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Abstract  This study examines how the Godel phenomena are to be treated in
core logic. We show in formal detail how one can use core logic in the meta-
language to prove Godel’s incompleteness theorems for arithmetic even when
classical logic is used for logical closure in the object language.

1 Introduction

This study aims to show how the core logician can furnish an adequate and natu-
ral formalization of the metalinguistic reasoning leading to Godel’s celebrated first
incompleteness theorem (G1). The informally rigorous proof of (G1) that we under-
take to formalize here is the one that proceeds via the representability of recursive
functions in Robinson arithmetic Q.

A main metatheorem about core logic C states that from any intuitionistic proof
of ¢ from a set A of premises, one can extract a core proof either of ¢ or of L from
premises drawn from A.” So, if one is morally certain that one’s set A of premises
is consistent—or, equivalently, is satisfiable—then one can confidently say that to
any intuitionistic proof of ¢ from A there corresponds a core proof of the very same
result. For one is morally certain that the possibility of L being provable from A has
been ruled out.

This moral certainty is consensually attained in the case of the low-consistency-
strength mathematics involved here. The usual base system RCA, the weakest of the
‘Big Five’ so-called second-order subsystems of arithmetic in reverse mathematics,
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suffices to prove the consistency of exponential function arithmetic (EFA, also known
as Kalmar arithmetic). See Simpson [11, p. 45].

What this study will reveal is that the aforementioned ‘corresponding’ core
proof—in the case of (G1)—is a tight and direct formalization of the informally
rigorous, constructive meta-reasoning taking one from the rather weak axioms used,
to (G1) itself as conclusion. And the natural explanation of this tight fit (of fully
formalized proof with informally rigorous proof) is that mathematical reasoning
is always relevant, which is a distinguishing feature of proofs in classical core
logic’—hence, obviously, in core logic. We fully expect the phenomenon of tight
and direct formalizability in core logic C, or in classical core logic C* (depending
on whether the reasoning involved is, respectively, constructive or nonconstructive),
to be a general one, across all mathematics. It would be an inexplicable irony if it
were achievable only in the case of the reasoning used to establish (G1).

The question then arises: how is the sought core proof to be determined? Our
answer, in the setting of this case-study, is: by direct formalization, in core logic,
of the existing informally rigorous, constructive reasoning that we already have at
hand. Core logic is entirely natural for the formalization, as a natural deduction,
of any stretch of informally rigorous, constructive reasoning. And there is no better
way to convince anyone skeptical of such a claim on behalf of core logic than to
show how it handles one of the most celebrated and intellectually important results
in mathematical logic.

Note that this achievement on the part of core logic is not, logically, already antic-
ipated by the foundational discovery that (G1) is provable (at the metalevel) in EFA,
for this discovery presupposed that EFA is closed under classical logic. Nor is core
logic’s achievement anticipated by the foundational discovery that Peano Arithmetic
conservatively extends Heyting arithmetic (HA) on I19-sentences, among which is
(G1).* This discovery presupposed that HA is closed under intuitionistic logic, which
contains the rule ex falso quodlibet, a rule that both C and CT eschew.

2 Rules of Inference for the Core Systems

2.1 Rules of core logic We provide below a graphic statement of introduction and
elimination rules for the core systems C and C. Major premises of eliminations
stand proud, with no nontrivial proof work above them. This ensures normality of
proofs. Boxes next to discharge strokes mean that vacuous discharge is not permit-
ted. Diamonds mean that vacuous discharge is permitted. The rules for introducing
universals and eliminating existentials have the usual restrictions on occurrences of
the parameter a, which we indicate with the notation @.
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Deducibility in core logic C will be represented by the subscripted single turnstile
Fc.

2.2 Rules of classical core logic C* In order to obtain classical core logic from
core logic, it suffices to add either classical reductio or dilemma. These two strictly
classical rules are interderivable in core logic. In each of these rules, it is the sen-
tence ¢ that is its ‘classical focus.” This is because the reasoner who applies the
rule is presuming that ¢ is determinately true, or false, even though it might not be
known (or indeed, even knowable) which is the case. (See Tennant [15] for extended
philosophical discussion of this point.)
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Deducibility in classical core logic C* will be represented by the subscripted single
turnstile ¢+ .

3 Formal Arithmetic
3.1 Formal language

Definition 1 The language £ of arithmetic is the first-order language with iden-
tity, based on the familiar extralogical expressions 0, s, 4, and x, with an unlimited
supply of parameters.

For present purposes, we take the logic of the language £ to be standard in the respect
that it is unfree. Thus it is tacitly assumed that a name like O does denote and that
functions are total, that is, defined on all possible inputs. (Thus everything has a
successor, any two things have a sum, etc.) It is also assumed that one’s theory 7" in
&£ aims to talk about all and only numbers (i.e., things that have successors, things
that can be added together, etc.).

It is very important to understand this in advance since these tacit assumptions
do not hold within the wider setting that would be considered by a logicist. This
is because the logicist takes the task to be that of characterizing the mathematical
structure of the natural numbers, to be sure, but also to be to explain how those very
numbers can be involved in counting the (finite) extensions of predicates that may
very well be satisfied by objects other than numbers. The logicist, therefore, would
task himself further with characterizing a predicate N (for ‘is a natural number’),
and recover the content of 7" by deriving ‘N -restricted’ versions of the T -axioms
within his wider logicist theory, whose extralogical vocabulary can in general prop-
erly exceed that of £. In this study, however, we are concerned only with theories
of ‘pure arithmetic,” whose domains of discourse are intended to be (just) the natural
numbers.

Let 3!t be short for Ix x =¢. If one were to base one’s theory T on a free logic
(such as the one provided in Tennant [13, Chapter 7]), then one would routinely add
to one’s list of axioms the following:

310,

Vx3lsx,
VxVyIl(x+y),
VxVy3al(xxy).

We shall pursue the standard treatment, however, which involves using an unfree
logic.

3.2 Some axioms We shall be considering only £-theories 7 that contain the fol-
lowing selection from among the well-known Peano—Dedekind axioms or rules gov-
erning the extra-logical expressions 0, s, 4, and x:
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Vx—s5x=0,
VxVy(s(x)=s(y) > x=y),
Vxx+0=ux,
VxVyx+s(y)=s(x+y),
Vxxx0=0,

VxVyxxs(y)=(xxy)+x.
The last four of these six axioms are commonly called the recursion equations for +
and x.
Note that we do not necessarily include in 7' any instances of the axiom scheme

of mathematical induction, which is a crucial source of theoretical power for Peano—
Dedekind arithmetic. That scheme is

(@(0) A Vx(P(x) = D(sx))) = VyD(y).
We may also express it as a rule of inference:’

-

D(a)

where the parameter a occurs
only where indicated,

®0) ®(sa) o

d)([ ) and ¢ may be any closed term

It is important to mark the dischargeable assumption ®(a) (the so-called inductive
hypothesis) as ‘permissible’ and not ‘obligatory’ (which is what the diamond does).
That is, we must permit vacuous discharge of ®(a)—instances where the inductive
step is carried out without recourse to the inductive hypothesis. This is because the
inferencing required in order to consummate an application of the relevant axiomatic
instance of the axiom scheme of mathematical induction would run as follows:

<

@
®(a)

D(sa)
: ®(a)— D(sa)
®0) VYx(P(x)— D(sx))
(PO)AVX(P(x) > P(sx))) > VyP(y)  PO)AVx(P(x) —> D(sx))
Vy®(y)

The rule that is being applied at the step marked (i) is that of —-I; in core logic,
as in minimal, intuitionistic, and classical logic, vacuous discharge is permitted with
—-I when the consequent of the conditional being proved is the conclusion of the
subordinate proof. This is (part of) the well-known rule of conditional proof. What
core logic has by way of addition (for introducing —) is the extra rule part that allows
one to infer a conditional ¢ — ¥ upon reducing its antecedent ¢ to absurdity. This
part of —I in core logic is stated as follows:
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o—@)
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L o

o=y
where now the box indicates obligatory or nonvacuous discharge—the reductio
assumption ¢ must really have been used in deriving L.

One easy result provable by induction is that every number is either zero or a
Successor.

Observation 1 PA proves Vy(y =0V dx y =sXx).

sa=sa
0=0 dx sa=sx
Proof 0=0v3dx0=sx sa=0vEIxsa=sx{1) O

b=0vixb=sx
Vy(y=0vVvIx y=sx)

In the formal core proof just given, the parameter b takes the place of the term ¢ in
the statement of the rule of mathematical induction. Note that in the inductive step no
use is made of the inductive hypothesis, which would have been a =0 Vv Ix a = sx,
had there been any call for it. The result just proved, namely,

Vy(y=0Vv3Ix y=sx),

is important, because it is to be taken as an axiom when we state the theory Q
below. Q lacks the axiom scheme of mathematical induction. It has only finitely
many axioms.

A primitive recursive formula in the language of arithmetic is one that has no
unbounded quantifications. Every provable primitive recursive sentence is true in the
standard model N. Conversely, every true primitive recursive sentence that is true in
N is provable. The six axioms that we stated at the outset decide every primitive
recursive sentence. (They get the ‘atomic diagram’ of N right.) This means that for
primitive recursive sentences ¢, we have the equivalence of the following:

T Vo ; TEF=-p ; T, L.

We shall call these, for convenience, the p.r. equivalences.
We now use ‘L’ as a sortal variable over first-order languages in general. Bear in
mind that our chosen name for the first-order language of arithmetic is ‘£.’

Definition 2 Suppose A is a set of sentences in some language L. Then A is
complete if and only if for every sentence ¢ in L, either A g or A, ¢ - L.

Definition 3 ‘M | ¢’ is short for ‘g is true in the model M.’

Definition 4 Let M be any model for a language L. Thy (M) is the set of all
sentences in L that are true in M. In symbols:

Thy(M)={p e L | M I+ ¢}
We shall write “Th(M)’ for “Thz (M)’ whenever we can.
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Observation 2 For any model M of a language L, Th(M) is consistent and com-
plete.

All terms, formulae, and sentences are to be understood from now on as in the first-
order language &£ of arithmetic. For present purposes, one particular model will hold
our attention: the so-called standard model for arithmetic.

Definition 5 The standard model for arithmetic, denoted N, has for its domain
exactly the natural numbers, and interprets the name (constant) 0, the successor sym-
bol s, the addition function symbol +, and the multiplication function symbol x in
the obviously correct way.

Definition 6 As a special case of Definition 4:
Th(N) ={p € £ | NI ¢}.
Definition 7 For any natural number n, the numeral for n is the term
s...s0,

with n occurrences of the successor-function symbol s. We abbreviate the numeral
for n as
n.

Example: 3 is ss50.

Observation 3 Because the symbol ‘0’ is used in both the object-language and
the metalanguage, it is true by definition (in the metalanguage) that
0=0.
Likewise, whenever we use ‘s’ for successor in the metalanguage, it is true by defi-
nition (in the metalanguage) that
sn = sn.

Definition 8 The following set of axioms defines the theory of arithmetic known
as Q:

VxVyxxsy=(xxy)+x;
Vx(x=0Vv3dyx=ysy).

1. VxVy (sx=sy > x=y);
2. Vx —sx=0;

3. VxVyx+sy=s(x+y);
4. Vx x+0=ux;

5. Vxxx0=0;

6.

7.

Definition 9 The following set of axioms defines the familiar and standard theory
of arithmetic known as Peano arithmetic (PA):

1. VxVy (sx=sy = x=y);

2. Vx —sx=0;

3. VxVyx+sy=s(x+y);
4. Vx x+0=ux;

5. Vxxx0=0;

6. VxVyxxsy=(xxy)+x;
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7. all instances of the axiom scheme of mathematical induction:
(®(0) A VX (P(x) > D(sx))) = VyD(y).

Note that even with recourse to its axiom scheme of mathematical induction, PA
meets a crucially important requirement on any axiomatization of a theory 7 about
any given subject matter. This is the requirement that the set of axioms (which, here,
would include all instances of the scheme) be effectively decidable. That is, there
should be an effective method that correctly decides, when given any sentence of the
language (here, &£), whether it counts as an axiom of the theory in question.

This requirement often goes unremarked. One reason for this, perhaps, is that
axiom sets for various other interesting theories are often finite, and the effective
decidability of any finite set of sentences hardly merits remarking. But the reason
that the requirement of effective decidability of the set of axioms is so important
in general is this: without it, we would not be able to tell, effectively, whether a
purported proof of a theorem of the theory is indeed a proof! The requirement is
epistemologically basic. Along with the requirement that the relation

I is a proof (in system &) of the conclusion ¢ from the (finite) set A of premises

be effectively decidable, the requirement of the effective decidability of the set of
axioms of a theory T is what ensures that T (i.e., the set of theorems &-provable
from those axioms) is effectively enumerable (even if not itself effectively decidable).
Such effective enumerability is what is meant by axiomatizability.

Observation 4 Q C PA C Th(N).

Observation 5 Observation 4 is by inspection of axioms, and Observation 1. In
fact, we have Q C PA C Th(N), but we do not officially ‘know’ this yet.

The proper inclusion Q C PA follows from the provable unprovability-in-Q of
various theorems of PA (indeed, some of them so ‘obviously’ true-in-N that their
unprovability-in-Q comes as quite a surprise). Boolos and Jeftrey [1, pp. 171-72]
infra list the following ten examples (the asterisked ones can be found in Tarski,
Mostowski, and Robinson [12, p. 55]):°
*Vx —x=sx,
VxVyx+(y+z)=(x+y)+z,
VxVyx+y=y+x,
*Vx0+x=x,
Vxx<sx,
VxVy—(x <yAy <x),
VxVyVzxx(yxz)=(xxy)xz,
VxVyxxy=yxx,
*Vx 0xx =0 (Boolos and Jeffrey actually wrote Yx 0xx =x,
which must have been in error.),
VxVyVzxx(y+z)=(xxy)+(xx2z).

They provide a simple countermodel to show that they are not logical consequences
of Q. They supplement the natural numbers with two rogue elements a and b and
define mappings (to interpret s, +, and x on N U {a, b}) that extend their standard
interpretations on N. This model satisfies Q but falsifies each of the foregoing ten
examples.

Burgess [2, p. 56] reports an observation by Kripke that a model for Q can be given
in the cardinal numbers (finite and infinite), with the successor function interpreted
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as identity on the infinite cardinals. This highlights how very little of what is going
on among the naturals is distilled out by the axioms of Q—as is clear from the list
above of surprising nontheorems of Q.

A more advanced way to establish the same proper inclusion (Q C PA) is to point
out that PA is known not to be finitely axiomatizable (Ryll-Nardzewski [9]), whereas
Q obviously is.

The proper inclusion PA C Th(N) is an immediate consequence of Godel’s first
incompleteness theorem. It will be established as Theorem 7, using only core logic
at the metalevel.

The system Q is due to Raphael Robinson (see Robinson [8]). As we have just seen
in the foregoing definitions, the official set of Q-axioms results from the well-known
axioms for Peano arithmetic by replacing the latter’s axiom scheme of mathematical
induction (which of course has infinitely many instances) by the single axiom

Vx(x=0vVv3Iyx=sy).

The latter axiom ensures only that the successor function is onto all elements of
the domain except for 0 (which the first axiom says is initial, i.e., not a successor
of anything). By contrast, the principle of mathematical induction, especially in its
second-order version

V2®((P(0) A Vx(P(x) — P(sx))) = Vyd(y)).

is an attempt to express the thought that the standard natural numbers exhaust the
domain of N.

The corresponding attempt at first order, via the axiom scheme, is of course
Pyrrhic: there are nonstandard countable models of first-order Th(N). These models
fail to be isomorphic to N because of ‘alien intruders’ in their domains—so-called
nonstandard natural numbers creep in. This problem bedevils any attempt at first
order to specify ‘up to isomorphism’ an intended model, every one of whose indi-
viduals is denoted by some closed term of the language. (See Tennant [16].) It is
little solace to know (see MacDowell and Specker [7]) that every nonstandard model
of Th(N) is an elementary end-extension of N (and indeed that N is the only model
of Th(N) of which every other model of Th(N) is an elementary end-extension). For
the first problem is: how do we get our hands on Th(N)? And the second problem is
that all that this elementary end-extension result tells us is that if Ix¢(7, x) is true in
such an extension M, then for some standard natural number 7 we have that (p(ﬁ, m)
is true in M. That is to say, N provides all the ‘witnessing’ required for the truth of
existentials in M. We cannot be forced to go rummaging for witnesses within the
nonstandard part of a nonstandard model M. Nor, however, could we force a Mar-
tian interlocutor to ‘stay within N’ when building up a mental picture of what sort of
abstract world it might be that makes all of Th(N) true. We cannot in general make
our Martian deaf to a chorus of alien witnessing within some nonstandard M .

The important thing about Q is that it is finitely axiomatizable and hence is the
logical closure of a single sentence (the conjunction of its finitely many axioms).
This is the feature that does all the work for the metamathematical purposes served
by the choice of Q. Therefore, with an eye just to these purposes, there is no great
value in insisting that one’s (finite) set of axioms for Q be irredundant. All that
matters is that the chosen axioms ‘for’ Q be finite in number and have among them at
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least the ‘official’ ones stated above. One can tolerate as ‘axioms’ any (finite) number
of theorems that are derivable from the official few axioms for Q.

The proof of the representability theorem for Q is greatly facilitated by choosing
two such theorems to add to the official list of axioms—namely,

(i) VxVy(x+y=0—>x=0)

and
(i) VxVy (VZ(—|X+SZ =y A-y+sz=x) —> x:y).

This was the expository route adopted by Tennant in [13]. Here, however, we shall
adopt the more ‘purist’ route and actually derive, within official Q, the extra two
results just mentioned.” In fact, we shall derive them as rules. This is for two rea-
sons: using them as rules makes the proof of representability more direct, and the
derivations themselves afford another opportunity to see core logic at work in faith-
fully formalizing the mathematical reasoning involved.

3.3 Giving Q by means of rules rather than axioms Here we restate the foregoing
axioms for Q as atomic rules of inference:

Any intersubstitutions of

st=su  st=0 1+0 with £
P 1 t+su with s(t +u)
=u 2.0 with 0
t.su with (¢.u)+t¢
] @ O @)
t=0 t=sa
where a does not occur in £ or in any
: : undischarged assumption, other than
o/L o/ L t =sa, in the right-hand subproof
@)
o/L

We shall also use the following rules, to be derived within Q:

m! @) O (i)
t+sa=u u+sa=t

Any intersubstitutions of

st +u with s(t +u) J_ J_
_— ()
I=u

where a is parametric

4 Some Deducibilities in Q

In this section, we shall concentrate on making use of the following five axioms of
Q, conveniently labeled:

Ql. VxVy (sx=sy —> x=Y).
Q2. Vx —sx=0.

Q3. Vx (x=0v3Iyx=sy).
Q4. Vxx+0=x.

Q5. VxVyx+sy=s(x+y).

The rule versions of these five axioms have already been given in Section 3.3.
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4.1 Some atomic deducibilities
Lemma 1 We have

VmVnm+#n — Qm=nktc L.
Proof Use |[m—n| applications of the rule Q1

St =su
t=u

)

followed by an application of the rule Q2

st=0
1 - O

Lemma 2 The rule
a+b=0
a=0

is core-derivable in Q. (Indeed, it is atomically derivable.)

@)

b=0 a+b=0 =

a+0=0 a=sc Q4 : @

sc+0=0 sc+0=sc b=sd a+b=0
Proof —
M s5¢=0q, _atsd=0 g
a=0 + (1) @3 MQZ
a=0 ) a3
a=0

Note that the steps marked (1) and (2) that discharge case assumptions are applica-
tions of the rule corresponding to the axiom Q3:

Vx(x=0vV 3y x=sy).

We are taking advantage here of core logic’s liberalized rule of V-elimination (proof
by cases), which allows one to bring down as the main conclusion the conclusion of
either one of the two case proofs if the conclusion of the other case proof is absurdity.

O

4.2 Some nonatomic deducibilities
Lemma 3 We have
Yn>0 Q. {¢(k) | k <n},sb+a=ntc ¢(a).

Proof  Note that in the statement of this result, the symbol ‘<’ is being used in the
metalanguage and has its usual arithmetical meaning.

The result is proved by a course-of-values induction on r, carried out at the meta-
level. For the basis step of n =1, we need to establish

Q, ¢(0), shb+a=s0 F¢ ¢(a).

This is done as follows:
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(1)

sb+a=s50 a=sc

sb+sc=50 s
s(sb+c)=s0 al
sh+c=0,,
) sb=0,
a=0 (1) Q3
(0) a=0
@(a)

The inductive hypothesis in our course-of-values induction is to the effect that, no
matter what formula ¢(x) one chooses, there is a Q-proof X of the following form:

lpk) | k <n}, sb+a=n

)
p(a)

Here, a is parametric—that is, @ does not occur in the chosen formula ¢(x). So we
may replace a with any other parameter that meets the same condition.

For our purposes in carrying out the inductive step, we choose the following dis-
junction as a particular instance for ¢(x):

that is,

x=0vx=1v...vx=n—1.

Relative to this choice for ¢(x), and using the parameter ¢, the proof ¥ whose exis-
tence may be assumed by inductive hypothesis takes the more specific form:
(Vizsk=i|k <n}. sb+c=n

b))
Vizle=i
i=0C =L

Note that for each value of k less than n, one of the identity disjuncts is a self-identity,
and hence a logical theorem; whence, by multiple V-introductions, the disjunctive
sentence v;’;& k =1 is also a logical theorem. So X really takes the form

{(VIZdk=i|k <n},sb+c=n

i=
%

n—1___ -

Vi—oC=L

where the overlining indicates the logical theoremhood of those particular premises
of X.

The inductive step is now accomplished by remarking the existence of the follow-
ing @-based proof-schema in Q, exploiting ¥ as an embedded subproof therein as
indicated:
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)
sb+a=sn a=sc

sb+sc=sn
s(sb+c)=sn
- . — ] al H— @ 1)
(ViZlk=i | k<n}, sbtc=n c=i a=sc c=n=1 a=sc
i a=si =
@ ,,,F o(si) o) 12 o(n) a=n
a=0 ¢(0) ViZje=i 2 i<n—1 w(a)”)vE
(@ ¢(a) (2) Q3 O
¢(a)

Let us refer to the proofs of Lemmas 1, 2, and 3 as IT;, I1,, and IT3, respectively.
Thus far we have the following trees of dependencies:

Q2,Q3,Q4,Q5
~————
Ql,Q2 ,
I, Ql1,Q2,Q3,Q5,L2
L1 I,
L3

Each of the leaf-node citations of an axiom Qi is shorthand for a metalinguistic state-
ment of the form ‘Qi is an axiom of Q. Remember also that the various promised
proofs I1; (including further ones to be given below) are metaproofs; they are proofs
about the theory Q, not proofs constructed within Q. Naturally, though, they can
advert to inferential moves or whole chunks of proof ‘within Q’ in order to track
deducibility within Q.

We shall proceed further to prove Lemmas (4)—(10) below by means of proofs
IT4—IT,, respectively, as indicated in the following proof-tree:

Q4,Q5 Q4,05
I, Ils
Q4,Q5 Q4,Q5 Ql1,Q2.Q3,Q4,Q5 Q3.L4 | L5
S—— S——
H5 H(, H7 HS
Q3,Q4,Q5, L5 , L6 L7 i L3
I,
L9
ITo
L10

In order to minimize sideways spread, we shall adopt the step

I=u
St =su

as an abbreviation of

St=S8t t=u.
Cst=su
To the same end, we shall use serial V-elimination on occasion:
Vxy(x)
V(1)
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instead of the ‘official’ parallelized rule of V-elimination in core logic.
Assume as given a metaproof IT of the following simple transition:

m+sn=k
I
dy(m+n=y ANk =sy).

It would not matter if this inference were to fail to be derivable in Q; all that matters
is that it is arithmetically valid. Certainly, it is derivable in PA. Bear in mind here
that we are concerned with derivability at the meralevel.

We can now reason at the metalevel as in the following proof of Lemma 4, using
mathematical induction at the step marked (6). We stress once again that this meta-
level reasoning is conducted within core logic.

Lemma 4 We have:
m+n=k
QFm+n=k"

Alternatively, expressed as a metalinguistic sentence:
VxVzim+x=z > QFm+x=2z).

Proof The promised proof I1, is as follows.

(
Iy m Ventn=z > ar min=2
m+tn=r m+n=r —QkFm+n=r
QFm+tn=r Qs:
QF s(mFn)=sr m+sn=s(m+n) W
s Twreer @ QFm¥sn=sr  k=sr
Q4 m=m+0 m+0=k I m4n=rAk=sr Qk +Ln7&41)
m4+0=m ~— m=k  3vntn=yrk=sy) aFmtsn=k

___ abFm+0=k (5 QFm+sn=k 3)
m+0=k - QF-m+0=k m+tsn=k — QFm+sn=k)
Vzim+0=z > QFm+0=2) Vz(m+sn=z—>okm+m=;)(6)

VxVz(m+x=z — QFm+x=z) D

Note that putting IT above the occurrence of 3y (m+n = yAk =sy) that stands as the
major premise of an 3-elimination strictly speaking sins against the requirement in
core logic that MPEs should stand proud, with no nontrivial proof-work above them.
But our rendering in this way the subproof terminating on the conclusion of the step
marked (2) (the application of 3-E in question) is a mere convenience. In deference
to the requirement just mentioned, one could represent that subproof more captiously
(using the cut-elimination notation of Tennant [17]) as

W Vzim+n=z > Qtm+n=z)
m+n=r m+n=r >QkFm+n=r

Qkm+n=r Qs:
mﬂﬁ':k QF s(m+n)=sr  m+sn=s(m+n) o
4 QFm+sn=sr —
3 =yAk= 2 = = =sr
yimtn=y 57) m+n=rAk=sr QFmtsn=k 1)
Jy(m+n=yAk=sy) Qtm+sn=k @
Qkm+sn=k

Lemma 5 We have:

Vn QFVYxsx+n=x+sn.
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Proof
H5 .
()
by Q4 : by Q4 : by Q5 : QFVxsx+m=x4sm
QFsa+0=sa QFa+0=a by Q5 : QFsa+sm=s(sa+m) QFsa+m=a+sm by Q5 :
QFsa+0=s(a+0) QFa+s0=s(a+0) QFsa+sm=s(a+sm) Qta+ssm=s(a+sm)
QFsa+0=a+s0 QFsa +sm=a-+ssm
QFVxsx+0=x+s0 QFVxsx +sm=x-+ssm

)

Q-sb+n=>b—+sn
QFVxsx+n=x+sn

O

Until now we have used ‘<’ only in the metalanguage. The time has come to define
the notion of ordering so that it has a precise sense within the theory Q. We shall
use the same symbol; context will easily let us work out whether it is expressing the
metalinguistic notion or the object-linguistic one, which we now define.

Definition 10 t<u =g dysy+t=u.

This Q-specific notion of ‘less than’ can also be captured, in inferentialist fashion, by
laying down the following rules for introducing and eliminating the symbol ‘<’ in
atomic sentences of the object-language:

—_— )
sa+t=u
SU+I=u

f<u (< -E) a parametric

t<u 0
]

(<D
Q)

Lemma 6 Vk QF s0+k=sk. Hence QF Ay sy +k =sk; that is, Q + k <sk.
Proof  The proof is by induction on k. The basis is immediate by Q4:
s0+0 = s0.
The inductive hypothesis is to the effect that there is a Q-proof I, say, of
s0+m=sm.
In the inductive step, we need to show that there is a Q-proof of
SO+sm=ssm.
So we simply extend IT as follows:

I
s0+m=sm
s(s0+m)=ssm s
s0+sm=ssm O

Lemma 7 We have:

VneNhn=0 v Ql—Vx(x<Q—>(x=0V...\/x= —1)).



30 Neil Tennant

Proof  The proof I is by induction on n. The basis step of I1; is obvious. For
the inductive step of I1;, we construct the following proof within Q in the object-
language:

>

sbt+a=si a=sc Q5
T sbtsc=si sbt+sc=s(sh+c) (1) (2)
si=s(Gb+0) qr) (1) 2) c=i—1 a=sc
i=sb+c c=0 a=sc a=s(@i—1) si—1)=i
ie.c<i (IH) ~_a=s0 a=i
c=0v...vc=i—1 a=s0v...va=i a=s0v...va=i
—(2) n 1
__a=0_ __a=s0v...va=i
a<si a=0v...va=i a=0va=s0v...va=i 2
ie,Jwsw+a=si a=0v...va=i 3)
a=0v...va=i i D

ie,a=0v...va=si—1

(The step labeled (1) is a multiple V-elimination.)
Lemma 8 We have:

Q,n<a ba=snvsn<a.

Proof
(@) (3)
b=sc sh+n=a L5 -
@) ) ssct+n=a ssc+n=sc+sn
b=0 sb+n=a L4 sc+sn=a

s : "~ s0+n=a  O+sn=sn dysy+sn=a,ie.
a=sn sn<a

n<a,ie. a=spvsn<a a=snvsn<a (2) Q3

Jwswt+n=a a=snvsn<a
a=snVsn<a O

Lemma 9 We have:
VnQ FVx(n<xVvx=nVx<n).
Proof  The proof Iy is by induction on n. For the basis of I1o, we prove

Vx(0<xVvx=0Vx<0)

as follows:
) Q4:
a=sb sb=sb+0
a=sb+0
It dya=sy+0,i.e.
dya=sy O<a
) @
a:o O<a

O<ava=0va<0 0<av41=0\/a<0(1

O<ava=0va<0
Vx(0<xVvx=0Vx<0)

) Q3

The inductive hypothesis (IH) is
Vx(k<xVvVx=kVx<k),
and from (IH) the inductive step of I1g proves

Vx(sk<xVvx=skVx<sk)



Core Godel 31

as follows:
—()
—(D [SCR— ) a<k
k<a (Ls) k<sk a=k >
Vx(k<xvx=kvx<k) a=skvsk<a a<sk a<sk
k<ava=kva<k sk<ava=skva<sk sk<ava=skva<sk s&<avu:skva<s&(l)v5
sk<ava=skva<sk
Vx(sk<xvx=skVvx<sk)
where the embedded subproof X is
—(1) (2)
a=i sb+a=k L5: Q5:
sh¥i=k ssh+i=sb+si s(shb+i)=sb+si
s(sh+D)=sk s(sb+i)=ssb+1i — (1)
L7: ssb+i=sk a=i
a<k a<k—(a=0v...va=k—1) sshb+a=sk
a<k.ie. a=0v...va=k—1 a<sk i<k (1)
dysy+a=k
k a<sk 2 D

a<sk
Lemma 10 The following rule is core-derivable in Q:

m! () o @)
sa+n=t sa+t=n

where a is parametric

L 4

@)
t=n
Proof
—m —
sa+n=t sa+t=n
Hl() :

(3) 1 €) 1
ByL9: La) <E (3) t<’l—(2) <E

n<tVvt=npvit<n 1 t=n 1 )

t=n

Note how the step marked (3) is a multiple V-elimination (proof by cases), in which
cases are allowed to simply ‘close oft” with _L. This is permitted by the rule of VE in
core logic. It allows for multiple disjunctive syllogism. [
Lemma 11 We have:

YmVn QbFcm+n=m+n.

(Note that this is a metalinguistic claim. It will be proved using only core logic in the
metalanguage.)
Proof  Let m be arbitrary. We shall establish

VnQblcm+n=m+n

by induction on 7.
For the basis, we reason in the metalanguage as follows:
QFcm+0=m 0=0
QFcm+0=m m=m+0
QFcm+0=m+0

For the inductive step, we reason in the metalanguage as follows:
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By IH:
QFcm+sn=s(m+n) QFcm+n=m+n
QbFcm+sn=s(m+n) s(m+n)=s(m+n)
Qbc m+sn=s(m+n) s(m+n)=m+sn
QFcm+sn=m+sn Sn=gsn
QFcm+sn=m+sn O

Lemma 12 We have:
VmVn Qbc mxn =mxn .

(Note that this is a metalinguistic claim. It will be proved using only core logic in the
metalanguage.)
Proof Let m be arbitrary. We shall establish

Vn Qbc mxn =mxn

by induction on 7.
For the basis, we reason in the metalanguage as follows:

QFcmx0=0 0=0
QFcmx0=0 0=mx0
QFcmx0=mx0

For the inductive step, we reason in the metalanguage as follows:

By IH:
Qbcmxsn=(mxn)+m Qlc miﬂ=mixn Lemma 11:
QF¢c mxsn=mxn+m mxn+m=(mxn)+m
Qbc mxsn=(mxn)+m mxsn=(mxn)+m
QFcmxsn=mxsn sn=sn
QFcmxsn=mxsn O

5 Recursive Functions

Here we explain Godel’s ‘general recursive’ functions, which we shall simply call
recursive functions when no confusion can arise. We shall not follow Godel’s own
definition, but rather that due to Kleene [5], of what Boolos and Jeftrey [1, p. 162]
call ‘Recursive’ functions (with uppercase ‘R’). Kleene proved Recursive functions
to be exactly the recursive functions that Godel defined. The great advantage of the
inductive definition of Recursive functions is that only two operations are involved
in building them up from the initial, or basic, functions. These two operations are
composition and minimization of regular functions. Because of a suitable choice of
basic functions, one can dispense with the operation of primitive recursion.

It is quite ironical that this succinct definition of recursive functions eschews the
function-forming operation of primitive recursion. But the hidden ‘need’ for recur-
sion is met by the availability of addition and multiplication as basic functions. The
reader should not lose sight of the fact that the Peano axioms for arithmetic include
the so-called recursion equations for addition and multiplication. It is gratifying to
know that that much recursion is all one really needs for the construction of recursive
functions in general.

Definition 11 The characteristic function c= of identity is defined as follows:

1 ifm=n,

c=(m,n) = {O ifm s n.
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Definition 12 fis a regular (n 4 1)-place function just in case for all k1, ..., &,
there exists some k such that f(ky,...,k,, k) = 0.

Definition 13 Suppose some number satisfies ¢(x). Then Ax[p(x)] is the least
number to do so.

Definition 14 The projection function id }’ yields the kth member of any m-tuple
(1 <k <m):
idy(ny,....nm) =ng .

Definition 15 (Recursive functions)

The basic recursive functions are + (addition), x (multiplication), the characteristic
function c= of identity, and the projection functions id}”.

All other recursive functions are built up by means of the following two operations:

1. Composition: if f is an n-place recursive function and g, (E), ey @n (E) are

m-place recursive functions, then f(g; (Z), e s &n (E)) is an m-place recur-
sive function.

2. Minimization of regular functions: if f is a regular (n + 1)-place recursive
function, then % is an n-place recursive function, where

h(k) = Ap[f(k,p)=0].

Godel’s definition of (general) recursive functions provided a precise formal explica-
tion of the informal notion of computable functions of natural numbers. So too—
and rather more naturally and convincingly—did Turing’s definition of functions
computable by Turing machines. It is intuitively obvious that Godel’s and Turing’s
functions are computable. Moreover, their two definitions are provably coextensive
(they define the same class of functions on the natural numbers). Indeed, every for-
mal explication ever offered for the notion of computable functions has proved to be
coextensive with the explications of Godel and of Turing. This is what underlies the
strong consensus behind Church’s thesis.

CHurcH’s THEsis: Any function from N into N (partial or total) is computable

if and only if it is recursive.
Godel’s definition is particularly useful for the metamathematician since it affords a
method of proof by mathematical induction of general results about recursive func-
tions. Theorem | below is one of the most important such results.

6 The Godel Phenomena
6.1 Some terminological preliminaries

Definition 16 The syntactic items of £ are its terms and formulae, and proofs
made up out of its sentences. We shall call the set of all such items X.
Definition 17 A Godel-coding is an effective, one-one assignment
t: X —>N
to each syntactic item E in X (be it a term, a formula, or a proof) of a unique code

number f{E € N.
ff is so devised that the converse (one-one) assignment

11N>

is also effective, in the following sense:
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For each n € N the effectively determined output # -1 (n) is of one of two forms:
either the comment ‘n is not the code number of any syntactic item in X’; or the
syntactic item E such that fE = n.%

Observation 6 It follows from our notational conventions that for any syntactic
item E, §E is the numeral for the code number of E.

Definition 18 Let ¥(x1,...,Xxy) be an n-place relation among natural numbers.
Let ¥ (x1,...,X,) be an n-ary formula in the language &£ of arithmetic. Let T be
any consistent theory in &£. We say that in the theory 7" the formula ¥ numeralwise
represents the numerical relation W just in case the following two implications hold
for all natural numbers k1, ..., ky:

ifW(ky,....kp), thenT = ¢r(ky,... . kn); and
ifnot-W(ky,....kn), then T, (k1. ..., kp) = L.

Definition 19 Let f(x1,...,X,) be an n-place function whose arguments and
values are natural numbers. Let ¢(x1,...,X,,y) be an (n+ 1)-ary formula in the
language £ of arithmetic. Let 7" be any consistent theory in £. We say that in the
theory T the formula ¢ numeralwise represents the numerical function f justin case

the following holds for all natural numbers ky, ..., k,, k:
if f(k1.,....kn)=k,thenT EVy(p(ky,....kn.y) < y=k).
Equivalently:

i (K1 k) =K. then {T,w(ﬁ,...,kl,a) I—a:k}’

Ta=kt o(ky,....kn,a)

where a is parametric.
Observation 7 Under the assumptions of Definition 19, we have
TH ¢(lﬂ,...,l&,f(k1,...,kn)).

Observation 8 Suppose that in the theory T the formula ¢ numeralwise repre-
sents the numerical function f. Suppose moreover that for any two distinct numbers
i, j,we have T,i = j + 1. Suppose f(ky,...,ky) = k. Let m be any number
distinct from k. It follows that

T, ok, ... knm) F L.

6.2 Godel’s blessing and Godel’s curse The Godel phenomena in the theory of arith-
metic underscore the stark contrast between logical completeness and theory com-
pleteness. Despite classical first-order logic’s soundness:

AFp—>AEy

and completeness:
AEp—>Alyg

—the latter known as ‘Godel’s blessing’—there is also, alas, ‘Godel’s curse’. It con-
sists of his famous First Incompleteness Theorem (G1), and Second Incompleteness
Theorem (G2), which can be stated as follows:

For any decidable and sufficiently strong set + of axioms in the first-order
language of arithmetic,
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(G1) thereis a H‘l)-sentence y (called ‘the Godel-sentence’ for +4) such that
AFL > AFy
(i.e., if 4 is consistent, then # does not prove y),
and
[Vpry(VnAbyn — A VXY FL)] - Ay ¥ L
(i.e., if # is 1-consistent, then + does not refute y);

and

(G2) where Con, is the H?-sentence codifying the consistency of #:
A L — A F Cony.

We shall call a proof whose premises are in 4 an #-proof. The sentence y of (G1)
is the sentence that ‘says,” via the Godel-coding, that there is no #A-proof of y. y is
a H(l’-sentence because it is so constructed as to be interdeducible with a sentence of
the form
Vx—Pu(x, 1Y),

where the primitive recursive predicate &4 (x, y) numeralwise represents the (effec-
tively decidable) relation ‘x is the code number of an #A-proof of the sentence with
code number y’ in that the following two implications hold for all numbers n, m:

if m does code an A-proof of the sentence with code number 7,

then #A = P4 (m, n); and

if m does not code an A-proof of the sentence with code number 7,

then A, Py (m,n) - L.
More informally, y can be understood as ‘saying’

‘for every natural number 7, n is not the code-number of an #A-proof of y.’
Likewise Con,, is a I19-sentence because it ‘says’

‘for every natural number #, n is not the code-number of an A-proof of L.’

We shall show how to construct such a Godel-sentence y in Section 11.3.

7 The Role of Core Logic in the Incompleteness Theorems

Core logic C is included within intuitionistic logic I and is distinguished by its
eschewal of ex falso quodlibet (EFQ). Likewise, classical core logic C™ is included
within classical logic C and eschews EFQ. In any logic that contains it, the effect of
EFQ is to make it the case that in any language governed by that logic there is only
one inconsistent theory—namely, the whole language itself. The main question of
interest to the core logician is whether this feature is essential for the derivation of
Godel’s celebrated incompleteness theorems. The main question splits into two.

(i) Do we need to have inconsistent theories in the object language ‘exploding’

via EFQ to the whole language, in order to derive (G1) and/or (G2)?

(i) Do we need to have inconsistent theories in the metalanguage ‘exploding’

via EFQ to the whole language, in order to derive (G1) and/or (G2)?

Our answer to (i) is that all of the formal proofs furnished for the preceding lemmas
on the way to the representability theorem have been core proofs. Representability is
an entirely constructive result, and core logic suffices for constructive (intuitionistic)
mathematics.

Our answer to (ii) will be negative, as we shall see in our subsequent metalin-
guistic reasoning to obtain (G1) and related results. All such reasoning to follow is
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clearly constructive and free of any appeals to EFQ—indeed, so obviously so that we
shall take the liberty of leaving intact the more informal (but rigorous) reasoning at
the metalevel whose strict formalization as core proofs would be but a routine chore.

Recall that we have been discussing any decidable and sufficiently strong set #4 of
axioms in the first-order language of arithmetic. Godel’s incompleteness theorems
concern classical theories in the first-order language £ of arithmetic (with 0, s, +,
and x as extralogical primitives). This is because the aim is to show that even if
one uses the strongest permissible logic—orthodox classical logic C—for closure of
A at the object-level, arithmetical incompleteness is still inevitable. Classical core
logic CT, however, could be used in place of C, without any loss of deductive reach
in the case where 4 is consistent. In the case where s is inconsistent, C* will reveal
that fact. These claims are justified by the following metatheorems about the core
systems.

1. If A logically implies ¢ in classical logic C, then in classical core logic C*
there is a proof either of ¢ or of L whose premises lie in A:

Abcp — (Abct@ or Aber L),
2. Every theorem of classical logic C is a theorem of classical core logic C*:
Fep — Ferg.

3. Every set of sentences that is inconsistent in classical logic C is inconsistent
in classical core logic C:

Abcl — Abq+ L.

4. If ¢ is a classical consequence of a classically consistent set A of sentences,
then ¢ is deducible in classical core logic CT from premises lying in A:

(AFcL and Abcp) = Abeto.

Even when classical closure of 4 (at the object-level) is at issue, the incompleteness
theorems can be established constructively at the metalevel. Corresponding to the
foregoing results concerning ordinary classical logic C and classical core logic CT,
we have the following results in the intuitionistic or constructive case. They are of
interest here because of their application at the metalevel in the proof of Godel’s
incompleteness theorems.

I’. If A logically implies ¢ in intuitionistic logic I, then in core logic C there is
a proof either of ¢ or of L whose premises lie in A:

A9 — (AbFc@ or A1)
2. Every theorem of intuitionistic logic I is a theorem of core logic C:
Fio — Fco.

3’. Every set of sentences that is inconsistent in intuitionistic logic I is inconsis-
tent in core logic C:

AL — AbFcL.

4’. If ¢ is an intuitionistic consequence of an intuitionistically consistent set A
of sentences, then ¢ is deducible in core logic C from premises lying in A:

(A¥,L and Atb9) — Abco.
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We shall examine here how the proofs of the incompleteness theorems go through
when the logic of the object language is classical core logic C* and the logic of the
metalanguage is core logic C.

Let us be granted the widely shared assumption that our (meta)mathematical
axioms are consistent. Then result (4) above tells us that every classical (meta)math-
ematical result that follows from those axioms can be proved using only classical
core logic C* at the metalevel. And result (4')—more attuned to the specifics of
the proofs of the incompleteness theorems—tells us that every (meta)mathematical
result that follows constructively from those axioms can be proved using only core
logic C. We therefore have an answer to the second of our two earlier questions:

Do we need to have inconsistent theories in the metalanguage ‘exploding’ via
EFQ to the whole language, in order to derive (G1) and/or (G2)?

The answer to the second question is negative: we do not need EFQ in our metalogic
in order to derive (G1) and (G2)—for the simple reason that one does not need EFQ
in order to derive any mathematical theorem from a consistent set of mathematical
axioms. If (G1) and (G2) enjoy constructive proofs, then they have core proofs. But
if their proofs involve necessary recourse to strictly classical rules of inference (such
as classical reductio ad absurdum, or dilemma), then they at least have classical core
proofs. As it happens, (G1) and (G2) are constructively provable; hence core logic C
suffices for their proof at the metalevel.

We can therefore focus our inquiry now on the effect at the object-level of eschew-
ing EFQ. We use the notation [A] g for the deductive closure of the set A in the logical
system &. So

[Als =4 {9 €L | Als g}
We shall analogously define

[Alg =4 lpe L | Apks L}

Could Godel—had he but known of core logic—have shown that the classical
core logical closure of any decidable, consistent and sufficiently strong set A of
arithmetical axioms is incomplete? And that it cannot contain Con 4 ?

Looked at one way, the answer is obviously affirmative. The following picture is
worth a thousand of anyone’s words, including mine. Recall that y is the sentence
(for (G1)) that ‘says,” via the Godel-coding, that there is no A-proof of y.

True-in-N False-in-N
[Alc (= [Ale+) [Alc

[ I

L

If the two boxes labeled True-in-N and False-in-N partition the language £, then
we have the realist’s picture. For the realist, the principle of bivalence is true: every
sentence of £ is determinately true or false in the structure N of the natural numbers.
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If, however, the two boxes in question fail to partition &£, then the situation is some-
what like that just depicted—the sort of picture the moderate antirealist has in mind,
even if he has to exercise extreme caution in the way he describes it.”

Whichever way we decide the debate between the realist and the antirealist, an
important aspect of the picture above remains invariant: the independent Godel-
sentence y will lie outside the logical closure of 4. This will be the case no matter
whether we use full classical logic C or only classical core logic C™ for such closure.
(Remember, this is logical closure within the object-language.) And this is owing
to the ‘overkill’ reason that the two closures just mentioned are identical, on the
assumption that 4 is consistent. Moreover, the Godel-sentence y is true-in-N, even
though not logically implied by # (whence its negation —y is consistent with <), on
the assumption that 4 is consistent.

Why call this an ‘overkill’ reason? Because an even weaker reason already suf-
fices for the absence of y from [#].+, given its known absence (courtesy of Godel)
from [#]c. This is the simple fact, from inspection of the rules of inference of C*
and C respectively, that

Fotr C Fc.

So we could have begun, a fortiori, with the picture

True-in-N False-in-N
[Alc [Alc
[Ale+ 0% [A](E‘F
.
L
in which it is left open whether
[Al+ = [Alc-

The mere inclusion
[A] o+ C [Alc

shows that Godel’s reasoning is just as fatal for [4].+ as it was for [4]¢. The sentence
y lies beyond reach from the axioms +, no matter whether it is ordinary classical
logic C that is used for closure, or classical core logic C*. One could go so far as
to say that the Godel phenomena are so robust that they manifest themselves despite
result (4) above (to the effect that the classical core closure of A is identical to the
classical closure of A, provided only that A is classically consistent).

As is becoming clear, there are two levels at which one needs to consider logical
closure: the object-level and the metalevel. In the standard presentation of the Godel
phenomena, one considers the closure of the axioms «# under classical logic C, but
uses only intuitionistic logic I at the metalevel. The core logician seeks to emulate
this achievement by using only core logic C at the metalevel. Like the intuitionis-
tic logician, the core logician can reason constructively at the metalevel about clas-
sical proofs and classical deducibility in the object-language. (Formal proofs are
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after all finitary, inductively definable objects; one can reason about them construc-
tively, even though the object-linguistic reasoning that such proofs formalize is not
itself constructive in general.) We emphasize again: the Godel phenomena are most
emphatically established by allowing for full classical closure of the axioms # at the
object-level, and showing (constructively, at the metalevel) that the Godel sentence
y is still unprovable from .

In this study we are contemplating using either classical logic C or classical core
logic C* at the object-level, and using either core logic C or classical core logic C*
at the metalevel. We need a succinct notation for easy reference to various theoretical
constellations. We shall use the prefix

81
[52]

to indicate that we are reasoning at the metalevel using logical system §;, about a
theory at the object-level that is closed under deducibility in logical system &,. We

therefore have in prospect
C- C-C+-andC+—te
cl" [ex” e ™ [e=)™P
investigations.

The first—the [%] -type—would be the most impressive, if it can be carried out. It
would be the core logician’s emulation of (and improvement upon) the most impres-
sive achievement to date, which, as indicated above, has been a Godel’s investigation
of type [é] In order to emulate (and improve upon) it, the core logician needs to
conduct an investigation of type [%], with core logic C taking over from intuitionistic
logic I at the metalevel.

The second—the [(%] -type—is what one would expect as the Godelian ‘metachal-
lenge’ had mathematics, in both its constructive and classical varieties, only ever
been formalized according to the core logician’s canons of relevance.

The third and fourth types are easily comprehensible variations on the first two,
and we shall not consider them in any further detail here. They represent the ‘fall-
back’ approaches available to the core logician, should the Godelian project elude
constructive capture.

But it will not. This study is a completed investigation of type [].

8 Consistency, w-Consistency, and 1-Consistency

8.1 Definitions of the notions A unary formula is a formula with exactly one free
variable; a binary formula is one with exactly two.

We shall use i as a sortal variable over unary formulae, and we shall take their
sole free variable to be x. We shall write ¥¢ for ¥}, and also sometimes write ¥ x
for ¢ to remind the reader of its free variable. We abbreviate “primitive recursive”
as ‘p.r’

In the metalanguage we shall be quantifying on some occasions over the natural
numbers, using the sortal variable n (Vn, 3n) and on other occasions over formulae,
using the sortal variable ¢ (Y, 3y). Whichever sortal variable o we use, note that
the following equivalence (interdeducibility) holds constructively:

—Jdada 1+ Ya—da. @)
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So too does this one:

—(P AQ)- (P ——0). (ii)
Noting these constructive interdeducibilities will make it easier to appreciate the
claims of constructive equivalence (in the metatheory) to follow.

Definition 20 T is w-inconsistent =g Y (Vn THyn A THIx—yx).
Definition 21 T is l-inconsistent =g Ip.r. (Vo THyYn A THIx—yx).
Definition 22 T is inconsistent =4 T+ L.

Corresponding to each of these notions of inconsistency is a notion of consis-
tency—its straightforward contradictory. Thus we have

Definition 23 T is w-consistent =g —3Y(Vn THyYn A THIx—yx).
Definition 24 T is 1-consistent =4 —3p.r. Yy (VuTHyYn A THIx—yx).
Definition 25 T is consistent =4 T ¥~ L.

Observation 9 If T is w-consistent, then T is 1-consistent.

Now let us look at some (meta)logically equivalent ways of framing the notions of
w-consistency and 1-consistency. Of particular interest are variations that are con-
structively equivalent to the ‘master’ Definitions 23 and 24.

8.2 Equivalent formulations of w-consistency The definiens is constructively equiv-
alent to
Yy (VnTHYyn — T FIx—yx).

Moreover, on the assumption that the embedded turnstile | is classical, this in turn
is constructively equivalent both to

Vy(YnTHyn — T,Vxyx ¥FL1).
and to
Vy(VnTHyn — T F-=Vxyx)

8.3 Equivalent formulations of 1-consistency The observations of Section 8.2 carry
over to yield similar metalinguistic constructive equivalents of the definiens in the
definition of 1-consistency. All that is different in this case is the restriction to
p.r. formulae. But this restriction allows us to draw on the p.r. equivalences noted
above. Consequently, the following are just some of the constructive equivalents of
the definiens

—Jpry(VnTHyn A THIx—yx)

in Definition 24:
Vpry(THIxyx — InTHyn),
Vpr.y(—InTkHyn — T ¥FIxyx),
Vpr.y(VnTHyn — T ¥F-Vxyx),
Vpr.y(VnTV¥Fyn—T,-Axyx F 1),
Vpr.y(VnTH—-yn — T,Vx—yx ¥ 1),
Vpry(VnTH—-yn — T F-Vx—yx),
Vpry(VnTH—-yn — T FIxyx).
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Given that these are all (constructively) equivalent, one may pick and choose from
among them according to one’s convenience in order to meet certain metatheoretical
goals.

9 Do the Proofs of the Incompleteness Theorems Require
the Use of Ex Falso Quodlibet?

Our main concern in this study is to show that the core logician is in a position to
prove the incompleteness theorems. That is, the core logician can carry out the meta-
logical reasoning that shows that even the use of full classical logic C (with EFQ) at
the object-linguistic level fails to deliver all the first-order truths of arithmetic, pro-
vided only that the set of axioms used is consistent, sufficiently strong, and effectively
decidable.

One quick and easy way to show this is simply to adduce the metatheorem that
assures us that all classical consequences of a consistent set of sentences can be
derived from it using only classical core logic C*. In the constructive case, likewise,
we have the metatheorem that all constructive consequences of a consistent set of
sentences can be derived from it using only core logic C.

Opponents for whom the matter is not so directly disposed of, however, will try
to raise difficulties for the core logician by making out that there are to be found,
in the well-known proofs of the incompleteness theorems, what from their point of
view appear to be indispensable appeals to EFQ. These appeals are either explicit,
or, if merely implicit, nevertheless obvious. I agree that such appeals can be found;
the crucial question for us to consider, however, is whether they are indispensable.
They might have been made by formal logicians well versed in a tradition that has
reconciled its followers to the use of EFQ, but which has failed to instruct them as to
how its use can be avoided altogether. It is also important to be clear about whether
the appeals to EFQ take place at the metalogical level or whether it is a matter of
EFQ only being taken to be part of the logic of the object-language.

Consider, for example, how the exposition runs in Kleene [6], who is working
within a framework of type [%], in the passage of reasoning that shows that every w-
consistent theory is (straightforwardly) consistent. He is working with the definiens

Yy(VnTHYyn — T F-Vxiyx)

for w-consistency of 7. With slight changes made in the interests of uniformity of
notation, here is Kleene’s reasoning ([6, p. 207]):

. w-consistency implies simple consistency. For if ¢ be any provable formula
containing no free variables, writing it as “¢(x)” where x is a variable, all of
©(0), ¢(1), (2), ... are provable (under our substitution notation ... each of
these is simply g itself); and hence if the system is w-consistent, =Vx¢(x) is an
example of an unprovable formula ... .

Kleene is working here on the background assumption that if 7" were inconsistent,
then we would have, courtesy of EFQ, that 7 proved —Vx¢(x), and this would
complete his intended reductio of the assumption that 7" is simply inconsistent.

Now there are those (like the present author) who disapprove of a grammatical
convention that allows a quantifier-prefix Vx to be appended to a formula with no
free occurrences of the variable x. In order to mollify them, Kleene could instead
have written as follows:
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. w-consistency implies simple consistency. For if 6 be any theorem and & (x)
any unary formula, all of

OVvE), OVE(D), OVE(QR),...
are provable, and hence if the system is w-consistent,
=Vx(0VE(x))
is an example of an unprovable formula ... .

As already pointed out, Kleene is working with the formulation of the w-consistency
of T that runs
Vy(VunTHYyn — T F—=Vxiyx).

The reasoning on my suggested rewrite using the formula 6 v £(x) is consummated
as before, of course, by appeal to the logical fact (for the intuitionist, and hence also
for the classicist) that if the theory T in question proves L, then (by EFQ) T proves
any sentence, including —=Vx(6VE£(x)). But this contradicts the earlier conclusion
that =Vx (0 Vv E&(x)) is unprovable in 7. So the theory T does not prove L.

In this (reformulated) passage of reasoning from Kleene, it is clear that the tacit
appeal to EFQ is a matter only of EFQ’s being taken to be part of the logic of the
object-language; Kleene is not himself applying EFQ in his metalogical reasoning.

The question now arises: is this reasoning, with its explicit appeal to EFQ at the
object-level (‘within’ the theory 7') able to sustain the methodological claim that
EFQ is indispensable within the logic for theory-closure at the object-level? (Indis-
pensable, that is, for the sought proof that a theory’s w-consistency implies its simple
consistency.) How might Kleene have been able to reason had he been confined to a
framework of type [ rather than [&]? If T is closed only under the nonexplosive
C™ rather than under C, won’t this block the Kleene-style reasoning that has just
been expounded?

The answer is affirmative, but there is a surprisingly easy work-around when con-
fronted with this blockage. It involves a subtle but reasonable reconceptualization of
the single turnstile I-. The usual reading of A Fg ¢ is the following:

there is a proof (in the system §) whose conclusion is ¢ and whose undischarged
assumptions are in A.

This allows for the possibility of proofs that do not appeal to every member of A.
Indeed, this would have to be the case whenever A is infinite. So, putting it another
way, the usual reading of A Fg ¢ is as follows:

there is a proof IT (in the system &) such that:
(i) the conclusion of IT is ¢; and
(ii) pIT (the set of premises of IT) is a subset of A.

Let us undertake just one more round of reformulation. Let us talk of the sequent
sIT that is established by a proof IT. sTI will take the form I" : ®, where I is a finite
set of sentences (the set of premises of the proof), and ® is at most a singleton. If ®
is empty, then IT establishes the conclusion L from the premises I', and if ® is {¢},
then IT establishes the conclusion ¢ from the premises I'.

We now define the subsequent relation as follows.

Definition 26 A1:O1CE A0, =4 A1 CA, and O] CO,.
Now, when we make a ‘core deducibility’ claim (for ® at most a singleton) that
Als®
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(note the reddening—the reddened and subscripted single turnstile is not the same as
the equiform one in black!) this is to be understood as follows:

some &§-proof proves some subsequent of A : ©.
More succinctly still:
there is an §-proof IT such that sTT C A: ©.

Logicians have, after all, been happy to take ‘subsetting down on the left’ in their
stride when framing deducibility statements. They require of proofs that witness
their deducibility claims only that their premises be members of the antecedent A,
not that they collectively exhaust A. But there is absolutely no reason not to allow
for the same on the right, with the succedent—insofar as deducibility is concerned.
And let us further stress: we are venturing to use the reddened turnstile, temporarily,
only on Kleene’s behalf, so as to make his reasoning accessible to the core logician.
We do not propose that the reading of the reddened turnstile should henceforth be
replacing the established reading of the black turnstile, according to which A g ¢
if and only if there is an §-proof whose conclusion is ¢ and whose premises are
drawn from A.

If we do allow the proposed venture into the use of the reddened turnstile, then
we can revisit the reasoning in which Kleene engaged in his attempt to show that
w-consistency implies simple consistency. That reasoning goes through with only
minor adjustment for the worker in the framework of type [(é%]' The formulation of
w-consistency becomes

Yy(YnTrFe+yn — T fo+—Yxyx),

and then the reasoning goes through crisply as follows:

Suppose for (constructive) reductio that T -+ L. Suppose also that T is w-
consistent, that is, that

Vy(VnTbEeryn — T o+ —=Vxyx).
Let y be any unary formula. It follows that
VoT et yn — T fet—=Vxyx.

Let m be any number. Since T -+ L, we have

Thetxm.
But m is arbitrary. It follows that
VT et yn.
Detaching, we infer that
TFe+—Vxyx.

This contradicts 7 -+ L.
Note: there has been no appeal to EFQ as a rule of inference in the logic of the
object language. We have, to be sure, employed the metalogical form of inference
Abet+ L
Abcig’
And this form of inference is an immediate consequence of our proposed definition

of ¢+ It looks like THINNING, but it is not. Its metalogical validity follows imme-
diately from the definition of the reddened turnstile --+. This inference amounts
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(roughly: see below) to the metalinguistic claim that THINNING is (trivially) admissi-
ble for the system C™. It is not the claim (nor does it justify the claim) that THINNING
is derivable in, or is a primitive proof-forming rule of, the system CT, as a means of
forming (sequent) proofs. The latter rule would be stated as
Al
A:g’
There is a world of difference between having this rule as a rule of or in one’s system,
and merely having it be admissible for one’s system.
What we have said here about THINNING holds equally for cut. The metalinguistic
inference
Abcig Lgbe+y
is valid on our proposed definition of -+, but all it states is the admissibility of cut
for the system C™. This is a far cry from having an applicable rule of cuT
Arg Ty
ATy
in the system, as a means of forming (sequent) proofs.
The validity of the metalinguistic inference

Alcrg  Toobcer
A, F |_C+w

is an easy corollary of the main metatheorem of Tennant [ 18], which states
There is an effective method [, ] that transforms any two proofs

A AT
II b (where A ¢ T and T may be empty)
A 0

in Classical Core Logic into a proof [IT, X] in Classical Core Logic of 6 or of L

from (some subset of) A U I.
Here, again, one could say in light of this metatheorem that cur is admissible for
classical core logic, even though it is not derivable (and, also, is not a rule in the
system). This talk of admissibility in the case of THINNING and in the case of cuT
appeals, to be sure, to a slightly revised conception of a rule’s admissibility. As an
anonymous referee pointed out:

Typically, a one-premise rule is said to be admissible in some sequent calculus &

if, and only if, whenever there is a derivation of the premise-sequent in &, there

is also a derivation of the conclusion-sequent in §.
The conception of admissibility that we have deployed in the foregoing is captured
by the following slight revision (which we give for the general case n rather than 1,
since cuT involves two premise-sequents):

An n-premise rule is said to be admissible in some sequent calculus & if, and

only if, whenever there are derivations in & of the n premise-sequents, there is

also a derivation in & of some subsequent of the conclusion-sequent.

10 Representability of Recursive Functions
Lemma 13 In Q, the formula x +y = z represents the basic function of addition.

Proof By Definition 19, we need to show the following:
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m-rn=

. n=ata=k
1fm—|—n—k,then{ d=k - m+n=a },

Q,
Q,
where a is parametric.

So suppose m+n=k. By Lemma 11, we have'®
QFm+n==k.

This means there is a Q-proof IT of the form

Q
I1
m+n=k
Its extension
Q
I1
m+n=k m+n=a
a=k

shows that

Likewise, its extension

shows that
Qa=kFm+n=a. O

Lemma 14 The formula x X y =z represents the basic function of multiplication.

Proof  This is like the proof of Lemma 13, but appealing to Lemma 12. O

Lemma 15 For 1 <k < m, the formula x; =X1A.. AXp =Xm Ay =X| repre-
sents the projection function id”, which is basic.

Proof  The action of the projection function, for given 1 < k < m, is
diy(ny,...,nm) = ng.

By Definition 19, we need to show the following:

ifid(n1,...,nm) = ng,

Qni=niA... Aipm=nmAa=ny Fa=ng
then — — —_— — — 3,

Qa=ngbni=niA...Anm=nmAra=ng
where a is parametric.

These deducibilities are trivial, given reflexivity of identity and the rules of introduc-
tion and elimination for conjunction. O

Lemma 16 The formula (x1=x3Ay=1)V (—mx1=x2Ay=0) represents the
characteristic function c= of identity, which is basic.
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Proof  The characteristic function c—(m, n) of identity is given by

c(m.n) = 1 ifm=nmn,
=T 0 iftm # .
By Definition 19, we need to show the following:
if c=(k1,k2) =k, then {Q’ (ki =kana=D v (“ki=kzna=0)F a:k},

Q,a=kt (ki=kona=1)V (=k1=karna=0)
where a is parametric.

There are two mutually exclusive and collectively exhaustive cases to consider:
1. kiy=kyand k=1;
2. kl ;ékz and k =0.

In Case 1, we have k1 =k, so we have, as an instance of reflexivity of identity,

=k

In Case 1, we also have k =1, so we likewise have

|

=1

The two required deducibilities in Case 1 are accordingly established by the following
proofs. (Note that they do not make use of any axioms of Q.)

o “ki=kana=
ki=kxra=1 —ki =k ki=ko

(ki =kona=1)Vv(=ki =ksra=0) a=1 J_’l)

a=1 k=1

a=k
a=k E
ki=ky a=1
71=k7 Na=

In Case 2, we have k1 # k;, hence (by Lemma 1) a proof within Q of the form

Q ki=k

~————
1

In Case 2, we also have k = 0. Therefore we have, as an instance of reflexivity of
identity,

|

=0

The two required deducibilities modulo Q are accordingly established in Case 2 by
the following proofs:
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_1212/\61 =1
Q. ki=k
[ —
(1)
: —ki=kyAa=0
(ky=kaona=1)Vv(—k;=kyra=0) 1 a:(){)
— —= — = 1
a=0 k=0
a=k
(1
Q, ki=k,
K1=k2
L o a=k k=0
ﬁh:ﬁ a=0
_'12212/\61:0
(ky=kana=1)V(=ki=kyrna=0) O
Lemma 17 Suppose

the formula Y1 (x1, ..., Xp41) represents the k-place function g1(ny,...,ng);
the formula Vry, (X1, .. ., Xg41) represents the k-place function g, (ny, ..., ng);
the formula ¢(x1, ..., Xm+1) represents the m-place function f(ny,...,ny).

Then the formula
W (ALY (X 7)) A QL Yms V)
represents the composed function

f(gl(xl,...,xk),...,gm(xl,...,xk)).

Proof
1) —
AL Wi (n,bi) Ap(bi,...,by,a)
w(i,b))
(since ¥ ; re.presents g;)
(1)
AL Wi (n, b)) Ap(by, ..., b, a) -
0B, bmsa) bi=g; (%) -
0(g1(n),....gm(n),a)
(since ¢ re;.)resents ia
1Ay AL i (L) AO1 - ymea)  a=f(g1(n)...gm(7))

9]

a=f(g1(n),....gm(n))

The step marked (1) is an m-fold existential elimination, using the parameters
bi,....bm.
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(since ¥ (since Yy, (since ¢

represents g1) represents gy;) represents f)

Y1 g1(1)) Ym(.gm(n))  @(g1(n),.. .gm(1).a)
N i (1, gi (1)) A p(gi(n).....gm(N).a)
It Bym (AL Wi (1, 30) A (- Y, @) =

Lemma 18 Suppose

the (n+1)-place function f is regular ;

the formula (X , y, z) represents f in Q;

the n-place function g is obtained by minimization of f —
that is, for allmy, ..., m,, g(m) = Ap[f(m, p)=0].

Then g is represented in Q by the formula
o(x,y,0) A Vsz(sw +z=y > —p(x,z, O)).
Note that this last formula can be read as

9(X,9,00 AVz(z<y = —¢(X,z,0)).

Proof  Since f(m, g(m))=0, and ¢(X, y, z) represents f in Q, there exists (recall
Observation 7) a Q-proof

s
p(m. g(m).0)

Recall Lemma 3, with a change of schematic letter:
Vn>0 Q. {y (k) |k <n}.sb+a=ntc ¥ ().
This tells us that there is a (core) Q-proof of the form

Y(0).y(),....¢(n=1).sb+a=n

v (a)
For ¥ (x), we substitute —~¢ (i, x, 0). We now have a (core) Q-proof of the form

—¢(m,0,0),=¢p(m, 1,0),....,—¢p(m.,n—1,0),sb+a=n

—¢(m.a,0)

Bear in mind that g(m) is the least number p such that f(m, p) = 0. So for all
i < g(m), we have f(m,i) # 0; whence again by representability (recall Lemma |
and Observation 8) there is, for each i < g(m), a Q-proof
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—m
p(m, i,0)
ok :
o —()
—p(m,i,0)
That means we can now assemble a (core) Q-proof
=0 =1 oka!
—(m,0,0) , —(m,1,0) ,..., =p(m.n—1,0) , sb+a=n
—¢(mn,a,0)
which we shall abbreviate as
sb+a=n

[

—¢(m.a,0)
In order to establish that g is represented in Q by the formula

@(x,y,0) A Vz‘v’w(sw +z=y —> —'(p(;,Z,O)),

we need two Q-proofs, one for each direction involved. We embed X and E as
subproofs in order to obtain them:

()
sb+a=g((m)

=

—g(m,a,0)

(1)
Sb+a:g(m) - _'(p@9a90)

) Yw(sw—+a=g(m) - —¢p(m,a,0))
@(m,g(m),0)  VzVw(sw+z=g(m)—> —p(m,z,0))

g(m),0) AVzVw(sw+z=g(m) - —p(m, z,0))

o(m

T,

a=g(m)
(p@,a, 0) A Vz‘v’w(sw +z=a— —-(p(@,z, 0))

@(n.a.0) AVzVw(sw+z=a — =@(n.z.0))
VzVw(sw+z=a — =i, z,0))
o _ Vw(sw+gin) =a — —p(in, g(in),0)) ”’m
= sbtgim =a sbtgi)=a — —e@n, g(1).0)  (i.a,0) AVzVw(swtz=a —> —gin,z.0) &
©(m, g(m).0) —o(m, gn), 0) oG, a.0) —¢(m.a.0)
T
a=g(m)

a  LI10

O
Theorem 1 (Representability of recursive functions in Q)
Sfunction f(x1,

For every recursive
. Xp)—call it f(x) for short—there is a formula ¢(x,y) in £
such that for all ky, .. ., ky the following two inferences hold modulo Q:
N —
M, and its converse M
a= f(k)

so(E,a) ’

where the parameter a is chosen so as to occur only in the two positions displayed.

49
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Proof  The result follows by induction on the pedigree of recursive functions. The
basis cases concerning the basic functions are covered by Lemmas 13, 14, and 15,
and the operations for forming new recursive functions from old ones—namely com-
position and minimization of regular functions—are covered by Lemmas 17 and
18. O

11 Representing Theories

11.1 Some general results about effective methods In this section, we shall continue
to deploy the informal or preformal notions of effective procedure and of computable
or effectively calculable function. We are not (yet) availing ourselves of the formally
precise notion of a recursive function.

Observation 10 For any consistent set A, we can employ the inference rule

AFL
I

Note that the upper occurrence of L is the absurdity sign in the object-language,
that is, the first-order language &£ of arithmetic, while the lower occurrence of L is
the absurdity sign of the metalanguage, in which we are reasoning about the object-
language. So the inference rule in question is a metalinguistic one.

Definition 27 Suppose P is a (monadic) property of natural numbers. Then the
characteristic function of P, called cp, is defined by the following inference rules:
P(n) —P(n)
cp(n) =1’ cp(n)=0"
Definition 28 Suppose that p is an effective function defined on all (metalinguis-
tic) sentences of the form P(n) (where n is a natural number), and that the range of
i is {0, 1}. Then:
W is an effective method for deciding, of any given natural number n, whether

P(n)
if and only if
for every n, the following inferences hold:
P(n) —P(n)
w(Pn) =1 pw(P(n) =0

Definition 29 A property P of natural numbers is decidable if and only if there
is an effective method for deciding, of any given natural number n, whether P (n).

Definition 30  Suppose f is a function with domain D and range {0, 1}. Then f
is the function with domain D and range {0, 1} defined by the following inference
rules (for each d € D):

fd) =1 fd)=0
fd)y=0 fd)y=1
Lemma 19 If P is a decidable property of natural numbers, then so is —P.

Proof Let p be an effective method for deciding, of any given natural number 7,
whether P(n). Then f is an effective method for deciding, of any given natural
number #n, whether =P (n). O
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Definition 31 A is representing if and only if A is consistent and for every decid-
able property P of natural numbers there is some unary formula ¥ (x) such that for
every natural number 7, the following inferences hold:

%:;)@, and its converse %

Definition 32 A is strongly representing if and only if for every decidable prop-
erty P of natural numbers there is some unary formula ¥ (x) such that for all natural
numbers 7, the following inferences hold:

P(n) —-P(n)
AFy@)’ Ay kL’

Observation 11 Suppose A is strongly representing and A C A'. Then A is
strongly representing.

Lemma 20 Suppose A is consistent. Suppose A is strongly representing. Then A
is representing.

Proof  Since A is strongly representing, we already have the inference

P(n)
At y(n)

The following proof establishes the converse inference, using only logical rules of
inference and rules of inference justified by the main suppositions:

1)

—P(n)
AEyY@n) Ay@) L

AF L

L

P(n)

cur for L

Note that the final step, which is formally one of classical reductio ad absurdum
(in the metalanguage), is constructively acceptable, since the sentence P(n) is, by
hypothesis, decidable. Note also that ‘cut for L’ is an admissible rule for core
logic. O

Definition 33 A is axiomatizable if and only if there is an effective enumeration
of all and only the sentences that follow from A.

Definition 34 A is decidable if and only if there is an effective method for decid-
ing, of any sentence ¢ in the language of arithmetic, whether A F ¢.

Theorem 2 Every decidable theory is axiomatizable.

Proof  Suppose O is a decidable theory. One can effectively enumerate its theo-
rems by listing them as follows. First, effectively enumerate all sentences ¢, ¢1, . . .
of the language. Then generate the sought (sub)list consisting of exactly the theorems
of ® as follows. Take each sentence ¢; in turn. Effectively decide whether ¢; is in ©.
If so, append ¢; to the list of theorems, and advance to ¢;+1; if not, simply advance
to @i41. O
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Theorem 3 (Janiczak) Suppose A is consistent. Suppose A is complete. Suppose
A is axiomatizable. Then A is decidable.

(This result was first proved in Janiczak [4].)

Proof = We seek to reveal an effective method for answering the question ‘Does ¢
follow from A?’ concerning any given sentence ¢ of the language of arithmetic.
The axiomatizability of A guarantees that the sentences that follow from A can
be effectively enumerated as ¢g, ¢1, ... . Given any sentence ¢ in the language of
arithmetic, the completeness of A guarantees that either ¢ occurs as some ¢,, or —¢
does. If ¢ so occurs, then we are done: we answer ‘yes’ to the question ‘Does ¢
follow from A? But if —¢ so occurs, then the consistency of A guarantees that
¢ does not so occur. So once again we are done: we answer 'no.” Thus we can
effectively determine, of any given ¢, whether ¢ follows from A. O

Theorem 4 No set A is both representing and decidable.

Proof  Suppose A is representing and decidable. Let v, ¥1,... be an effective
enumeration of all unary formulae. (There is such an enumeration.) Consider the
following property of natural numbers 7:

A ¥ Yn(n).
This property is decidable. For, given any natural number n, we can decide whether
A ¥ ¥, (n) as follows.

Effectively find the unary formula . Effectively substitute the numeral n for
every free occurrence of the free variable in ¥,,. The result is ¥, (n). Since A is
decidable, there is an effective method (say ) for deciding, of any given natural
number m, whether A + ¥, (m). It follows that i is an effective method for
deciding, of any given natural number m, whether A ¥ v, (m). Now apply i
to decide whether A ¥ vy, (n).
Since A is representing, there is, for this effectively decidable property A ¥ ¥, (n)
of natural numbers, some unary formula ¥ such that for every natural number n we
can employ the rules of inference

A Y () . Ay
————— and its converse —————.
A+ y(n) A Y Ya(n)
But the unary formula i occurs in the effective enumeration of all unary formulae

as Y, for some k. Thus the rules of inference that we may employ, for any natural
number 7, become (for this fixed choice of k, and for any n)

AV yn o AFv@
A Yi(n) A Y Yn(n)
Now take as an instance of #n the number k. Then we may employ the rules
AV el o APl
A+ (k) A ¥ Y (k)
But these rules establish the equivalence of the statement A + v (k) with its own

negation. Contradiction. O

Theorem 5 No set A is consistent, complete, strongly representing, and axioma-
tizable.
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A consistent , A strongly representing A consistent , A complete , A axiomatizable

* (Lemma 20) * (Theorem 3)
Proof A representing , A decidable

(Theorem 4)
il
L]

11.2 Proving the first incompleteness theorem by appealing to Church’s thesis but
without constructing a ‘Godel-sentence’

Theorem 6 Q is strongly representing.

Proof  Suppose P is a decidable property of natural numbers. Then its character-
istic function cp is computable. By Church’s thesis, c p is recursive. (This is the first
time we have appealed to Church’s thesis.) By Theorem 1, there is a formula ¢(x, y)
such that for all n the following two inferences hold modulo Q, with a parametric:

p(n,a) a=cp(n)
a=cp(n)’ (D on,a)

We now show that the formula ¢(x, 1) strongly represents P, by establishing the two
inferences

@

. P(n)
D QD
and P
.. —r\n
) Qen, 1) L°

Ad (i): Suppose P(n). Then c¢p(n) = 1. Substituting 1 for cp (n) in (II) above, we
have that the following inference holds modulo Q, with a parametric:
a=1
pn,a)’
Putting now 1 in place of the parameter a, we obtain, modulo Q, the inference
1=1

pn.1)°
But the premise is a logical theorem. Thus Q F ¢(n, 1).

Ad (ii): Suppose —P(n). Then cp(n) = 0. Substituting O for cp (n) in (I) above, we
have that the following inference holds modulo Q, with a parametric:

¢(n.a)
a=0"
Putting now 1 in place of the parameter a, we obtain, modulo Q,
(AUY]
1=0"
ButQ,1 =0F L. Hence Q,¢(n,1) F L. O

Corollary 1 Th(N) is strongly representing.
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Proof By Theorem 6, Q is strongly representing. Recall Observation 4:
Q CTh(N). By Observation 11, Th(N) is strongly representing. O

Theorem 7 Th(N) is not axiomatizable.

Proof By definition, Th(N) is consistent and complete. By Corollary 1, Th(N) is
strongly representing. Hence, by Theorem 5, Th(N) is not axiomatizable. O

11.3 Proving the first incompleteness theorem by appealing to Church’s thesis to
construct a ‘Godel-sentence’ by diagonalizing We shall suppose that we are given a
mapping

P9
of sentences to closed terms of &£.

Definition 35 Let 6 be a unary formula. We shall say that A is self-representing
via 0 just in case

for every sentence ¢, 0(p)€EA < peA.
Equivalently, we can use the following two (metalinguistic) rules of inference:

AFg AF0(p)
A 6(p)’ Al

We shall suppose also that we are given a mapping
vy
of formulae with one free variable to closed terms of &£.

Definition 36  Given a binary formula §(x, y), we shall say that § is a diagonal
for A if and only if for every unary formula ¥ we have

8. a) 4 a=y @),
with a parametric. This means that there are (core) proofs Hj’// and Efp in the object-
language as follows:

A S(Y.a)  ALa=y(y)

— ———
Hf/, pr
a=y () 8(y.a)

Thus a diagonal represents a mapping that assigns to each unary formula  the sen-
tence v (), which results from substituting the term 1 for the free variable in . In
applications below, ¢ will be i, and ¥ will likewise be .

Observation 12 A diagonal for any theory is a diagonal for any of its extensions.

Lemma 21 Suppose
A is self-representing via 6(x),
A has a diagonal §(x, y).

Set
e(y) =g Vx(8(y.x) = —6(x))
and
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y =4 €.
Then
Ay, 0(y) L
and
A,=0(y) Fy.

Proof  There are the following proofs in the object-language. In the first one, the
parameter a is replaced by the term .

By defn. of y:
Ay = E(E) v, i.e
Ce— — _
287 Vx(8(g,x) = —6(x))
8(2,7) 8(e.y) = —0(¥)
—=0(y) 0(v)
1L
—(2)
A, S a)
N———
H? By defn. of y:
a=e@® T=:@ _
a=y f(a)
—0(y) 0(y)
L (1
—0(a)

—2
8(z,a) — —0(a)

Vx(8(, x) — =0(x))

ie.,y

These two proofs respectively justify the following two deducibility claims:
Ay o)L 5 A =0@)Fy. 0

Theorem 8
The following set of conditions on A are jointly inconsistent:

A is a theory,

A is consistent,

A is complete,

A is self-representing (via 0(x), say),
A has a diagonal (§(x,y), say).

Proof Let y be constructed from 6 and § as before. The hypotheses of Lemma 21
are satisfied. So we are entitled to the deducibility claims below.

Ay AFy Ay, 0(y) L

AFO®) AOy)F L
AFL
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A,—0(p) -y Ay L
A, =0(p) - L R
AF 0(p)
Ay AyEL
AFL
Note the appeal to classical reductio in the object-language in the second proof. The
second proof, however, is still a core proof at the metalevel.

These two metalinguistic core proofs show that no matter whether a self-
representing theory A with a diagonal proves or refutes y, A is inconsistent. So,
contraposing (within core metalogic): if a self-representing theory A with a diagonal
is consistent, then A neither proves nor refutes ‘its’ y; whence A is incomplete. [

The question to confront now is this: What consistent theories might be self-
representing and be possessed of a diagonal? Consistency can be ensured by
considering only subtheories of Th(N). But what about being self-representing and
having a diagonal?

This is where the indicated appeal to Church’s thesis (in the heading of this sec-
tion) comes in. We proceed now to show that Q has a diagonal, and for any A such
that Q € A C Th(N), if A is axiomatizable (i.e., effectively enumerable), then A is
self-representing.

The choice of Q as A (at the bottom end of the just-mentioned inclusion range)
merely coheres with what one already knows about the weakness of Q: its incom-
pleteness is obvious from any of the aforementioned examples of sentences that are
self-evidently true in N but false in certain pathological models of Q.

Let us now put Church’s thesis to work, hand-in-hand with the representability
theorem (i.e., Theorem 8). We already know by Theorem 6 that Q is strongly repre-
senting, and we have already used Church’s thesis in proving that result. The proofs
of our next two theorems likewise appeal to Church’s thesis.

Theorem 9 Q has a diagonal.

Proof  Suppose {f is a numerical coding of formulae with one free variable and fj is
a numerical coding of sentences. Codings and their inverses are effective functions.
Therefore the mapping

n e 41 ) )
is itself effective. By Church’s thesis it is recursive. Hence by the representability
theorem there is a formula §(x, y) such that for all n

8(n,a) % a = (1~ () ().

If 6 is a formula with one free variable, let

0

2.
and if 0 is a sentence, let _
0 =1go.
Then for every unary formula ¥, we have
8@y, @) % a = 11 @V V).
that is,
§(¥,a) 1a=y@). =
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By Observation 12, the diagonal for Q serves as a diagonal for any extension of Q.

Theorem 10  Any axiomatizable subtheory of Th(N) containing Q is self-
representing.

Proof  Suppose A is an axiomatizable subtheory of Th(N) containing Q. Let A be
given by the effective enumeration

00,61, ...

of all its theorems, and let

%0, P15 - - -
be an effective enumeration of all sentences. Consider the decidable relation R of
natural numbers defined by

Pm = On,
that is, the mth sentence of the language is the nth theorem of A. By Church’s thesis,
the characteristic function cg is recursive. By the representability theorem, there is
a ternary formula ¥ (x, y, z) such that for all m, n we have

V(m,n,a) 1% a = cg(m,n).
Hence ¢, = 0, if and only if QO F y(m, n, 1). We now show that
om € Aif and only if Axy(m, x, 1) € A.

(i) Suppose ¢, € A. Then for some n, we have ¢,, = 6,; whence cr(m,n) = 1.
Thus Q - ¢ (m, n, 1). By 31, we have
QF Ixy(m, x, 1),

and so Axy(m, x, 1) € A.
(ii) Conversely, suppose Ixv(m, x,1) € A. Since A € Th(N), it follows that
N E Ixy(m, x, 1). So for some n, N = ¢ (m, n, 1). Now if cr(m,n) = 0,
then Q = =y (m, n, 1); whence N = = (m, n, 1). Thus cr(m,n) = 1 (that
is, om = 6y). Thus ¢, € A.
Since m = ¢,,, we have for all ¢

¢ € Aif and only if Ix Y (p, x,1) € A.
So A is self-representing via the predicate Ix v (y, x, 1). O

11.4 Proving the first incompleteness theorem without appealing to Church’s thesis
and by directly constructing a ‘Godel-sentence’ This is what Godel did.

Notes

1. Please note that some notation in this article appears in color online at https://10.1215/
00294527-2022-0033.

2. This extraction theorem was first proved in Tennant [14]. A similar extraction theorem
holds for classical core logic C, with ‘intuitionistic proof” replaced by ‘classical proof’,
and ‘core proof” replaced by ‘classical core proof’. For proofs of all the other meta-
theorems about the core systems stated in this study, see Tennant [20].

3. This was first proved in Tennant [19].


https://10.1215/00294527-2022-0033
https://10.1215/00294527-2022-0033
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4.

5.

10.

(1]
(2]

(3]

5]

(6]

(7]

Neil Tennant

See Friedman [3]. A useful exposition of this conservative extension result, using Fried-
man’s A-translation, can be found in Selinger [10].

If one were using a free logic, then the rule of induction would be framed as follows:

kS () I — ]
®(@) . 3la where the parameter @ occurs
— s i
only where indicated
d(0) D(sa) ©
d(1) and ¢ may be any closed term.

Note that the symbol ‘<’ in some of these examples is not primitive, but defined. See
Definition 10. Foreshadowing: x < y is defined as short for 3z sz+x =y. We have to
be very careful to stick to this definition when reasoning within Q, precisely because Q’s
parlous stock of theorems makes the usual cavalier mathematical manipulations (such as
thinking it will not matter if we write 3z x +sz = y instead) out of order.

. This is the approach of Boolos and Jeftrey [1]. However, our derivations will have certain

advantages over theirs.

. Note that one would not wish to have the comment ‘n is not the code number of any

syntactic item in X’ itself be a syntactic item in X ! This is a seldom-considered compli-
cation speaking in favor of avoiding any self-referential language, even in the very weak
sense of having a sentence about syntactic items itself count as a syntactic item. This
weak sense does not even amount to the usual kind of semantic closure that gives rise to
paradoxes such as the Liar.

For the various subtleties involved, see Tennant [15], especially Chapters 6 and 8.

One could appeal here to Lemma 4 to the same effect.
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