,e
2)

• i : Main effect of factor A on the expected value (analogous to i)

• j : Main effect of factor B on the expected value

• ()ij : The interaction effect (combined or joint effect of both factors)
– An interaction occurs when the effect of A depends on the level of B, or the 

effect of B depends on the level of A (other meanings of interaction will 
follow)

– The ()ij term adjusts the main effects up or down, depending on the level 
of the other factor

• Usually, interest is on the means (expected values; ij), and the “effects” 
terms (e.g., i , j , ()ij ) reside somewhat in the background (although 
they are used for all tests and for determining the expected values)

• Alternative formulation:

ij =    + i + j   +  ()ij  Yijk = ij + eijk ,   eijk ~N(0,e
2)

Madden & Kriss (APS 2012)
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Two fixed-effect factors
• With two factors, a standard linear statistical model is:

Yijk =  + i + j + ()ij + eijk ,       eijk ~N(0,e
2) or

ij =   + i + j + ()ij  Yijk = ij + eijk ,  eijk ~N(0,e
2)

ij : sometimes known as an interaction mean (not necessarily a simple 
arithmetic average from observations; rather, an estimate from a model)

i : main-effect mean for A (average over the levels of B). 

If two levels of factor B, then main effect for level 2 of A: 

2 = (21+ 22)/2

j : main-effect mean for B (average over the levels of A). 

If three levels of factor A, main effect for level 2 of B: 

2 = (12+ 22+ 32)/3
If there is no interaction [()ij  0], one can base all analyses on the main-
effect means, greatly increasing the power to detect true differences of the 
expected values

Two (or more) fixed-effect factors

Main effect means.
“Main Effect” can also describe 
a contrast (e.g., difference) of 
the main-effect means

Main effect means.
“Main Effect” can also describe a 
contrast (e.g., difference) of the 
main-effect means

Grand mean

Interaction mean

Computer software estimates 
the expected values,  based 
on estimated effects (i, etc.)

Madden & Kriss (APS 2012)
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Two (or more) fixed-effect factors

Simple Effect: a comparison of 
means (e.g., a difference or, in 
general, a contrast) for one factor 
while the other factor is held fixed.

Simple Effect: a comparison of 
means (e.g., a difference or, in 
general, a contrast) for one factor 
while the other factor is held fixed.

For instance, 
difference of 
means for 
levels 1 and 
2 of B, at 
level 1 of A:
11 - 12

• A Slice is a test of a simple effect.
• An interaction is present when the simple effects are not the same for 

each level of the other factor.

Effect: B:
A: 1 2 mean
1 10 10 10
2 10 10 10
3 10 10 10
mean 10 10 10

Effect: B:
A: 1 2 mean
1 10 20 15
2 10 20 15
3 10 20 15
mean 10 20 15

Effect: B:
A: 1 2 mean
1 10 10 10
2 20 20 20
3 30 30 30
mean 20 20 20

Effect: B:
A: 1 2 mean
1 10 20 15
2 20 30 25
3 30 40 35
mean 20 30 25

No interactions

Madden & Kriss (APS 2012)
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Effect: B:
A: 1 2 mean
1 10 10 10
2 10 20 15
3 10 30 20
mean 10 20 15

Effect: B:
A: 1 2 mean
1 10 40 25
2 15 35 25
3 20 30 25
mean 15 35 25

Effect: B:
A: 1 2 mean
1 10 40 25
2 25 25 25
3 40 10 25
mean 25 25 25

Effect: B:
A: 1 2 mean
1 10 20 15
2 15 30 22.5
3 20 40 30
mean 15 30 22.5

Interactions

Two fixed-effect factors: Linear model

Yijk =  + i + j + ()ij + eijk , eijk ~N(0, e
2) 

Yijk: response (dependent variable) for the i-th level of factor A, j-th level of factor 
B, and k-th replicate

: constant (“intercept”)

i: Effect of the i-th level of factor A on Y

j: Effect of the j-th level of factor B on Y 

()ij: Interaction effect (effect of i-th level of A and j-th level of B on Y)

eijk: Residual (error) (a random variable, with variance e
2)

Example:
Effect of density of the fungus Verticillium dahliae (factor A; “Vert”) and the lesion 
nematode Pratylenchus penetrans (factor B; “Prat”) on yield of potatoes (Y). 
Experimental unit was a plant (in a micro-plot), and all units were randomized.

Madden & Kriss (APS 2012)
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Protocol for analysis: Preliminary
• Fit model to data (based on the type of data (assume normal here) and 

the methods used to collect the data [experimental structure])
– Use statistical procedure appropriate for one or more random effects, with a 

wide range of post-modeling methods (contrasts, graphs)

– We use GLIMMIX procedure in SAS (although other procedures could be 
used for the first example, this PROC has a very wide range of post-model-
fitting methods (graphs, mean comparisons, contrasts)

• Evaluate goodness of fit (graphically) to determine if the selected model 
is reasonable for the data 
– If not reasonable, consider other models or transformations of the data. 

Could use generalized linear mixed models (for non-normal) (not here)
• Example: log or square-root transformation

• Determine if factors (or covariables), and their interactions, have 
significant effects on response variable
– Typically, use Type 3 (III) tests (F tests)

– If significant, determine various contrasts (such as pairwise mean 
differences, slices, etc.) to elucidate the nature of the significant effects

– Always consider the interactions first, and consider main effects mostly 
when there is no interaction (graphs are usually a good idea)

Potato response to the 
pathogens causing 

early dying. Input 
variables (as columns), 

including disease rating, 
and weight of foliage, 

roots, and tubers

Transform, as needed.

data ped80;

input treat  Vert Prat obs rating tops roots tubers;

stubers=sqrt(tubers); *<--transformations;

sroots=sqrt(roots);
datalines;
0  0 0 1 0 490 2.9 752
0  0 0 2 0 440 2.8 130
0  0 0 3 2 70 0.3 132
…
;

FA 1.sas

ods html;

ods graphics on;

proc glimmix data=ped80 plots=studentpanel ;

CLASS Vert Prat;

MODEL tubers = Vert Prat Vert*Prat / solution ;

LSMEANS Vert Prat Vert*Prat

/diff  plots=(mean(join cl) diff(center));

run;

ods graphics off;

ods html close;

To get graphs in 9.2 or 9.22, 
one must invoke ODS HTML
and ODS GRAPHICS 
(automatic in 9.3). Plot options 
in red are used for model 
diagnostics and for looking at 
means

Identify factors with  CLASS

MODEL gives the model, /solution
option to see estimated effects (, 
etc.) .
The intercept () and residual (e) are 
automatically part of the MODEL

LSMEANS gives estimated 
expected values and ancillary 
statistics

Madden & Kriss (APS 2012)
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Protocol for analysis of fixed-effects: Synopsis
• Use plots=studentpanel option on the GLIMMIX procedure statement to 

assess appropriateness of the model fit (adjust if necessary)
– Look for random plot of residuals (versus predicted Y values), straight-line for 

normal plot, and when there are many observations, bell-shaped histogram of 
residuals – Transform data if necessary

• Look at Type III Test results for fixed effects
– If interaction is significant, simple effects are not the same across the levels 

of the other factor

– Look at the simple effects (slices), graphically and in tabular form (slice and 
plots options with the LSMEANS statement)

• If interaction is not significant, focus analysis on main effects (no slices)

• If relevant or of interest, do mean separations for main-effect means 
(lines option in LSMEANS), or for the interaction means (sliceby and 
lines options in the SLICE statement 
– As a general rule, do not consider mean separations (or other tests) if the 

overall test for a factor or interaction is not significant

– Many statisticians do not like these all-possible pairwise mean separations, and 
there are more refined alternatives. However, the pairwise comparisons do 
provide a quick way to ‘see what is going on’
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Protocol for analysis of fixed-effects: 
Synopsis (continued) 

• With quantitative levels of a factor  (0, 30, 300, etc.) there are better 
approaches for analysis of the means than pairwise mean separations
– Mean comparisons do not account for the monotonic (increasing or decreasing) 

levels of the factor or interaction (discussed later)

• Increased sophistication in hypothesis testing of expected values is 
achieved with contrasts. Can be done using ESTIMATE, CONTRAST, or 
LSMESTIMATE statements (to be discussed later)

• Use judgment in interpreting P value for overall tests and for individual 
pairwise tests of expected values
– Without going into the precise details, P gives evidence for or against the null 

hypothesis (but it is not the probability of H0 being true or not)

– Should interpretation be different if P = 0.045 versus P = 0.055? 
• A Neyman-Pearson (pure) hypothesis tester (decision maker) would say yes!

• A more contemporary data analyst – who wishes to estimate the magnitude of the 
effects of factors on responses – would say no!

– There are strong arguments that one should adjust (correct) individual P values 
when multiple tests (as with mean separations) are being performed, in order to 
‘control’ the overall P value (for the collection of tests) – discussed later with a 
three-factor example (see FA 3.sas)

Fixed versus Random Effects
• As relevant for the experimental structure and effects in the model, make 

sure to properly incorporate random effects in the model, before 
performing any assessment of fixed effects

• Fixed-effects variable (or factor)
– Levels in the study (i.e., the particular groups or treatments) represent 

all possible levels of the factor, or all levels of interest by the investigator 
(levels deliberately chosen by the investigator)

• e.g., fungicide treatment, biocontrol treatment, inoculum dose, cultivar,… 

• Random-effects variable (or factor)
– Levels in the study represent only a random sample of a larger set of 

potential levels, or one is not interested in the specific result for each 
level in the study, or the effects on Y are stochastic

• e.g., block, location, plot (experimental unit), host or pathogen 
genotype (sometimes), etc. 

• Inference is on the population of possible levels, not just on those 
in the data set

We mostly consider here random effects that are a consequence of the 
experimental design (i.e., from clustering of data, such as splitting and 
repeated measures).

Madden & Kriss (APS 2012)
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Random Effects – elaboration…
• A random effect is a random variable

– Part of the stochastic component of models 

• eijk is partitioned into two or more terms: ( bk + dik + eijk )

• Random effects arise from
1. Random selection of the levels of factor studied, or from:

2. Clustering of data
• Cluster: collection of observations that are somehow 

stochastically related (correlated).

• Experimental design and type of data collection “create” (induce) 
the clustering

– Mechanisms for clustering:
1. Splitting: randomly assigning levels of one factor within

experimental units of another factor

2. Sampling and sub-sampling – multiple observations 
within the same experimental unit  (nesting)

3. Repeated observations of same experimental unit over 
time (or space)

One Factor ( [3])
Completely Randomized (3 replicates)

1 3 1 1 2 3 2 3 2

Treatment () level

No clustering. Random variation among plots (e
2), characterized through eik in model

No Clustering

Yik = + τi + eik ,      eik ~N(0, e
2)

proc glimmix data=datafile;

CLASS A;

MODEL Y = A / solution ;

LSMEANS A / diff;

run;

Madden & Kriss (APS 2012)
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Two Factors ( [3],  [2])
Completely Randomized (3 replicates)

3
 1

1
 1

1
 2

 1
 1

 2
 1

2
 2

3
 2

3
 2

2
 1

3
 1

1
 2

1
 1

2
 2

1
 2

3
 1

3
2

2
 1

2
 2

Could be written as  = 2x3 = 6 treatments 

No clustering. Random variation among plots (e
2), characterized through eijk in model

Yijk =  + i + j + ()ij + eijk ,      eijk ~N(0, e
2) 

No Clustering

proc glimmix data=datafile;

CLASS A B;

MODEL Y = A B A*B / s ;

LSMEANS A B A*B / diff;

run;

3
 1

2
 1

1
 2

 1
 1

 2
 1

3
 2

3
 2

3
 1

2
 1

3
 2

1
 1

2
 2

2
 2

1
 2

3
 1

1
2

2
 2

1
 1

Block (b) 1 Block (b) 2 Block (b) 3

Splitting: Two Factors ( [3],  [2])
Randomized Complete Block 

Variation among blocks (b
2) and among plots (the experimental units) within blocks (e

2)

Each block is a cluster (randomly assigning 
combinations of levels of A () and B () 

within each cluster). Observations within a 
block are correlated.

Clustering
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Two factors (with blocking)

Yijk =  + i + j + ()ij + bk + eijk , bk~N(0,b
2) , eijk ~N(0,e

2) 
Yijk: response (dependent variable) for the i-th level of factor A, j-th level of factor B, 

and k-th block

: constant (“intercept”)

i: Effect of the i-th level of factor A on Y

j: Effect of the j-th level of factor B on Y 

()ij: Interaction effect (effect of i-th level of A and j-th level of B on Y)

bk: Effect of the k-th level of block on Y, a random variable

eijk: Error associated with experimental unit in block k that received level i of A and 
level j of B [residual]

This is considered a linear mixed effects model (“Mixed Model” for short).

Definition: Linear model with at least two random variables (including the 
residual error, e), plus fixed-effects parameters, and possibly an intercept 
constant.

Note: with random effects, at least some observations are correlated!

Note: two random-effect 
terms (bk and eijk)

Two factors (with blocking)

Yijk =  + i + j + ()ij + bk + eijk , bk~N(0,b
2) , eijk ~N(0,e

2) 
Yijk: response (dependent variable) for the i-th level of factor A, j-th level of factor B, 

and k-th block

: constant (“intercept”)

i: Effect of the i-th level of factor A on Y

j: Effect of the j-th level of factor B on Y 

()ij: Interaction effect (effect of i-th level of A and j-th level of B on Y)

bk: Effect of the k-th level of block on Y, a random variable

eijk: Error associated with experimental unit in block k that received level i of A and 
level j of B [residual]

proc glimmix data=datafile;

CLASS A B block;

MODEL Y = A B A*B / s ;

RANDOM block;

LSMEANS A B A*B / diff;

run;

Options for graphs 
can be added.

Note:
A B A*B

Can be written as:
A|B

Note: incorporating 
random effects 
(experimental structure) 
is done separately from 
the incorporation of 
fixed effects in the 
model.
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Block (b) 1 Block (b) 2 Block (b) 3

1 2 13 312 3 2

Whole Plot () Whole Plot () Whole Plot ()

Sub 
Plot 
(ß)

2 1 2

2 2 11 1 1

2 11

2

2 1

2

1

2

Splitting of experimental units:
Split Plot (with blocks)

Two fixed-effect factors, where levels of one factor (“whole plot”) are assigned randomly to 
(large) experimental units, these units are split into sections, and levels of the second factor 
(“sub-plot”) are randomly assigned to these (small) units. 

Each block is a cluster and each whole plot within a block is a cluster.

Clustering

Variation among blocks (b
2), among “whole plots” (large experimental units) (d

2), and among sub-
plots within whole plots (e

2)

Split Plot Design (with blocking)

Yijk =  + i + j + ()ij +  bk + dik + eijk ,

bk~N(0,b
2) , dik~N(0, d

2) , eijk ~N(0, e
2) 

Yijk: response (dependent variable) for the i-th level of whole-plot factor, 

j-th level of sub-plot factor, and k-th block

: constant (“intercept”)

i: Effect of the i-th level of whole-plot factor on Y

j: Effect of the j-th level of sub-plot factor on Y 

()ij: Interaction effect (effect of i-th whole plot and 

j-th subplot on Y)

bk: Effect of the k-th level of block on Y (random effect)

dik: Whole-plot error (effect of ik-th experimental unit on Y [could be written as 
interaction effect of block k and whole-plot i on Y) (random effect)

eijk: Sub-plot error associated with experimental unit in block k that received whole-
plot  i and sub-plot j [residual]

proc glimmix data=datafile;

CLASS A B block;

MODEL Y = A B A*B / s ;

RANDOM block A*block;

LSMEANS A B A*B / diff;

run;

FA 2.sas
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Contemporary linear mixed model analysis –
A likelihood-based framework

• Fit model with: 
– Restricted (residual) Maximum Likelihood (REML) or with maximum 

likelihood (ML)

• REML is the contemporary standard (default in GLIMMIX and other 
procedures) 

• There are no sums of squares or mean squares

• In general, REML is superior to traditional ANOVA (based on mean 
squares) for mixed-model analysis, especially for unbalanced data sets, 
missing values, and complex correlation structures 

• Iterative approach, requires:
• sophisticated computer algorithms 

• fast computer processing speed, and ample computer memory

• In SAS, one can conduct the analysis with MIXED, GLIMMIX, or 
HPMIXED (for a subset of possible models, but with immense numbers of 
factor levels)
– Do not use GLM procedure (inappropriate with unbalanced data sets, missing 

values, correlated responses, and in general, when there are multiple levels of 
splitting/clustering)

Tests Hypotheses:
Main effects for first and 

second factor

Hypothesis: Interaction

• Note: If there is an interaction, the effect of the one factor depends on 
the level of the other factor
– Equivalently, slices (for the simple effects) for one factor are not the same 

for each level of the other factor (when there is an interaction)

• F statistics are used to test hypotheses of the fixed effects
– Known as Type 3 (Type III) tests

• With unbalanced data, especially with correlated data, missing values, 
and empty cells, one should use the Kenward-Roger degrees of freedom 
adjustment (model Y = A|B / ddfm = KR;) to improve accuracy of the tests

• Random effects are characterized by variances (e.g., b
2) or covariances 

(correlations). There are tests for the random effects (likelihood-ratio 
tests are best) – not covered here.
– When a variance estimate is 0, one must make a follow-up decision for 

model fitting and post-fit analysis (discussed later for a 3-factor case)
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Model Fitting with PROC GLIMMIX
• For distributions in the exponential family (including Poisson, binomial, 

gamma, and normal)
– PROC MIXED can also be used for normal distributions, but GLIMMIX has some very 

nice options not available in MIXED

• The MODEL statement is used for specifying all fixed effects
– Options for denominator degrees of freedom (very important with mixed 

models, especially for unbalanced data sets, missing values, and correlated 
observations). (/ddfm=KR). Other options also.

• One or more RANDOM statements are used for specifying random 
effects (e.g., a random block effect) and correlations of the observations
– Only consider simple situations in this workshop. Here we focus on random 

effects that are a consequence of the experimental structure.

– In general, one may need to spend considerable effort in deciding on the 
proper random effects. One must get the random-effects portion of the 
model right before considering the significance of the fixed effects or in 
interpreting means and SEs.

• See notes from previous (more general) Mixed Model Workshop 

• Use LSMEANS statement to look at estimated expected values (least 
squares means) and differences, in tables and graphs

Model Adjustments
• One can evaluate model fits for residual normality, constant variance, 

independence (between subjects), and linearity (for continuous 
predictor variables)
– Focus on possible nonconstant variability here

• The classical approach is to transform the observations when there is 
evidence (or theory) that variability is not constant
– Y*: log or square-root for counts (or others), when var. increases with Y

– Y*: Angular (arcsine square-root) for proportions (or others)

– In general, Y* becomes the new response variable

• Concept: New response variable may have constant variance
– Should check residuals after fitting the model to Y*

– But, analysis is then on the scale of Y*.

– The null and alternative hypotheses are in terms of mean of Y* (not the 
same meaning as the mean of Y)

– This remains a generally useful approach with mixed models

• Alternatives available with contemporary mixed models:
– Other statistical distributions, especially for discrete data: Generalized linear 

mixed models (GLMMs) 
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Sub-plot (ß)

Factorial: Split-split plot (with blocks)
Three (or more) fixed-effect factors, where there are multiple levels of 

splits, giving four levels of variation

1 2 3

Whole Plot ()

1 2 3

1

2 1

2

1

2

1 2 3

1

2 1

2

1

2 1   2

2   1

1   2

2   1

2   1

1   2

Splitting for one of the 
blocks. Randomized block

Split-plot

Split-split-plot

Sub-sub-plot (γ)

Clustering

Variation among blocks (b
2), among “whole plots” (large experimental units) (d

2), among sub-plots 
within whole plots (w

2), and among sub-sub-plots within whole-plots and sub-plots (e
2)

Split-Split Plot (with Blocks) Design
Yijkl =  + i + j + ()ij + γk + (αγ)ik + (βγ)jk + (αβγ)ijk + bl + dil +wijl +eijkl

bl ~N(0,b
2) , dil~N(0,d

2) , wijl ~N(0,w
2) eijkl ~N(0,e

2) 

Yijkl: response (dependent variable) for the i-th level of whole-plot factor, j-th
level of sub-plot factor, k-th level of the sub-sub-plot, and l-th block

: constant (“intercept”)

i: Effect of the i-th level of whole-plot factor on Y

j: Effect of the j-th level of sub-plot factor on Y 

γk: Effect of the k-th level of the sub-sub-plot on Y

(), (αγ), (βγ), (αβγ): Interaction effects 

bl: Effect of the l-th level of block on Y

dil: Whole-plot error (same as block*whole)

wijl: Sub-plot error [same as subplot(block whole)]

eijkl: Sub-sub-plot error [residual] FA 3.sas

FA 3 split_split_n.sas
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Three Factors: Interpreting Interactions
• Recall that with two factors, an interaction indicates that simple effects

(say, differences of the means of A, at each level of B) varies with the 
level of the other factor 
– Slices can help quantify the specific interpretation of the interaction

– With a true interaction, one may not be able to interpret main effects (need to 
look at graphs and contrasts of means [slices] to resolve what is going on)

• With three factors (say, A, B, and C), there are four possible interactions:

– Two-way: A*B, A*C, B*C  (or , αγ, βγ)

– Three-way: A*B*C  (or αβγ)

• If the three-way interaction is real, one or more of the two-way 
interactions varies with (depends on) the level of the other factor
– Example: Suppose that there is a A*B interaction. If the ‘form’ of the 

interaction (say, direction of the mean differences for simple effects) varies 
with the level of C, then there is a (true, real) A*B*C interaction.

– With a three-way interaction, the overall two-way interactions may not mean 
very much, in the same way that a main effect may not mean very much 
when there is a two-way interaction

• General rule: start with the highest-level interaction, and work your way 
down (through slices) in order to interpret the results

Example: A*B*C three-way interaction, with the A*B two-way interaction 
being depended on the level of C (the other factor). Here, the A*B interaction at 
C=1 and C=2 “cancel” each other, so that there is no manifested overall A*B 
interaction (but one main effect remains). In other cases, the A*B interactions at 
the different C levels may not cancel.

A*B at
C = 1 
(ij1)

A*B at
C = 2
(ij2)

A*B across all 
levels of C (ij)

Always focus attention on the highest level 
(significant) interaction, and partition through slices.
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Example: no A*B*C three-way interaction, but with an A*B two-way 
interaction. Here, the A*B interaction is the same at C=1 and C=2 (because 
of the lack of 3-way interaction); thus, the overall A*B 2-way interaction has 
the same shape as found for A*B at each level of C.

A*B at
C = 1 
(ij1)

A*B at
C = 2
(ij2)

A*B across all 
levels of C (ij)
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Contrasts
• The LSMEANS statement, with various options ( / diff lines) and 

graphs (plots=mean(….), can provide considerable insight about 
main effects and interactions

• However, more complex comparisons of means may often be of 
value
– Example: Is the control mean different from the average of all the 

other treatments 

• H0 : 1 = (2 + 3 + 4)/3   or H0 : 1 - (2 + 3 + 4)/3 = 0

• Contrasts (linear combination of expected values) are used to test 
individual hypotheses of interests
– Contrast example:   = 11 – (1/3)2 – (1/3)3 – (1/3)4

– More generally:        = c11    + c22 +    c33 +    c44  

• Where (in the example):   c1= 1, c2= -1/3, c3= -1/3,  c4= -1/3

– Fuller definition of contrast: Linear combination of expected values, 
where the coefficients (ci ) sum to 0

– General hypothesis test: H0:  = 0
• That is, H0: 11 – (1/3)2 – (1/3)3 – (1/3)4  = 0

Contrasts
• The LSMEANS statement (with the /diff lines options) can be 

used to easily give pairwise differences, which are contrasts (with 
c1 = 1 and c2 = -1; or more generally, ci = 1 and ci = -1)

– Example: 1 - 2 or  11 - 12

• The CONTRAST and ESTIMATE statements have long been 
available in PROC GLM, MIXED, and now GLIMMIX
– However, use of these statements can be quite tricky (with two or more 

factors), and one can easily get confused, because the statements are 
based on the effects (e.g., ) and not on the means 

– For example, to obtain 11 - 21, one must write out (in procedure syntax):

[1 + 1 + ()11] - [2 + 1 + ()21] or:  1 - 2 + ()11 - ()21

• Recently, the LSMESTIMATE statement has been added to make 
the testing of contrasts (much) easier
– Contrasts are constructed in terms of the least-squares means, not in 

terms of the effects

– When used with the new so-called non-positional syntax, testing of 
contrasts is even easier
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Contrasts, alternative coding
• LSMESTIMATE statement

– A “combination” of LSMEANS and ESTIMATE

– One can essentially ignore the effects, and work with the means (which 
is what you want [most of the time])

– One can use to get simple means or any contrast involving means for 
the factor level

• Think of the example, with factors A, B, and interaction A*B
– One could obtain three separate tables of means with LSMEANS A B A*B;

– LSMESTIMATE can operate on the contents of each one of these tables
• There would be separate LSMESTIMATE statements for A, B, and A*B (if 

needed). There can be any number of statements.

lsmestimate A*B  ‘label’ █ █ █ █ █ █ █ █ █ █ █ █ ; 

lsmestimate A  ‘label’ █ █ █ ; 

lsmestimate B ‘label’  █ █ █ █ ; 

One puts the factor 
before the label, then the 
coefficients (ci). The red 

boxes refer to the 
position of the 

LSMEANS in the table.

Prat.

Vert. 1 2 3 4 Mean

1 1.56 1.70 1.85 1.49 1.65

2 1.66 1.19 0.96 1.17 1.25

3 1.35 0.99 0.90 0.97 1.05

Mean 1.52 1.30 1.24 1.21 1.32

Example: Potato early dying--
(square-root of root weight) in relation to 
density of two pathogens

A (): Verticillium density (Vert)
B (): Pratylenchus density (Prat)

Prat.

Vert. 1 2 3 4 Mean

1 11 12 13 14 1

2 21 22 23 24 2

3 31 32 33 34 3

Mean 1 2 3 4 

Obtain selected contrasts 
of the means

FA 1_contrasts.sas
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Vert Least Squares Means

Vert Estimate Standard 
Error

DF t Value Pr > |t|

1 1.6499 0.07042 146 23.43 <.0001

2 1.2463 0.06857 146 18.17 <.0001

3 1.0520 0.06718 146 15.66 <.0001

Prat Least Squares Means

Prat Estimate Standard 
Error

DF t Value Pr > |t|

1 1.5213 0.08114 146 18.75 <.0001

2 1.2960 0.08086 146 16.03 <.0001

3 1.2370 0.07779 146 15.90 <.0001

4 1.2099 0.07763 146 15.59 <.0001

Vert*Prat Least Squares Means

Vert Prat Estimate Standard 
Error

DF t Value Pr > |t|

1 1 1.5568 0.1495 146 10.41 <.0001

1 2 1.7042 0.1325 146 12.86 <.0001

1 3 1.8471 0.1432 146 12.90 <.0001

1 4 1.4913 0.1375 146 10.84 <.0001

2 1 1.6578 0.1280 146 12.95 <.0001

2 2 1.1932 0.1495 146 7.98 <.0001

2 3 0.9609 0.1325 146 7.25 <.0001

2 4 1.1733 0.1375 146 8.53 <.0001

3 1 1.3494 0.1432 146 9.43 <.0001

3 2 0.9907 0.1375 146 7.20 <.0001

3 3 0.9029 0.1280 146 7.05 <.0001

3 4 0.9651 0.1280 146 7.54 <.0001

Prat.

Vert. 1 2 3 4 Mean

1 1.56 1.70 1.85 1.49 1.65

2 1.66 1.19 0.96 1.17 1.25

3 1.35 0.99 0.90 0.97 1.05

Mean 1.52 1.30 1.24 1.21 1.32

Example: Potato early dying--
(square-root of root weight) in relation to 
density of two pathogens

A (): Verticillium density (Vert)
B (): Pratylenchus density (Prat)

lsmeans A B A*B;

Prat.

Vert. 1 2 3 4 Mean

1 1.56 1.70 1.85 1.49 1.65

2 1.66 1.19 0.96 1.17 1.25

3 1.35 0.99 0.90 0.97 1.05

Mean 1.52 1.30 1.24 1.21 1.32

lsmestimate Vert ‘label’ █ █ █ ; 

lsmestimate Prat ‘label’  █ █ █ █ ; 

1 2 3

Vert Least Squares Means

Vert Estimate Standard 
Error

DF t Value Pr > |t|

1 1.6499 0.07042 146 23.43 <.0001

2 1.2463 0.06857 146 18.17 <.0001

3 1.0520 0.06718 146 15.66 <.0001

1 2 3 4

The means that are 
displayed vertically in 
LSMEANS tables are 

referenced horizontally by 
position in the 

LSMESTIMATE statement

Prat Least Squares Means

Prat Estimate Standard 
Error

DF t Value Pr > |t|

1 1.5213 0.08114 146 18.75 <.0001

2 1.2960 0.08086 146 16.03 <.0001

3 1.2370 0.07779 146 15.90 <.0001

4 1.2099 0.07763 146 15.59 <.0001
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Prat.

Vert. 1 2 3 4 Mean

1 1.56 1.70 1.85 1.49 1.65

2 1.66 1.19 0.96 1.17 1.25

3 1.35 0.99 0.90 0.97 1.05

Mean 1.52 1.30 1.24 1.21 1.32

lsmestimate Vert 'mu_2.' 0 1;
lsmestimate Prat 'mu_.2' 0 1 0 0;

lsmestimate A  ‘label’ █ █ █ ; 

lsmestimate B ‘label’  █ █ █ █ ; 

Use “constants” (ci ) to obtain means or 
combinations of means. Trailing zeros can 
be omitted. Leading zeros must be used. 
The second mean of Prat would be 
identified with 0 1 0 0;  or 0 1;
but the first Prat mean could be identified 
with just 1; or with 1 0 0 0;

A difference of two 
means is specified 
with 1 and -1, based 
on position.

lsmestimate Vert 'mu_2.-mu_1.' -1 1;
lsmestimate Prat 'mu_.4-mu_.2' 0 -1 0 1;

Prat.

Vert. 1 2 3 4 Mean

1 1.56 1.70 1.85 1.49 1.65

2 1.66 1.19 0.96 1.17 1.25

3 1.35 0.99 0.90 0.97 1.05

Mean 1.52 1.30 1.24 1.21 1.32

lsmestimate Vert 'mu_2.' 0 1;
lsmestimate Prat 'mu_.2' 0 1;

lsmestimate Vert 'mu_2.-mu_1.' -1 1;
lsmestimate Prat 'mu_.4-mu_.2' 0 -1 0 1;
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Prat.

Vert. 1 2 3 4 Mean

1 1.56 1.70 1.85 1.49 1.65

2 1.66 1.19 0.96 1.17 1.25

3 1.35 0.99 0.90 0.97 1.05

Mean 1.52 1.30 1.24 1.21 1.32

lsmestimate A  ‘label’ █ █ █ ; 

lsmestimate B ‘label’  █ █ █ █ ; 

The real value of lsmestimate is in 
obtaining more complex contrasts than 
just differences. For example, with Vert, 
the difference between the control (level 
1) and the rest  would be obtained using 
1 -.5 -.5 for the coefficients. 
With Prat, the difference between the 
control and the rest would be specified 
with 1  -0.3333  -0.3333  -0.3333;

lsmestimate Vert 'mu_1.vs rest' 1 -.5 -.5;
lsmestimate Prat 'mu_.1 vs rest' 1 -.33333 -.33333 -.33333;

/* Or, convert to integers and rescale with divisor */
lsmestimate Prat 'mu_.1 vs rest' 3 -1 -1 -1 / divisor=3;
lsmestimate Prat 'mu_.1&2 vs mu_.3&4' 1 1 -1 -1 / divisor=2;

/*with the same effect, one can put several together (to get one table)*/
lsmestimate Prat

'mu_.1 vs rest' 3 -1 -1 -1 , 
'mu_.1&2 vs mu_.3&4' 1 1 -1 -1 / divisor=3,2;

lsmestimate Vert 'mu_1.vs rest' 1 -.5 -.5;
lsmestimate Prat 'mu_.1 vs rest' 1 -.33333 -.33333 -.33333;
/* Or, convert to integers and rescale with divisor */
lsmestimate Prat 'mu_.1 vs rest' 3 -1 -1 -1 / divisor=3;
lsmestimate Prat 'mu_.1&2 vs mu_.3&4' 1 1 -1 -1 / divisor=2;
/*with the same effect, one can put several together (to get one table)*/
lsmestimate Prat

'mu_.1 vs rest' 3 -1 -1 -1 , 
'mu_.1&2 vs mu_.3&4' 1 1 -1 -1 / divisor=3,2;

Madden & Kriss (APS 2012)



30

Prat.

Vert. 1 2 3 4 Mean

1 1.56 1.70 1.85 1.49 1.65

2 1.66 1.19 0.96 1.17 1.25

3 1.35 0.99 0.90 0.97 1.05

Mean 1.52 1.30 1.24 1.21 1.32

With a significant interaction, focus 
should really be on contrasts of the 
interaction means (ij).

lsmestimate A*B  ‘label’ █ █ █ █ █ █ █ █ █ █ █ █ ; 

Must keep track of the order of the 
interaction means (look at table from 
LSMEANS A*B;)

11 12 13 14 21 22 23 24 31 32 33 34

lsmestimate Vert*Prat 'mu24' 0 0 0 0 0 0 0 1 0 0 0 0;
lsmestimate Vert*Prat '(mu21+mu31)/2 - mu11'

-2 0 0 0 1 0 0 0 1 / divisor=2;
lsmestimate Vert*Prat '(mu12+mu13+m14)/3 - mu11'

-3 1 1 1 0 0 0 0 0 0 0 0/ divisor=3;
lsmestimate Vert*Prat

'(mu21+mu31)/2 - mu11' -2 0 0 0 1 0 0 0 1, 
'(mu12+mu13+m14)/3 - mu11'
-3 1 1 1 0 0 0 0 0 0 0 0/ divisor=2,3;

Vert*Prat Least Squares Means

Vert Prat Estimate Standard 
Error

1 1 1.5568 0.1495

1 2 1.7042 0.1325

1 3 1.8471 0.1432

1 4 1.4913 0.1375

2 1 1.6578 0.1280

2 2 1.1932 0.1495

2 3 0.9609 0.1325

2 4 1.1733 0.1375

3 1 1.3494 0.1432

3 2 0.9907 0.1375

3 3 0.9029 0.1280

3 4 0.9651 0.1280

lsmestimate Vert*Prat 'mu24' 0 0 0 0 0 0 0 1 0 0 0 0;
lsmestimate Vert*Prat '(mu21+mu31)/2 - mu11'

-2 0 0 0 1 0 0 0 1 / divisor=2;
lsmestimate Vert*Prat '(mu12+mu13+m14)/3 - mu11'

-3 1 1 1 0 0 0 0 0 0 0 0/ divisor=3;
lsmestimate Vert*Prat

'(mu21+mu31)/2 - mu11' -2 0 0 0 1 0 0 0 1, 
'(mu12+mu13+m14)/3 - mu11'
-3 1 1 1 0 0 0 0 0 0 0 0/ divisor=2,3;
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Prat.

Vert. 1 2 3 4 Mean

1 1.56 1.70 1.85 1.49 1.65

2 1.66 1.19 0.96 1.17 1.25

3 1.35 0.99 0.90 0.97 1.05

Mean 1.52 1.30 1.24 1.21 1.32

lsmestimate A ‘label’ [# , i ] [# , i ] …;  
lsmestimate B ‘label’ [# , j ] [# , j ] … ;
lsmestimate A*B  ‘label’ [# , i j ] [# , i j ] …  ; 

There is now an alternative to the so-
called positional syntax for 
LSMESTIMATE and ESTIMATE.
With nonpositional syntax, one simply 
identifies the coefficients for the 
means that matter, using square 
brackets, [  ] (order does not matter).

Here, # is the coefficient (e.g., ci ), 
and i and j refer to the level of the 
factor in the main effect or 
interaction.
The advantage is for complicated 
contrasts.

lsmestimate Vert ‘3-1’ [1 , 3 ]  [-1 , 1 ] …;  

lsmestimate Vert*Prat ‘mu24’ [1,2 4];

Prat.

Vert. 1 2 3 4 Mean

1 1.56 1.70 1.85 1.49 1.65

2 1.66 1.19 0.96 1.17 1.25

3 1.35 0.99 0.90 0.97 1.05

Mean 1.52 1.30 1.24 1.21 1.32

lsmestimate Vert '3-1' -1 0 1;
lsmestimate Vert*Prat 'mu24' 0 0 0 0 0 0 0 1 0 0 0 0;
lsmestimate Vert*Prat '(mu21+mu31)/2 - mu11' -2 0 0 0  1 0 0 0  1 /divisor=2;
lsmestimate Vert*Prat '(mu12+mu13+m14)/3-mu11' -3 1 1 1 0 0 0 0 0 0 0 0

/divisor=3;

lsmestimate Vert '3-1 n' [1, 3] [-1,1];
lsmestimate Vert*Prat 'mu24 n' [1,2 4];
lsmestimate Vert*Prat '(mu21+mu31)/2-mu11 n' [-2,1 1] [1,2 1] [1,3 1] /divisor=2;
lsmestimate Vert*Prat '(mu12+mu13+m14)/3-mu11 n' [-3,1 1] [1,1 2] [1,1 3] [1,1 4] 

/divisor=3;

Positional (first) and nonpositional
(second) syntax for contrasts. Results 
are identical (as required).
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lsmestimate Vert '3-1 n' [1, 3] [-1,1];
lsmestimate Vert*Prat 'mu24 n' [1,2 4];
lsmestimate Vert*Prat '(mu21+mu31)/2-mu11 n' [-2,1 1] [1,2 1] [1,3 1] /divisor=2;
lsmestimate Vert*Prat '(mu12+mu13+m14)/3-mu11 n' [-3,1 1] [1,1 2] [1,1 3] [1,1 4] 

/divisor=3;

• Use the lsmestimate statement, with positional and
nonpositional syntax, and estimate:

Prat.

Vert. 1 2 3 4 Mean

1 1.56 1.70 1.85 1.49 1.65

2 1.66 1.19 0.96 1.17 1.25

3 1.35 0.99 0.90 0.97 1.05

Mean 1.52 1.30 1.24 1.21 1.32

Known as a tetrad
contrast (a 

component of the 
interaction)
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“Analysis of Covariance”:
Combining continuous variables and 

factors in the same model

No interaction 
(main effects of A 

and B): Same 
slope for all 
levels of B

Interaction (plus 
main effects of A 
and B): Different

slopes for the 
different levels of B

Continuous B variable (X) in a Split Plot 
Design (with blocking)—example

Yijk =   + i +  j +  ()ij + bk + dik + eijk

Yijk =  + i +  Xj +   δiXj + bk + dik + eijk

Yijk = ( + i)    +  ( + δi)Xj + bk + dik + eijk

proc glimmix data=datafile;

/* B is _not_ in CLASS */

CLASS A  block;

MODEL Y = A B A*B / s ;

RANDOM block A*block;

run;

bk~N(0,b
2) , 

dik~N(0, d
2) , 

eijk ~N(0, e
2) 

The intercept of the 
Y:X line is  + i,

where i is the effect 
of the i-th level of A on 
the intercept (height of 

the line)

The slope of the 
Y:X line is  + i,

where i is the 
effect of the i-th
level of A on the 

slope

FA 4.sas
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Conclusions
• There has been incredible changes in statistics over the past two 

decades, where likelihood-based mixed-model analyses have largely 
supplanted traditional ANOVA-type (‘sum of squares’) analyses, the latter 
not fully or properly accounting for the random effects
– Stimulated by advances in statistical theory and computational algorithms, 

coupled with the drastic increases in speed and memory of modern computers

– In general, true mixed-model analysis is superior to other approaches

• Unfortunately, researchers outside of statistics have been slow to adapt 
to the changes in statistics, or are confused by the advances in statistical 
methodology
– This is partly because the advances are not even mentioned in the first two or 

three courses of statistics, even though real-world data analysis depends 
heavily on the use of mixed models

– Hence the need for workshops, and new textbooks (which are coming)

• Contemporary mixed-model data analysis requires careful consideration 
of both the fixed and random effects in the model (often equivalent to 
consideration of the treatment structure and the experimental structure)
– This workshop has focused on the fixed effects in mixed models, dealing 

explicitly with two or more fixed-effect factors (i.e., crossed factorials)

Conclusions, continued
• For mixed-model analysis of factorials, one must make sure the proper 

random-effect terms are in the model
– For repeated measures and for situations with unequal variances, this is a 

major step (not considered in this workshop)

– We have emphasized random effects that are a consequence of the 
experimental structure

• Even here, there is always the question regarding variance estimates equal to 0

– With GLIMMIX or MIXED in SAS, one uses RANDOM statements for 
the random effects

• For the fixed effects (specified with the MODEL statement):
– One should always make sure that the interactions are included in the model

– Interpretation of the results (such as the Type III tests) should always start 
with the highest-level (significant) interaction (e.g., A*B*C), then lower-level 
interactions (e.g., A*B), and then the main effects

– Use slices of simple effects  and graphs/tables to explore the nature of the 
interactions (options on LSMEANS statement and the SLICE statement)

• Mixed-model analysis can accommodate continuous explanatory 
variables as well as factors, and preserve the experimental structure with 
the random effects
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