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1 The Challenge

In late August and early September 2015 there was a lively discussion,
on the moderated email list fom@cs.nyu.edu, of Core Logic and the ques-
tion whether the rule Ex Falso Quodlibet—conspicuously eschewed by Core
Logic—is indispensable for formalizing mathematical proofs.1 Harvey Fried-
man issued as a challenge to the core logician the formalization of the ‘usual
proofs’ of two well-known results in number theory.2 He asked, in particular,

What would a detailed analysis of Tennantism look like for, say,
the usual proofs of

n2 = 2m2 has no solution in nonzero integers . . .

It seemed clear, reading between the lines, that Friedman was of the opin-
ion that this could not be done. Here we address this particular challenge
problem—showing rigorously, in Core Logic, and from the Peano Axioms
for arithmetic, that no square of a natural number is twice any such square
(hence that the square root of 2 is irrational).

This, according to legend, is the discovery, made by some student or
associate of Pythagoras, that shook the Pythagorean dogma that the world
is made up out of whole numbers. One story has it that the proof led to
its discover’s expulsion from the cult; another, that it led to his execution
by the same. I trust, then, that merely formalizing the proof will not be
considered any essential advance; for the metaphysical cat is already out of
the mathematical bag.

The extension of this result to the nonzero integers is of course straight-
forward, once one makes the move to the integers. The result is made all
the more difficult to obtain, however, by initially restricting oneself to the
Peano Axioms, and not helping oneself axiomatically to the usual algebraic
laws (commutativity and associativity of addition and multiplication, for
example, as well as distributivity of multiplication over addition) that are
usually laid down as axioms for the ring (or integral domain) of the integers.
In Peano Arithmetic, such properties of addition and multiplication have to
be derived as theorems. This study ventures to present an absolutely formal,
fully detailed proof, using only Core Logic, of the statement

∀x¬∃y(y 6=0 ∧ x.x=2.(y.y))

1Everything that the reader might need to know about Core Logic can be found in the
three publications Tennant [2012], Tennant [2015a] and Tennant [2015b].

2See http://www.cs.nyu.edu/pipermail/fom/2015-September/019105.html.

2



from Peano’s axioms for the natural numbers. Or, rather: it presents a
replete set of chunks of core proof, that collectively make up a single formal
proof of the target result. (See Theorem 1.) This is simply because I am
working within the confines of the A4 page. So I have had to break the
deductive reasoning down into manageable chunks for the reader. In order
to pull this off, there has been the occasional lapse into landscape mode.

The resounding theoretical answer to the aforementioned challenge prob-
lem of Friedman is that Ex Falso Quodlibet is not needed for formalizing
mathematical proofs. That much is established by metatheorems. All that
this study contributes is a single, sustained and important example of how
this can be so. I do not usually take single-case inductions to be dispositive
in foundational matters. But, in light of the metatheorems in the cited pub-
lications on Core Logic, a core-logical formalization of the proof that

√
2 is

irrational struck me as invitingly apt, illustrative, timely and worthwhile.
It may be (for all I know) that this is the first time in the history of

humankind that such a proof has ever been presented. For, in any mathe-
matics textbook that proves this result ‘rigorously’ (yet, strictly speaking,
informally) the proof takes a scant half-page or so. Ironically, one is more
morally certain of the truth of the result on the basis of the informal proof
than one can be (unaided by any automated proof-checker) on the basis of
the fully formalized proof. This is because the fully formalized proof is very
long, and it is psychically draining to check it for correctness. But such
epistemic ironies are beside the point here. It is enough to appreciate that
fulfilling the hand-waving promise by the formal logician that mathematical
proofs can be fully formalized is no easy task. What follows should go some
way to convince the reader that this is so (both that it is possible and that
it is, nevertheless, no easy task). I am naturally relying on the orthodox
logician—especially Friedman—who is keen to fault the core logician, to
check the core proof offered here for formal correctness down to the very
last detail. This is no exercise in falsche Spitzfindigkeit. For it is undertaken
to meet Friedman’s challenge head-on, to show him (and anyone else who
may be interested) that Core Logic has what it takes to formalize informal
expert mathematical reasoning directly, naturally, and homologously.

2 Peano’s axioms for the natural numbers

The theory of natural numbers is expressed in the first-order language with
identity based on the name 0 (zero), the one-place function sign s (successor),
and the two-place function signs + (plus) and . (times). For definiteness,
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we take the theory to be axiomatized by the now famous axioms

∀x ¬ 0=sx
∀x∀y(sx=sy → x=y)
∀x x+0=x
∀x∀y x+sy=s(x+y)
∀x x.0=0
∀x∀y x.sy=(x.y)+x

plus all (countably) infinitely many instances of the following axiom schema
of Mathematical Induction:

(P0 ∧ ∀x(Px→ Psx))→ ∀yPy

Whatever formula Px is used in order to obtain a substitution instance of
this axiom schema is called the induced predicate for the instance in question.

Note that this choice of axioms means that certain number-theoretic
statements that the average mathematician would take as so obvious as not
to stand in need of proof will actually have to be proved—indeed, in some
cases, at quite considerable length. But that is just part of the bracing
challenge to be faced anyway.

3 Definitions of non-primitive notions

Definition 1. 1 =df s0

Definition 2. 2 =df ss0

Definition 3. m is less than n (in symbols: m<n)
≡df ∃km+sk=n

Definition 4. m is less than or equal to n (in symbols: m≤n)
≡df m<n ∨m=n

Definition 5.
k divides n with remainder r (in symbols: k|n; r)
≡df r < k ∧ ∃m n=(k.m+ r)

Definition 6.
k divides n with no remainder (in symbols: k|n; 0, abbreviated further to
k|n)
≡df ∃m n=km
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Definition 7.
n is even (in symbols: En) ≡df 2|n. Equivalently, ss0|n. Equivalently,
∃m n=ss0.m

Definition 8.
n is odd (in symbols: On) ≡df 2|n; 1 Equivalently, ss0|n; s0. Equivalently,
in light of Lemma 1: ∃m n=ss0.m+s0

In presenting our formal proofs below, we shall frequently resort to the
serial forms of certain elimination rules. We do so in order to prevent side-
ways spread; and also because the serial forms are likely to be more familiar
to the reader than the parallelized forms. The occasional exception, when
parallelized forms are used, will be included in order to familiarize the reader
with how these forms of the rules are applied. We shall be at pains, however,
to ensure that all the formal proofs we provide are in normal form. Also,
they do not use Ex Falso Quodlibet. And sometimes they use the ‘liberal-
ized’ rules of →I and ∨E of Core Logic. What these investigations reveal is
just how naturally the resources of Core Logic directly formalize the expert
informal reasoning employed in the proof that

√
2 is not a ratio of whole

numbers.

4 On Formalizing Uses of the Principle of Mathe-
matical Induction

We coin the description ‘incremental induction’ for the kind of Mathematical
Induction whose axiom schema was stated above. Its being incremental is
a matter of showing that the property in question is transmitted under the
successor operation. In proofs by induction, this corresponds to the familiar
inductive step that appeals to the inductive hypothesis Pa to derive the
conclusion Psa (for a suitably chosen individual parameter a).

Suppose that, when proceeding informally, one proves a lemma ∀yPy by
using an instance of (incremental) Mathematical Induction. That is, one
proves the ‘basis step’ P0; then one effects the ‘inductive step’ from the
inductive hypothesis Pa to the conclusion Psa; and finally one invokes the
instance

(P0 ∧ ∀x(Px→ Psx))→ ∀yPy

of Mathematical Induction to conclude

∀yPy
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The formalization of this stretch of reasoning would have the following over-
all form:

(P0 ∧ ∀x(Px→ Psx))→ ∀yPy

∆
Π
P0

(1)

Γ, Pa︸ ︷︷ ︸
Ξ
Psa (1)

Pa→ Psa
∀x(Px→ Psx)

P0 ∧ ∀x(Px→ Psx)
(2)

∀yPy
(2)

∀yPy

with the lemma ∀yPy as the overall conclusion. Here Π is the proof of the
‘basis step’ P0 for the proof by induction; and Ξ is the proof of the ‘inductive
step’, using the inductive hypothesis Pa to deduce the conclusion Psa.

Two clarifying remarks are in order here.

Remark 1: One does not have to make use of the inductive hypothesis Pa;
such use is permissible, not obligatory. The application of the rule of →I at
the step marked (1) ensures that the assumption Pa, if used, is discharged.
But, to stress once again: it may turn out that there is no assumption of
the form Pa to be discharged! The step of →I would still be in good order;
the overall proof by induction would simply look like this:

(P0 ∧ ∀x(Px→ Psx))→ ∀yPy

∆
Π
P0

Γ
Ξ
Psa

Pa→ Psa
∀x(Px→ Psx)

P0 ∧ ∀x(Px→ Psx)
(2)

∀yPy
(2)

∀yPy

Note, however, that if one is equipped with the subproofs

∆
Π
P0

and
Γ
Ξ
Psa

as indicated, then the conclusion ∀yPy could be obtained as follows, using
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the premise ∀x(x=0 ∨ ∃y x=sy):

∀x(x=0 ∨ ∃y x=sy)

c=0 ∨ ∃y c=sy

∆
Π
P0

(1)

c=0

Pc

(1)

∃y c=sy

Γ
Ξ
Psa

(2)

c=sa

Pc
(2)

Pc
(1)

Pc
∀yPy

This extra premise is Lemma 8 below. It is the special axiom that, in Robin-
son’s finitely axiomatized theory of arithmetic, replaces the Axiom Schema
of Mathematical Induction. As we shall presently see, there is a proof of
∀x(x= 0 ∨ ∃y x= sy) in Peano Arithmetic, using an instance of the Axiom
Schema of Mathematical Induction, that eschews any use of the inductive
hypothesis.

Remark 2, complementary to Remark 1: One does not have to produce
Psa as the conclusion of the inductive step! It would suffice to simply reduce
the inductive hypothesis Pa to absurdity. The step of →I would still be in
good order; the overall proof by induction would then look like this:

(P0 ∧ ∀x(Px→ Psx))→ ∀yPy

∆
Π
P0

(1)

Γ, Pa︸ ︷︷ ︸
Ξ
⊥ (1)

Pa→ Psa
∀x(Px→ Psx)

P0 ∧ ∀x(Px→ Psx)
(2)

∀yPy
(2)

∀yPy

Note that the final step, marked (2), is an application of the parallelized rule
of →E, with a degenerate major subproof (which proves ∀yPy from ∀yPy).
The major premise of that application of →E is the chosen instance of the
axiom schema of Mathematical Induction. The minor subproof for the step
of →E in question is the subproof ‘in the middle’, of P0 ∧ ∀x(Px → Psx).
The two subproofs Π, Ξ can of course use, in addition, any of the Peano
axioms, along with other suppositions. These respectively form the two
sets ∆, Γ indicated in blue. When ∆, Γ contain only axioms, then (what
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the mathematicians call the lemma) ∀yPy is (what logicians would call) a
theorem of Peano arithmetic. Otherwise, ∀yPy is a result following, within
the theory of arithmetic, conditionally upon the extra suppositions in ∆, Γ
that are not axioms.

Suppose now that one subsequently appeals to the mathematicians’ lemma
∀yPy as a premise in some further proof (call it Σ) of a conclusion θ on
which the mathematicians are willing to bestow the honorific label ‘theo-
rem’ (of Peano arithmetic). Then in the formalization of this overall stretch
of reasoning there is no call for a so-called ‘cut’ with the lemma in question
(∀yPy) as the cut sentence. This is because the overall formal proof of
the mathematical theorem θ in such circumstances will be able to take the
following shape:

(P0 ∧ ∀x(Px→ Psx))→ ∀yPy

∆
Π
P0

(1)

Γ, Pa︸ ︷︷ ︸
Ξ
Psa (1)

Pa→ Psa
∀x(Px→ Psx)

P0 ∧ ∀x(Px→ Psx)

(i)

Ω, ∀yPy︸ ︷︷ ︸
Σ
θ
(i)

θ

Here Π and Ξ are as before; but now the major subproof for the final step
of →E is one’s proof Σ of θ, which uses the lemma ∀yPy as a premise. So
the final step is still an application of the parallelized rule of →E, but now
with a non-degenerate major subproof, namely Σ. The major premise of the
final step is still the chosen instance of the axiom schema of Mathematical
Induction. The three subproofs Π, Ξ and Σ can of course use, in addition,
any of the Peano axioms, along with other suppositions. These respectively
form the three sets ∆, Γ and Ω indicated in blue. When ∆, Γ and Ω contain
only axioms, then θ is a theorem of Peano arithmetic. Otherwise, θ is a
result following, within the theory of arithmetic, conditionally upon the
extra suppositions in ∆, Γ and Ω that are not axioms.

In an effort to prevent sideways spread it would be quite in order to
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suppress the major premise for →E on the left:

∆
Π
P0

(1)

Γ, Pa︸ ︷︷ ︸
Ξ
Psa (1)

Pa→ Psa
∀x(Px→ Psx)

P0 ∧ ∀x(Px→ Psx)

(i)

Ω, ∀yPy︸ ︷︷ ︸
Σ
θ

(i)

θ

For it can be efectively determined what the induced predicate is, for such
an application of induction.

The Principle of Mathematical Induction can be parallelized even fur-
ther, as follows:

(P0 ∧ ∀x(Px→ Psx))→ ∀yPy

∆
Π
P0

(1)

Γ, Pa︸ ︷︷ ︸
Ξ
Psa (1)

Pa→ Psa
∀x(Px→ Psx)

P0 ∧ ∀x(Px→ Psx)

Ω ,
(i)

Pt1 , . . . ,
(i)

Ptn︸ ︷︷ ︸
Σ
θ

(i)

θ

since there will only over be finitely many appeals to the lemma ∀yPy that
has been established by induction. These appeals will involve singular terms
t1, . . . , tn (which may be, or contain, parameters). Indeed, the parallelized
rule just stated can be ‘inferentialized’ even further, and its major premise
suppressed, so as to become the Rule of Mathematical Induction

rmi
∆
Π
P0

(i)

Γ, Pa︸ ︷︷ ︸
Ξ

⊥/Psa

Ω ,
(i)

Pt1 , . . . ,
(i)

Ptn︸ ︷︷ ︸
Σ
θ

(i)

θ

Note how we have designated the conclusion of the proof Ξ of the inductive
step as ‘⊥/Psa’. This is pursuant to Remarks 1 and 2 above. In the fore-
going statement of the rule rmi, it is to be understood that the proof Ξ of
the inductive step satisfies exactly one of the following conditions:

9



1. Ξ has Pa as an undischarged assumption, and has ⊥ as its conclusion;

2. Ξ has Pa as an undischarged assumption, and has Psa as its conclu-
sion;

3. Ξ does not have Pa as an undischarged assumption, and has Psa as
its conclusion.

In each of the first two cases, the application of rmi discharges all assumption-
occurrences of Pa in Ξ. In the third case, such discharge is not called for,
since Pa is not used as an assumption.

Note that with applications of rmi each of Π, Ξ and Σ is a proof. This
should go without saying, since rules of inference enable one to form proofs,
but only from (simpler) proofs. There is a special need here, however, to
stress that the major subproof Σ has to be well formed. In particular, if any
of the terms t1, . . . , tn is (or contains) a parameter a, then a cannot occur in
such a way as to violate any of the parametric restrictions on applications,
within Σ, of the two rules ∃E and ∀I, applications of which might well have
to involve a as a parameter. This places a limitation on the extent to which
one might be able to defer applications of rmi to points ‘lower down’ within
a proof. They may instead have to be applied ‘higher up’, so as to discharge
those assumptions Pti that contain parameters that would otherwise, if
allowed to occur in those same assumptions undischarged, render illegitimate
an application, within Σ, of either ∃E or ∀I.

As a special case (for n=1) we have

∆
Π
P0

(i)

Γ, Pa︸ ︷︷ ︸
Ξ

⊥/Psa
(i)

Pt
(i)

Pt

And as a further special case of that we have, with parameter b as one’s
choice for the term t, the proof-schema

∆
Π
P0

(i)

Γ, Pa︸ ︷︷ ︸
Ξ

⊥/Psa
(i)

Pb
(i)

Pb
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With b chosen so as to meet the requirements for ∀I, we can then obtain the
usual conclusion ∀yPy of the proof by mathematical induction:

∆
Π
P0

(i)

Γ, Pa︸ ︷︷ ︸
Ξ

⊥/Psa
(i)

Pb
(i)

Pb
∀yPy

If in fact one did this, and subsequently appealed to ∀yPy as a major premise
for ∀E in a proof of θ:

∀yPy

Ω ,
(1)

Pt1 , . . . ,
(1)

Ptn︸ ︷︷ ︸
Σ
θ

(1)

θ

one would have a prime-facie violation of the requirement of normality for
one’s overall proof of θ from ∆,Γ,Ω. But such an appearance of abnormality
is just that: a mere appearance. For one can always take for the genuinely
underlying proof the reduct

∆
Π
P0

(i)

Γ, Pa︸ ︷︷ ︸
Ξ

⊥/Psa
(i)

Pb
(i)

Pb
∀yPy

,

∀yPy

Ω ,
(1)

Pt1 , . . . ,
(1)

Ptn︸ ︷︷ ︸
Σ
θ

(1)

θ


which is simply the form rmi (Rule of Mathematical Induction) stated above.
As a convenient reminder:

rmi
∆
Π
P0

(i)

Γ, Pa︸ ︷︷ ︸
Ξ

⊥/Psa

Ω ,
(i)

Pt1 , . . . ,
(i)

Ptn︸ ︷︷ ︸
Σ
θ

(i)

θ
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There is no blowup in length of proof, when taking the reduct in place of the
two proofs between the square brackets. That much is absolutely obvious by
inspection.

5 Results proved without using Mathematical In-
duction

Because we are restricting our primitive means of mathematical expression
to the name 0 (zero), the one-place function sign s (successor), and the
two-place function signs + (plus) and . (times), we have had to define cer-
tain other expressions that mathematicians conveniently take as expressively
primitive. We saw this in §3.

Lemma 1. 1 < 2, i.e., s0 < ss0.

Proof.3

∀x∀y x+sy=s(x+y)

∀y s0+sy=s(s0+y)

s0+s0=s(s0+0)
∀xx+0=x
s0+0=s0

s0+s0=ss0
∃k s0+sk=ss0
i.e., s0 < ss0

Pause for a moment’s reflection . . . We have just taken five primitive
steps of inference to establish the trivial truth that 0 < 1. The alarmed
reaction might be ‘To what dreadful lengths will we have to go in order to
show that no square of a natural is twice any such square’? The answer,
reassuringly, is that the proof of the latter can be broken down into manage-
able chunks, all of them formal proofs in Core Logic, using only the Peano
axioms. The rest of this study shows how.

Lemma 2. 0 is not a successor; in symbols, expressed inferentially:

0=st
⊥

3This proof is due to Ben Cleary.
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Proof.
∀x¬0=sx
¬0=st 0=st

⊥

Trivially, also, we have
st=0
⊥

Lemma 3.
st=su
t = u

Proof.
∀x∀y(sx=sy → x=y)

∀y(st=sy → t=y)

st=su→ t=u st=su
(1)

t=u
(1)

t=u

Note that the last step of this proof is an application of the parallelized rule
→I, with a degenerate major subproof. We shall frequently use the rule of
inference stated in this lemma as a primitive rule, since it saves a great deal
of sideways spread. Likewise with any other inferential rules that we have
established formally, such as those of Lemma 2.

Lemma 4.
λ.λ 6=0

λ 6=0

Proof.

λ.λ 6=0

λ.λ=λ.λ
(1)

λ=0

λ.λ=λ.0
∀xx.0=0
λ.0=0

λ.λ=0

⊥ (1)

λ 6=0

Lemma 5.
λ=n.ρ λ 6=0

ρ 6=0
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Proof.

λ 6=0

λ=n.ρ

n.ρ=n.ρ
(1)

ρ=0

n.ρ=n.0
∀xx.0=0
n.0=0

n.ρ=0

λ=0

⊥ (1)

ρ 6=0

Lemma 6. From the assumption that a is even it follows that sa is odd

Proof.

∃ma=ss0.m

Lemma 1:
s0<ss0

sa = sa
(1)

a = ss0.b

sa = s(ss0.b)
∀xx = x+0

ss0.b = ss0.b+0

sa = s(ss0.b+0)

∀x∀y x+sy = s(x+y)

∀y ss0.b+sy = s(ss0.b+y)

ss0.b+s0 = s(ss0.b+0)

sa=ss0.b+ s0

s0<ss0 ∧ sa=ss0.b+ s0
ss0|sa; s0

(1)

ss0|sa; s0

Note that Lemma 1 is not a cut sentence here of the kind that would, upon
accumulation of proofs, produce an abnormal proof. Rather, the earlier
proof of Lemma 1 could be inserted above its ‘premise occurrence’ in the
last proof just given, and the resulting proof would still be a proof in Core
Logic. We have broken the reasoning down into these last two chunks (proof
of Lemma 1 followed by proof of Lemma 6) solely in order to avoid unman-
ageable sideways spread on an A4 page. This is a theme that will be reprised
quite frequently below, and we shall not take the trouble to remark on it
any further.

Lemma 7. ss0 = ss0.s0
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Proof.

∀x∀y s(x+y)=x+sy

∀y s(0+y)=0+sy

s(0+s0)=0+ss0

∀x∀y s(x+y)=x+sy

∀y s(0+y)=0+sy

s(0+0)=0+s0
∀x x+0=x

0+0=0

s0=0+s0

ss0=0 + ss0

∀x∀y x.sy=x.y+x

∀y ss0.sy=ss0.y+ss0

ss0.s0=ss0.0+ss0
∀x x.0=x
ss0.0=0

ss0.s0=0+ss0

ss0=ss0.s0

6 Results proved using Mathematical Induction

For the formal proofs to follow, if we were to cite the actual instances to
be used of the axiom schema of Mathematical Induction, it would be pro-
hibitively difficult to accommodate sideways spread on the page. We shall
therefore offer proofs in which Mathematical Induction takes the last-stated
form of a rule of inference, namely rmi.

Lemma 8. Every number is either 0 or a successor; in symbols:

∀y(y=0 ∨ ∃x y=sx)

Proof.

0=0
0=0 ∨ ∃x 0=sx

(3)

a=0 ∨ ∃x a=sx

(2)

a=0
sa=s0
∃x sa=sx

(2)

∃x a=sx

(1)

a=sb
sa=ssb
∃x sa=sx

(1)

∃x sa=sx
(2)

∃x sa=sx
sa=0 ∨ ∃x sa=sx

(3)

c=0 ∨ ∃x c=sx
(3)

c=0 ∨ ∃x c=sx
∀y(y=0 ∨ ∃x y=sx)

The final step (of rmi) in this proof appears to involve an inductive step
that actually uses the inductive hypothesis

a=0 ∨ ∃x a=sx
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to derive
sa=0 ∨ ∃x sa=sx.

There is, though, an even shorter proof by induction which does not use the
inductive hypothesis at all:

0=0
0=0 ∨ ∃x 0=sx

sa=sa
∃x sa=sx

sa=0 ∨ ∃x sa=sx
(3)

c=0 ∨ ∃x c=sx
(3)

c=0 ∨ ∃x c=sx
∀y(y=0 ∨ ∃x y=sx)

Having established the ‘Q-axiom’ (Lemma 8), we can re-state it as an
atomicized rule of inference, which we shall label QR (for ‘Q-Rule’):

QR

2 (i)

t = 0
...

ψ/⊥

2 (i)

t = sa
...

ψ/⊥
(i)

ψ/⊥

where a is parametric

We shall now use the rule QR to prove the ‘zero-cancellation’ law.

Lemma 9.
su.t=0
t=0

Proof.

(1)

t=0

su.t=0
(1)

t=sa

su.sa=0

∀x∀y x.sy=x.y+x

∀y su.sy=su.y+su

su.sa=su.a+su

su.a+su=0

∀x∀y x+sy=s(x+y)

∀y su.a+sy=s(su.a+y)

su.a+su=s(su.a+u)

s(su.a+u)=0

⊥
(1) QR

t=0

Lemma 10.
m<sa
m≤a
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Proof. Unpacking the definitions of < and ≤, the rule to be derived amounts
to

∃ym+sy=sa

∃z m+sz=a ∨m=a

and its derivation, using QR, is as follows:

∃ym+sy=sa

(1)

m+sb=sa
(2)

b=0

m+s0=sa

∀x∀y x+sy=s(x+y)

∀ym+sy=s(m+y)

m+s0=s(m+0)

s(m+0)=sa
∀xx+0=x
m+0=m

sm=sa L3
m=a

∃z m+sz=a ∨m=a

(1)

m+sb=sa
(2)

b=sc

m+ssc=sa

∀x∀y x+sy=s(x+y)

∀ym+sy=s(m+y)

m+ssc=s(m+sc)

s(m+sc)=sa
L3

m+sc=a
∃z m+sz=a

∃z m+sz=a ∨m=a
(2) (QR)

∃z m+sz=a ∨m=a
(1)

∃z m+sz=a ∨m=a

Corollary 1.
m≤sa

m≤a ∨m=sa

Proof.

m≤sa
i.e., m<sa ∨m=sa

(1)

m<sa L10

m≤a
m≤a ∨m=sa

(1)

m=sa
m≤a ∨m=sa

(1)

m≤a ∨m=sa

Lemma 11. (b+b)+s0 = b+(b+s0)

Proof. The induced predicate is (x+x)+s0 = x+(x+s0). For the basis we
need to prove

(0+0)+s0 = 0+(0+s0)

The following formal proof does the job:

(0+0)+s0=(0+0)+s0

∀x∀y x+sy=s(x+y)

∀y (0+0)+sy=s((0+0)+y)

(0+0)+s0=s((0+0)+0)

(0+0)+s0=s((0+0)+0)
∀xx+0=x

(0+0)+0=0+0

(0+0)+s0=s(0+0)
∀xx+0=x
0+0=0

(0+0)+s0=s(0+(0+0))

∀x∀y x+sy=s(x+y)

∀y 0+sy=s(0+y)

0+s(0+0)=s(0+(0+0))

(0+0)+s0=0+s(0+0)

∀x∀y x+sy=s(x+y)

∀y 0+sy=s(0+y)

0+s0=s(0+0)

(0+0)+s0 = 0+(0+s0)

17



For the inductive step we do not need to use the inductive hypothesis

(a+a)+s0 = a+(a+s0).

Instead, we prove
(sa+sa)+s0 = sa+(sa+s0)

directly as follows.

∀x∀y x+sy=s(x+y)

∀y s(sa+a)+sy=s(s(sa+a)+y)

s(sa+a)+s0=s(s(sa+a)+0)

∀x∀y x+sy=s(x+y)

∀y sa+sy=s(sa+y)

sa+sa=s(sa+a)

(sa+sa)+s0=s(s(sa+a)+0)
∀xx+0=x

s(sa+a)+0=s(sa+a)

(sa+sa)+s0=ss(sa+a)

∀x∀y x+sy=s(x+y)

∀y sa+sy=s(sa+y)

sa+sa=s(sa+a)

(sa+sa)+s0=s(sa+sa)

∀x∀y x+sy=s(x+y)

∀y sa+sy=s(sa+y)

sa+ssa=s(sa+sa)

(sa+sa)+s0=sa+ssa
∀xx+0=x
sa+0=sa

(sa+sa)+s0=sa+s(sa+0)

∀x∀y x+sy=s(x+y)

∀y sa+sy=s(sa+y)

sa+s0=s(sa+0)

(sa+sa)+s0 = sa+(sa+s0)

Lemma 12. b+s0=s0+b.

Proof. The induced predicate is x+s0 = s0+x. For the basis we need to
prove

0+s0=s0+0

The following formal proof does the job:

∀x∀y x+sy=s(x+y)

∀y 0+sy=s(0+y)

0+s0=s(0+0)
∀xx+0=x

0+0=0

0+s0=s0
∀xx+0=x
s0+0=s0

0+s0=s0+0

For the inductive step we use the inductive hypothesis

a+s0=s0+a.

From it we prove
sa+s0=s0+sa

18



as follows.

∀x∀y x+sy=s(x+y)

∀y sa+sy=s(sa+y)

sa+s0=s(sa+0)
∀xx+0=x
sa+0=sa

sa+s0=ssa
∀xx+0=x
a+0=a

sa+s0=ss(a+0)

∀x∀y x+sy=s(x+y)

∀y a+sy=s(a+y)

a+s0=s(a+0)

sa+s0=s(a+s0)
IH:

a+s0=s0+a

sa+s0=s(s0+a)

∀x∀y x+sy=s(x+y)

∀y s0+sy=s(s0+y)

s0+sa=s(s0+a)

sa+s0=s0+sa

Lemma 13. ∀x 0+x=x

Proof.

∀xx+0=x
0+0=0

∀x∀y x+sy=s(x+y)

∀y 0+sy=s(0+y)

0+sa=s(0+a)
(1)

0+a=a

0+sa=sa
(1)

0+b=b
(1)

0+b=b
∀x 0+x=x

Lemma 14. ∀x 0+x=x+0

Proof.

0+0=0+0

∀x∀y x+sy=s(x+y)

∀y 0+sy=s(0+y)

0+sa=s(0+a)
(1)

0+a=a+0

0+sa=s(a+0)
∀xx+0=x
a+0=a

0+sa=sa
∀xx+0=x
sa+0=sa

0+sa=sa+0
(1)

0+b=b+0
(1)

0+b=b+0
∀x 0+x=x+0

19



Lemma 15. t.s0= t

Proof.
∀x∀y x.sy=x.y+x

∀y t.sy= t.y+t

t.s0= t.0+t
∀xx.0=0
t.0=0

t.s0=0+t
Lemma 13:

0+t= t

t.s0= t

Lemma 16. 0.t=0

Proof.

∀xx.0=0
0.0=0

∀x∀y x.sy=x.y+x

∀y 0.sy=0.y+0

0.sa=0.a+0
∀xx+0=x
0.a+0=0.a

0.sa=0.a 0.a=0

0.sa=0
(1)

0.t=0
(1)

0.t=0

Lemma 17. s0.t= t

Proof.

∀xx.0=0
s0.0=0

∀x∀y x.sy=x.y+x

∀y s0.sy=s0.y+s0

s0.sa=s0.a+s0
(1)

s0.a=a

s0.sa=a+s0

∀x∀y x+sy=s(x+y)

∀y a+sy=s(a+y)

a+s0=s(a+0)

s0.sa=sa
∀xx+0=x
a+0=a

s0.sa=sa
(1)

s0.t= t
(1)

s0.t= t

The following result is called the ‘additive cancellation’ law. We shall in-
novate by casting not only its statement, but also its inductive proof, in
‘rule-inferential’ form.
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Lemma 18.
t+ k = u+ k

t = u

Proof. By induction, with the induced rule

t+n=u+n
t=u

Because we are doing this inductive proof inferentially, the task for the basis
is that of deriving the ‘basis rule’

t+0=u+0
t=u

Moreover, the task for the inductive step is that of using the ‘inductive
hypothesis’ rule

t+a=u+a
t=u

to derive the rule
t+sa=u+sa

t=u

With that much by way of preparation we proceed to the ‘rule-inductive’
proof itself.

The basis proof is as follows:

t+0=u+0
∀xx+0=x
t+0= t

t=u+0
∀xx+0=x
u+0=u

t=u

The proof of the inductive step (using the rule version of the Inductive
Hypothesis) is

∀x∀y x+sy=s(x+y)

∀y t+sy=s(t+y)

t+sa=s(t+a) t+sa=u+sa

s(t+a)=u+sa

∀x∀y x+sy=s(x+y)

∀y u+sy=s(u+y)

u+sa=s(u+a)

s(t+a)=s(u+a)
L3

t+a=u+a IH
t=u
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Lemma 19. ∀x∀y x+sy=sx+y

Proof.

∀x∀y x+sy=s(x+y)

∀y a+sy=s(a+y)

a+s0=s(a+0)
∀xx+0=x
a+0=a

a+s0=sa
∀xx+0=x
sa+0=sa

a+s0=sa+0

∀x∀y x+sy=s(x+y)

∀y a+sy=s(a+y)

a+ssb=s(a+sb)
(1)

a+sb=sa+b

a+ssb=s(sa+b)

∀x∀y x+sy=s(x+y)

∀y sa+sy=s(sa+y)

sa+sb=s(sa+b)

a+ssb=sa+sb
(1)

a+sc=sa+c
(1)

a+sc=sa+c
∀y a+sy=sa+y

∀x∀y x+sy=sx+y

Lemma 20. ∀x∀y x+y=y+x

Proof.

Lemma 14:
a+0=0+a

∀x∀y x+sy=s(x+y)

∀y a+sy=s(a+y)

a+sb=s(a+b)
(1)

a+b=b+a

a+sb=s(b+a)

∀x∀y x+sy=s(x+y)

∀y b+sy=s(b+y)

b+sa=s(b+a)

a+sb=b+sa

Lemma 19:
b+sa=sb+a

a+sb=sb+a
(1)

a+c=c+a
(1)

a+c=c+a
∀y a+y=y+a

∀x∀y x+y=y+x

Corollary 2. t+(u+t) = (t+u)+t

Proof.
Lemma 20:

t+(u+t)=(u+t)+t
Lemma 20:
t+u=u+t

t+(u+t)=(t+u)+t

Lemma 21. t+(u+v) = (t+u)+v
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Proof.

a+b=a+b
∀xx+0=x

(a+b)+0=a+b

(a+b)+0=a+b
∀xx+0=x
b=b+0

(a+b)+0=a+(b+0)

∀x∀y x+sy=s(x+y)

∀y (a+ b)+sy=s((a+ b)+y)

(a+b)+sc=s((a+b)+c)
(1)

(a+b)+c=a+(b+c)

a+(b+sc)=s(a+(b+c))

∀x∀y x+sy=s(x+y)

∀y a+sy=s(a+y)

a+s(b+c)=s(a+(b+c))

(a+b)+sc=a+s(b+c)

∀x∀y x+sy=s(x+y)

∀y b+sy=s(b+y)

b+sc=s(b+c)

(a+b)+sc=a+(b+sc)
(1)

t+(u+v)=(t+u)+v
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Lemma 23. t.u=u.t

Proof. By induction, with the induced predicate a.x== x.a. The basis proof
is as follows:

∀xx.0=0
a.0=0

Lemma 16 :
0.a=0

a.0== 0.a

The proof of the inductive step is

∀x∀y x.sy=x.y+x

∀y a.sy=a.y+a

a.sb=a.b+a

Lemma 22 :
sb.a=b.a+a

IH :
a.b=b.a

sb.a=a.b+a

a.sb== sb.a

Lemma 24. t.(u+v)=(t.u)+(t.v)

Proof. By induction, with the induced predicate a.(b+x) = a.b+a.x. The
basis proof is as follows:

a.b=a.b
∀xx+0=x
b+0=b

a.(b+0)=a.b
∀xx+0=x
a.b+0=a.b

a.(b+0)=a.b+0
∀xx.0=0
a.0=0

a.(b+0)=a.b+a.0

The proof of the inductive step is

a.(b+sc)=a.(b+sc)

∀x∀y x+sy=s(x+y)

∀y b+sy=s(b+y)

b+sc=s(b+c)

a.(b+sc)=a.s(b+c)

∀x∀y x.sy=x.y+x

∀y a.sy=a.y+a

a.s(b+c)=a.(b+c)+a

a.(b+sc)=a.(b+c)+a
IH:

a.(b+c)=a.b+a.c

a.(b+sc)=(a.b+a.c)+a
Lemma 21:

(a.b+a.c)+a=a.b+(a.c+a)

a.(b+sc)=a.b+(a.c+a)

∀x∀y x.sy=x.y+x

∀y a.sy=a.y+a

a.sc=a.c+a

a.(b+sc)=a.b+a.sc

Lemma 25. t.(u.v) = (t.u).v
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Proof. By induction, with the induced predicate (a.b).x = a.(b.x). The basis
proof is as follows:

∀xx.0=0
(a.b).0=0

∀xx.0=0
a.0=0

∀xx.0=0
b.0=0

a.(b.0)=0

(a.b).0=a.(b.0)

The proof of the inductive step is

∀x∀y x.sy=x.y+x

∀y (a.b).sy=(a.b).y+(a.b)

(a.b).sc=(a.b).c+ (a.b)

IH:
(a.b).0=a.(b.0)

(a.b).sc=a.(b.c) + (a.b)
Lemma 24:

a.(b.c+ b)=a.(b.c) + (a.b)

(a.b).sc=a.(b.c+ b)

∀x∀y x.sy=x.y+x

∀y b.sy=b.y+b

b.sc=b.c+ b

(a.b).sc=a.(b.sc)

Lemma 26. ss0.u = u+u

Proof. The induced predicate is ss0.x = x+x. For the basis we need to
prove

ss0.0 = 0+0

The following formal proof does the job:

∀xx.0=0
ss0.0=0

∀xx+0=x
0+0=0

ss0.0 = 0+0

For the inductive step we use the inductive hypothesis

ss0.a = a+a.

From it we prove
ss0.sa = sa+sa

as follows.
∀x∀y x.sy=x.y+x
∀y ss0.sy=ss0.y+ss0
ss0.sa=ss0.a+ss0

IH:
ss0.a=a+a

ss0.sa=(a+a)+ss0

∀x∀y x+sy=s(x+y)
∀y (a+a)+sy=s((a+a)+y)

(a+a)+ss0=s((a+a)+s0)

ss0.sa=s((a+a)+s0)
Lemma 11:

(a+a)+s0=a+(a+s0)

ss0.sa=s(a+(a+s0))
Lemma 12:
a+s0=s0+a

ss0.sa=s(a+(s0+a))
Corollary 2:

a+(s0+a)=(a+s0)+a

ss0.sa=s((a+s0)+a)

∀x∀y x+sy=s(x+y)
∀y (a+s0)+sy=s((a+s0)+y)

(a+s0)+sa=s((a+s0)+a)

ss0.sa=(a+s0)+sa

∀x∀y x+sy=s(x+y)
∀y a+sy=s(a+y)
a+s0=s(a+0)

ss0.sa=s(a+0)+sa

∀x x+0=x
a+0=a

ss0.sa=sa+sa
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Another result we can prove using QR is that only zero has a zero square.

Lemma 27.
t.t=0
t=0

Proof.

(1)

t=0

(1)

t=sa t.t=0

sa.sa=0 L9

sa=0 L2

⊥
(1)

t=0

We can now prove the law of multiplicative cancellation.

Lemma 28.
sk.v=sk.w
v=w

Proof. The proof of this lemma will be given in the rule-inferential fashion
that was exhibited with Lemma 18. In the case at hand the induced rule is

sk.n=sk.w
n=w

Because we are doing this inductive proof inferentially, the task for the basis
is that of deriving the ‘basis rule’

sk.0=sk.w
0=w

Moreover, the task for the inductive step is that of using the ‘inductive
hypothesis’ rule

sk.a=sk.w
a=w

to derive the rule
sk.sa=sk.w
sa=w
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The basis proof is

sk.0=sk.w
∀xx.0=0
sk.0=0

0=sk.w L9

0=w

The proof of the inductive step has the overall form

sk.sa=sk.w ,
(1)

w=0︸ ︷︷ ︸
Π1

⊥

sk.sa=sk.w ,
(1)

w=sb︸ ︷︷ ︸
Π2

sa=w
(1) (QR)

sa=w

The embedded subproof Π1 is

∀x∀y x.sy=x.y+x

∀y sk.sy=sk.y+sk

sk.sa=sk.a+sk sk.sa=sk.w

sk.w=sk.a+sk w=0

sk.0=sk.a+sk

∀x∀y x+sy=s(x+y)

∀y sk.a+sy=s(sk.a+y)

sk.a+sk=s(sk.a+k)

sk.0=s(sk.a+k)
∀xx.0=0
sk.0=0

s(sk.a+k)=0
L2

⊥

and the embedded subroof Π2 is

sa=sa

sk.sa=sk.w w=sb

sk.sa=sk.sb

∀x∀y x.sy=x.y+x

∀y sk.sy=sk.y+sk

sk.sa=sk.a+sk

sk.a+sk=sk.sb

∀x∀y x+sy=s(x+y)

∀y sk.a+sy=s(sk.a+y)

sk.a+sk=s(sk.a+k)

s(sk.a+k)=sk.sb

∀x∀y x.sy=x.y+x

∀y sk.sy=sk.y+sk

sk.sb=sk.b+sk

∀x∀y x+sy=s(x+y)

∀y sk.b+sy=s(sk.b+y)

sk.b+sk=s(sk.b+k)

sk.sb=s(sk.b+k)

s(sk.a+k)=s(sk.b+k)
L3

sk.a+k=sk.b+k L18
sk.a=sk.b IH

a=b

sa=sb w=sb

sa=w
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Lemma 29.
(2.t).(2.t) = 2.(u.u)

u.u = 2.(t.t)

Proof. We allow ourselves the luxury of doing without multiplicative dots,
since multiplication is the only operation in play.

Lemma 25:
(2t)(2t)=2(t(2t))

Lemma 23:
t(2t)=(2t)t

(2t)(2t)=2((2t)t)
Lemma 25:
(2t)t=2(tt)

(2t)(2t)=2(2(tt)) (2t)(2t)=2(uu)

2(uu)=2(2(tt))
L28

uu=2(tt)

A particularly useful consequence of Lemmas 9 and 27 is that twice the
square of a nonzero number is nonzero. We state this as Lemma 30, whose
special form will prove useful in due course.

Lemma 30.
µ 6=0 ∧ λ.λ=2.(µ.µ)

λ.λ 6=0

Proof.

µ 6=0 ∧ λ.λ=2.(µ.µ)

(2)

µ 6=0

(2)

λ.λ=2.(µ.µ)
(1)

λ.λ=0

2.(µ.µ)=0
L9

µ.µ=0
L27

µ=0

⊥
(2)

⊥ (1)

λ.λ 6=0

Lemma 31.
t=ss0.u ¬u=0

u<t

29



Proof.

Lemma 8 :
u=0 ∨ ∃xu=sx

¬u=0
(1)

u=0

⊥
∃xu=sx

t=ss0.u
Lemma 26:
ss0.u=u+u

t=u+u
(2)

u=sa

t=u+sa
∃y t=u+sy

(1)

∃y t=u+sy
(2)

∃y t=u+sy
i.e., t<u

Lemma 32. ∀n s(ss0.n+ s0) = ss0.(n+ s0)

Proof. By induction on n. For the Basis Step n = 0, we reason as follows,
using Lemma 7 as a premise:

ss0=ss0

∀x∀y s(x+y)=x+sy

∀y s(0+y)=0+sy

s(0+0)=0+s0
∀x x+0=x

0+0=0

s0=0+s0
∀x x.0=0
ss0.0=0

s0=ss0.0+s0

ss0=s(ss0.0+s0)

ss0=ss0.s0

∀x∀y s(x+y)=x+sy

∀y s(0+y)=0+sy

s(0+0)=0+s0
∀x x+0=x

0+0=0

s0=0+s0

ss0=ss0.(0+s0)

s(ss0.0+s0)=ss0.(0+s0)

For the Inductive Step we assume the Inductive Hypothesis (IH):

s(ss0.k + s0) = ss0.(k + s0)

and proceed to derive the conclusion

s(ss0.sk + s0) = ss0.(sk + s0)

We do so by means of the following two chunks of proof, intended to be
joined (so as to make a core proof) at the green sentence-occurrences. This
division into two chunks is solely in order to avoid sideways spread.

∀x∀y x+sy=s(x+y)

∀y ss0.(k+s0)+sy=s(ss0.(k+s0)+y)

ss0.(k+s0)+ss0=s(ss0.(k+s0)+s0)

IH:
s(ss0.k+s0)=ss0.(k+s0)

s(ss0.sk+s0)=s(ss0.sk+s0)

∀x∀y x.sy=x.y+x

∀y ss0.sy=ss0.y+ss0

ss0.sk=ss0.k+ss0

s(ss0.sk+s0)=s((ss0.k+ss0)+s0

∀x∀y x+sy=s(x+y)

∀y ss0.k+sy=s(ss0.k+y)

ss0.k+ss0=s(ss0.k+s0

s(ss0.sk+s0)=s(s(ss0.k+s0)+s0)

s(ss0.sk+s0)=s(ss0.(k+s0)+s0)

s(ss0.sk+s0)=ss0.(k+s0)+ss0
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∀x∀y x+sy=s(x+y)

∀y sk+sy=s(sk+y)

sk+s0=s(sk+0)

∀x∀y x+sy=s(x+y)

∀y ss0+sy=s(ss0+y)

ss0.ssk=ss0.ssk+ss0

∀x∀y x+sy=s(x+y)

∀y k+sy=s(k+y)

k+s0=s(k+0) s(ss0.sk+s0)=ss0.(k+s0)+ss0

s(ss0.sk+s0)=ss0.s(k+0)+ss0
∀xx+0=x
k+0=k

s(ss0.sk+s0)=ss0.sk+ss0

s(ss0.sk+s0)=ss0.ssk
∀xx+0=x
sk+0=sk

s(ss0.sk+s0)=ss0.s(sk+0)

s(ss0.sk+s0)=ss0.(sk + s0)

Lemma 33. From the assumption that a is odd it follows that sa is even

Proof.

∃ma = ss0.m+s0

(1)

s=ss0.b+s0
sa=s(ss0.b+s0)

Lemma 32 :
∀n s(ss0.n+s0)=ss0.(n+s0)

s(ss0.b+s0)=ss0.(b+s0)

sa=ss0.(n+s0)

∃k sa = ss0.k
(1)

∃k sa = ss0.k

Lemma 34. Every number is either even or odd—i.e., ∀n(ss0|n∨ss0|n; s0)

Proof. By induction. For the basis step we provide the following proof:

∀xx.0 = 0
0=ss0.0
∃m 0=ss0.m

i.e., ss0|0
ss0|0∨ss0|0; s0

Inductive Hypothesis (IH): ss0|a∨ss0|a; s0
Inductive Step:

IH:
ss0|a∨ss0|a; s0

(1)

ss0|a
L6

ss0|sa; s0

ss0|sa∨ss0|sa; s0

(1)

ss0|a; s0
L33

ss0|sa
ss0|sa∨ss0|sa; s0

(1)

ss0|sa∨ss0|sa; s0
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Lemma 35. Given any two numbers, neither one when doubled is double
the other plus 1. In symbols:

∀m∀n(¬(2.m = 2.n+ 1) ∧ ¬(2.m+ 1 = 2.n))

Proof. By induction on m. For the basis we need to prove

∀n(¬(2.0 = 2.n+ 1) ∧ ¬(2.0 + 1 = 2.n))

We invoke the abbreviations

Ψ(b, k) : ¬(ss0.k + s0 = ss0.b)

Φ(b, k) : ¬(ss0.k = ss0.b+ s0)

So the basis has the form

∀n(Φ(n, 0) ∧Ψ(n, 0))

The inductive step in the proof will have the overall form

∀n(Φ(n, k) ∧Ψ(n, k))

(3)

Φ(b, k) ∧Ψ(b, k)

(1)

Φ(b, k)
Σ

Ψ(b, sk)
(1)

Ψ(b, sk)
(3)

Ψ(b, sk)

∀n(Φ(n, k) ∧Ψ(n, k))

(4)

Φ(b, k) ∧Ψ(b, k)

(2)

Ψ(b, k)
Π

Φ(b, sk)
(2)

Ψ(b, sk)
(4)

Φ(b, sk)

Φ(b, sk) ∧Ψ(b, sk)

∀n(Φ(n, sk) ∧Ψ(n, sk))

The overall result, proved by induction, will therefore be

∀m∀n(Φ(n,m) ∧Ψ(n,m)),

that is,

∀m∀n(¬(ss0.m = ss0.n+ s0) ∧ ¬(ss0.m+ s0 = ss0.n)),

or, writing 1 for s0 and 2 for ss0,

∀m∀n(¬(2.m = 2.n+ 1) ∧ ¬(2.m+ 1 = 2.n)).

In words, as stated in the Lemma:
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Given any two numbers, neither one when doubled is double the
other plus 1.

We now have the task of providing the two embedded subproofs

∆,¬(ss0.k = ss0.b+ s0)︸ ︷︷ ︸
Σ

¬(ss0.sk + s0 = ss0.b)

Γ,¬(ss0.k + s0 = ss0.b)︸ ︷︷ ︸
Π

¬(ss0.sk = ss0.b+ s0)

for appropriate selections ∆ and Γ of axioms for arithmetic. As intimated
earlier, the axioms we use will be highlighted in blue. We present first the
embedded subproof Π:

¬(ss0.k+s0=ss0.b)

∀x∀y x.sy=x.y+x

∀y ss0.sy=ss0.y+ss0

ss0.sk=ss0.k+ss0
(1)

ss0.sk=ss0.b+s0
(1)

ss0.k+ss0=ss0.b+s0

∀x∀y s(x+y)=x+sy

∀y s(ss0.k+y)=ss0.k+sy

s(ss0.k+s0)=ss0.k+ss0

s(ss0.k+s0)=ss0.b+s0

∀x∀y s(x+y)=x+sy

∀y s(ss0.b+y)=ss0.b+sy

s(ss0.b+0)=ss0.b+s0

s(ss0.k+s0)=s(ss0.b+0)

ss0.k+s0=ss0.b+0
∀xx+0=x

ss0.b+0=ss0.b

ss0.k+s0=ss0.b

⊥ (1)

¬(ss0.sk=ss0.b+s0)

Finally we present the embedded subproof Σ:

¬(ss0.k=ss0.b+s0)

∀x∀y x.sy=x.y+x

∀y ss0.sy=ss0.y+ss0

ss0.sb=ss0.b+ss0
(1)

ss0.k+s0=ss0.sb
(1)

ss0.b+ss0=ss0.k+s0

∀x∀y s(x+y)=x+sy

∀y s(ss0.b+y)=ss0.b+sy

s(ss0.b+s0)=ss0.b+ss0

s(ss0.b+s0)=ss0.k+s0

∀x∀y s(x+y)=x+sy

∀y s(ss0.k+y)=ss0.k+sy

s(ss0.k+0)=ss0.k+s0

s(ss0.b+s0)=s(ss0.k+0)

ss0.b+s0=ss0.k+0
∀xx+0=x

ss0.k+0=ss0.k

ss0.k=ss0.b+s0

⊥ (1)

¬(ss0.k+s0=ss0.sb)
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Lemma 36. Every number is not both even and odd. In symbols:

∀x¬(Ex ∧Ox)

i.e.,
∀x¬(∃y x=2y ∧ ∃z x=2z+1)

Proof. We use Lemma 35 as a premise in the following proof:

(1)

∃y x=2y ∧ ∃z x=2z+1

∃y x=2y

(1)

∃y x=2y ∧ ∃z x=2z+1

∃z x=2z+1

∀m∀n(¬(2m = 2n+1) ∧ ¬(2m+1 = 2n))

∀n(¬(2a = 2n+1) ∧ ¬(2a+1 = 2n))

¬(2a = 2b+1) ∧ ¬(2a+1 = 2b)

¬(2a = 2b+1)

(2)

c = 2a
(3)

c = 2b+1

2a = 2b+1

⊥
(1)

⊥
(2)

⊥ (1)

¬(∃y c=2y ∧ ∃z c=2z+1)

∀x¬(∃y x=2y ∧ ∃z x=2z+1)

That use of Lemma 35 (which was proved by induction) does not make
Lemma 35 into a cut sentence, for the reasons explained in §4.

Lemma 37. The square of an odd is odd. In symbols:

O(t)

O(t.t)

In proving this result, we shall make use of Associativity of Addition
(Lemma 21), Commutativity of Multiplication (Lemma 23), Associativ-
ity of Multiplication (Lemma 25), Distributivity (Lemma 24) and the fact
that t.1=1 (Lemma 15). We shall avail ourselves of the usual abbreviatory
conventions in algebra, whereby, for example, the term

((ss0.m) + s0).((ss0.m) + s0)

is rendered more readably as

(2m+ 1)(2m+ 1).
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That is, we often suppress multiplication signs and simply juxtapose the two
multiplicanda. Explicit dots (multiplication signs), however, have greater
scope than implicit ones. Thus ‘t.2m’, for example, is to be read as ‘t.(2.m)’.
We also take successor to bind more tightly than multiplication, which in
turn binds more tightly than addition. This enables us to use parentheses
less frequently. Order of arguments in operations matters, however, as does
‘order of bracketing’.
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Lemma 38. The following is a valid argument-form:

Fht
∀x(Fx ∨Gx)
∀x¬(Fx ∧Gx)
∀x(Gx→ Ghx)

Ft

Proof.

∀x¬(Fx∧Gx)

(2)

¬(Fht∧Ght)
Fht

∀x(Gx→Ghx)

(3)

Gt→Ght

∀x(Fx∨Gx)

(5)

Ft∨Gt

(1)

¬Ft
(5)

Ft

⊥
(6)

Gt
(6)

Gt
(5)

Gt
(4)

Ght
(4)

Ght
(3)

Ght

Fht∧Ght
⊥

(2)

⊥ (1)

Ft

Lemma 39. Only evens have even squares. In symbols:

E(t.t)

E(t)

Proof. The proof is a substitution instance of the foregoing proof of Lemma 38.
We have

Et.t
Lemma 34: ∀x(Ex ∨Ox)
Lemma 36: ∀x¬(Ex ∧Ox)
Lemma 37: ∀x(Ox→ Ohx)

Et

6.1 Complete Induction

In §4 we discussed what we called incremental Mathematical Induction. (It
is sometimes also called simple or weak induction.) There is a closely related
principle to which we now turn, called complete or strong Mathematical
Induction. The axiom schema in question is

∀x(∀y(y<x→Py)→Px)→ ∀zPz

37



6.1.1 Deriving Complete Induction

Lemma 40. Any proof Π using Complete Induction can be turned into a
proof Π† using only incremental Mathematical Induction.

Proof. We proceed by induction in the metalanguage, on the complexity of
proofs Π. (So this induction, in the structural theory of proofs, has nothing
to do with the two kinds of induction in formal arithmetic—complete and
incremental—involved in the statement being proved.)

For the basis step: clearly if one is given a proof Π involving no applications
of Complete Induction, then it can be turned (by doing nothing to it) into
a proof using only incremental Mathematical Induction. That is, for Π†

take Π.

Inductive hypothesis: Suppose the result holds for all proofs simpler than
the proof Π under consideration.

Inductive Step: Show by cases that the result holds for Π. If the terminal
step of Π is an application of any rule other than →E with an instance of
Complete Induction as major premise, then the result obviously holds for Π.
(For Π† take Π.) The only real work that needs to be done is when Π does
end with an application of →E that has as its major premise an instance of
Complete Induction. In such a case, Π takes the form

∀x(∀y(y<x→Py)→Px)→ ∀zPz
Σ

∀x(∀y(y<x→Py)→Px)
(1)

∀zPz

Here we can take the minor subproof Σ and embed it as follows, to produce
a proof Θ of P0.

Θ :

Σ
∀x(∀y(y<x→Py)→Px)

∀y(y<0→Py)→P0

(1)

b<0
i.e., ∃x 0=b+sx

(2)

0=b+sa

∀x∀y x+sy=s(x+y)

∀y b+sy=s(b+y)

b+sa=s(b+a)

0=s(b+a)

⊥
(2)

⊥ (1)

b<0→Pb
∀y(y<0→Py)

P0
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The conclusion of Σ might stand as the conclusion of an application of ∀I—
in which case Θ would not be in normal form. But as we know, there is an
effective method of transforming Θ into a core proof, which is in normal form.
So, if necessary, we apply that method, in order to ensure that the proof Π0

below, of the basis step for our proposed use of incremental induction, is a
core proof.

Using Θ, we can construct the proof Π0 for the basis step for incremental
induction, using the induced predicate ∀y(y≤x→Py):

Π0

∀y(y≤0→Py)
:

(2)

b≤0

Θ
P0

(1)

b=0

Pb

(1)

b<0
⊥

(1)

Pb (2)

b≤0→Pb
∀y(y≤0→Py)

Here is the proof Π1 of the inductive step, from the inductive hypothesis
∀y(y≤a→Py) to the incremental conclusion ∀y(y≤sa→Py).

∀y(y≤a→Py)
Π1

∀y(y≤sa→Py)
:

(2)

m≤sa
(C1)

m≤a ∨m=sa

∀y(y≤a→Py)

m≤a→Pm
(1)

m≤a
Pm

(1)

m=sa

∀x(∀y(y<x→Py)→Px)

∀y(y<sa→Py)→Psa
i.e., ∀y(y≤a→Py)→Psa ∀y(y≤a→Py)

Psa

Pm
(1)

Pm (2)

m≤sa→Pm
∀y(y ≤ sa→Py)

Equipped with the proofs Π0 and Π1, we can now complete the sought
proof Π†, by incremental Mathematical Induction, of the conclusion ∀zPz.
Its penultimate step is an application of the rule rmi. Note that the param-
eter c in the major subproof for that application is playing the role of t1 in
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the statement of the rule.

Π† : Π0

∀y(y≤0→Py)

(1)

∀y(y≤a→Py)
Π1

∀y(y≤sa→Py)

(1)

∀y(y≤c→Py)

c≤c→Pc
c=c
c≤c

Pc
(1)

Pc
∀zPz

So we have seen that any instance of the Axiom schema of Complete In-
duction can be derived within Peano arithmetic based on the axiom schema
of incremental Mathematical Induction. Note that we are not claiming that
applications in the derivation of the latter schema will involve the same in-
duced predicate P as does the instance of Complete Induction to be derived.
For, as we have seen, incremental Mathematical Induction yields Complete
Induction on the induced predicate Px courtesy of the related, but still
distinct, induced predicate ∀y(y≤x→Py).

6.1.2 The Least Number Principle

Closely related (indeed: classically equivalent) to complete Mathematical
Induction is the following Least Number Principle:

∀x(¬Px→ ∃y(¬Py ∧ ∀z(z<y→Pz)))

This tells us that if the universal claim ∀xPx has a counterexample at all,
then there is a least number that serves as such a counterexample. Note
that the uniqueness of such a number is not explicitly claimed (even though
it would be unique, should it exist).

Lemma 41. Complete Induction classically implies the Least Number Prin-
ciple; in symbols:

∀x(∀y(y<x→Py)→Px)→ ∀zPz
∀x(¬Px→ ∃y(¬Py ∧ ∀z(z<y→Pz)))
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Proof. Steps of Classical Reductio are marked (1) and (3):

(4)

¬Pa

(3)

¬∃y(¬Py∧Qy)

(1)

¬Pa
(2)

Qa

¬Pa∧Qa
∃y(¬Py∧Qy)

⊥ (1)

Pa (2)

Qa→Pa

∀x(Qx→Px) ∀x(Qx→Px)→∀zPz
∀zPz
Pa

⊥ (3)

∃y(¬Py∧Qy)

¬Pa→∃y(¬Py∧Qy)

∀z(¬Pz→∃y(¬Py∧Qy))

Now for Qx take ∀y(y<x→Py), in order to obtain the desired proof.
If the predicate Px is effectively decidable, then the step marked (1)

is constructively acceptable. But the step marked (3) would then be an
application of Markov’s Rule. For, given any natural number x, there are
only that many (finitely many) numbers y less than x that need to be checked
for P -hood, in order to decide whether the complex predicate applies to x.
So, if P (x) is effectively decidable, then so too is the slightly more complex
predicate Qx, i.e. ∀y(y<x→Py); whence also ¬Px∧∀y(y<x→Py). That
would make the existence of some x such that ¬Px ∧ ∀y(y<x→Py) a Σ0

1

matter.

Lemma 42. Provided that Px is effectively decidable, the Least Number
Principle constructively implies Complete Induction; in symbols:

∀x(¬Px→ ∃y(¬Py ∧ ∀z(z<y→Pz)))

∀x(∀y(y<x→Py)→Px)→ ∀zPz

Proof. Once again let the formula ∀y(y < x→ Py) be abbreviated to Qx.
Then the problem becomes that of proving the argument

∀x(¬Px→∃y(¬Py∧Qy))

∀x(Qx→Px)→∀zPz
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The following proof uses Classical Reductio just once, at the step marked (2).
It is constructively acceptable if Px is effectively decidable.

(2)

¬Pa
∀x(¬Px→∃y(¬Py∧Qy))

¬Pa→∃y(¬Py ∧Qy)

∃y(¬Py ∧Qy)

(1)

¬Pb ∧Qb
Qb

(3)

∀x(Qx→Px)

Qb→Pb

Pb

(1)

¬Pb ∧Qb
¬Pb

⊥
(1)

⊥ (2)

Pa
∀zPz (3)

∀x(Qx→Px)→∀zPz

7 The main argument, given informally

Suppose p
q =
√

2 — equivalently, p2 = 2.q2 for some non-zero q. We shall
derive a contradiction. Consider the property Px that p is being supposed
to enjoy:

∃y(y 6=0 ∧ x.x=2.(y.y))

We shall show that the assumption Pa, for arbitrary a, leads to a contra-
diction.

So suppose Pa. By the Least Number Principle there is a least number y
with property P :

∃y(Py ∧ ∀z(z<y→¬Pz))

Let λ be such a number; that is, suppose we have

Pλ ∧ ∀z(z<λ→¬Pz)

Assuming nothing else about λ, we shall derive a contradiction.
Pλ means that

∃y(y 6=0 ∧ λ.λ=2.(y.y))

Let µ be such a number:

µ 6=0 ∧ λ.λ=2.(µ.µ)

Since µ is non-zero, so too is 2.(µ.µ); whence also λ.λ is non-zero. It follows
that λ itself is non-zero:

λ 6= 0
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Also, λ.λ is even. By Lemma 39 it follows that λ itself is even:

∃y λ=2.y

Suppose that ρ is such a number:

λ=2.ρ

Since λ is non-zero, so too is ρ :

ρ 6=0

By Lemma 31,
ρ<λ

Recall that we have
λ.λ=2.(µ.µ)

Substituting 2.ρ for λ, we obtain

(2.ρ).(2.ρ)=2.(µ.µ)

By Lemma 29 we have
µ.µ=2.(ρ.ρ),

whence, by Lemma 39, µ itself is even:

∃y µ=2.y

Let σ be such a number:
µ=2.σ

So we have
(2.σ).(2.σ)=2.(ρ.ρ),

whence by Lemma 29 again we have

ρ.ρ=2.(σ.σ)

Since µ is non-zero, so too is σ:

σ 6=0

So we have
σ 6=0 ∧ ρ.ρ=2.(σ.σ),
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whence
∃y(y 6=0 ∧ ρ.ρ=2.(y.y))

Recall that we are supposing

Pλ ∧ ∀z(z<λ→¬Pz)

So we have
∀z(z<λ→¬Pz)

Instantiating with respect to ρ, we have

ρ<λ→¬Pρ

It follows that
¬Pρ,

i.e.
¬∃y(y 6=0 ∧ ρ.ρ=2.(y.y)).

Contradiction.

8 The main argument, given formally

Theorem 1. ∀x¬∃y(y 6=0 ∧ x.x=2.(y.y))

Proof. We seek to show
∀x¬Px

where
Px ≡df ∃y(y 6=0 ∧ x.x=2.(y.y))

Overall, the formal proof will be of the following form:

Least Number Principle :
∀x(Px→∃y(Py∧∀z(z<y→¬Pz)))

(2)

Pa→∃y(Py∧∀z(z<y→¬Pz))
(1)

Pa

(3)

∃y(Py∧∀z(z<y→¬Pz))

(4)

Pλ∧∀z(z<λ→¬Pz)
Σ
⊥

(1)

⊥
(3)

⊥
(2)

⊥ (1)

¬Pa
∀x¬Px
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Clearly for the construction of the outstanding embedded proof Σ it will
suffice to find a proof of the form

Pλ , ∀z(z<λ→¬Pz)︸ ︷︷ ︸
Π
⊥

The following can serve as Π, provided we can supply its embedded sub-
proof Ω. Note that within this display of Π we can see only the parameters
λ, µ and ρ invoked. The role of the parameter σ is confined to the embedded
subproof Ω.

Pλ
i.e., ∃y(y 6=0∧λ.λ=2.(y.y))

(1)

µ 6=0∧λ.λ=2.(µ.µ)

λ.λ=2.(µ.µ)
L39

∃y λ=2.y

∀z(z<λ→¬Pz)

(3)

ρ<λ→¬Pρ

(2)

λ=2.ρ

(2)

λ=2.ρ

(1)

µ 6=0∧λ.λ=2.(µ.µ)
L30

λ.λ 6=0
L4

λ 6=0
L5

ρ 6=0
L31

ρ<λ

(4)

¬Pρ

(2)

λ=2.ρ ,
(1)

µ 6=0∧λ.λ=2.(µ.µ)︸ ︷︷ ︸
Ω

Pρ : ∃y(y 6=0 ∧ ρ.ρ=2.(y.y))

⊥
(4)

⊥
(3)

⊥
(2)

⊥
(1)

⊥

Finally we supply the embedded subproof Ω:

µ 6=0 ∧ λ.λ=2.(µ.µ)

λ.λ=2.(µ.µ) λ=2.ρ

(2.ρ).(2.ρ)=2.(µ.µ)
L29

µ.µ=2.(ρ.ρ)
L39

∃y µ=2.y

µ 6=0 ∧ λ.λ=2.(µ.µ)

µ 6=0
(1)

µ=2.σ

σ 6=0

µ 6=0 ∧ λ.λ=2.(µ.µ)

λ.λ=2.(µ.µ) λ=2.ρ

(2.ρ).(2.ρ)=2.(µ.µ)
L29

µ.µ=2.(ρ.ρ)
(1)

µ=2.σ

(2.σ).(2.σ)=2.(ρ.ρ)
L29

ρ.ρ=2.(σ.σ)

σ 6=0 ∧ ρ.ρ=2.(σ.σ)

∃y(y 6=0 ∧ ρ.ρ=2.(y.y))
(1)

∃y(y 6=0 ∧ ρ.ρ=2.(y.y))
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