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Nem, Perfect Validity, Entailment
TENNANT - and Paraconsistency

Abstract. This paper treats entailment as a subrelation of classical consequence
and deducibility. Working with a Gentzen set-sequent system, we define an entailment
a8 a substitution instance of a valid sequent all of whose premisses and conclusions
are necessary for its classical validity. We also define a sequent Proof as one in which
there are no applications of cut or dilution. The main result is that the entailnients are
exactly the Provable sequents. There are geveral important corollaries. Every unsatis-
fiable set is Provably inconsistent. Every logical consequence of a satisfiable set is
Provable therefrom. Thus our system is adequate for ordinary mathematical practice.
Moreover, transitivity of Proof fails upon accumulation of Proofs only when the newly
combined premisses are inconsistent anyway, or the conelusion is a logical truth. In
either case Proofs that show this can be effectively determined from the Proofs given.
Thus transitivity fails where it least matters — arguably, where it ought to fail! We
show also that entailments hold by virtue of logical form insufficient either to render
the premisses inconsistent or to render the conclusion logically true. The Lewis para-
doxes are not Provable. Our system is distinct from Anderson and Belnap’s system
of first degree entailments, and Johansson’s minimal logic. Although the Curry set
paradox is still Provable within naive set theory, our system offers the prospect of
a more sensitive paraconsistent reconstruction of mathematics. It may also find ap-
plications within the logic of knowledge and belief.

. § 0. Introduction

My purpose in this paper is to create a new and systematic thieory of
entailment satisfying certain explicit conditions of adequacy; and to
indicate its applications in the paraconsistent reconstruction of mathema-
tics. The system is provably distinet from any known to me. It is based
on an extremely natural and simple semantical relation of entailment,
which is captured by an equally natural and simple Gentzen sequent
system.

In my paper [1] I defined a Proof in a system of natural deduction as
an ordinary proof in normal form with no applications of the absurdity
rule (“ex falso quodlibet”). Main results were

(1) The Lewis paradoxes
4, —A: B
4: B,—B
are not Provable.
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(2) Every unsatisfiable set of sentences is Provably ineconsistent.

(3) Alllogical consequences of any satisfiable set of sentences are Provable
therefrom.

(4) 'Transitivity of Proof fails only where the new combined premisses
form an inconsistent set —in which case a Proof of their incon-
sisteney is effectively determinable from the given Proofs.

These results are clearly significant for the paraconsistent reconstrue-
tion of mathematics. Let us define Theories by reference to Deductive
closure, that is, closure with respect to our new class of Proofs. In our
Proot svstem, contradictions do not Imply arbitrary sentences. There are
distinet inconsistent Theories. This raises the possibility that different
set Theories, for example, if inconsistent, might be so in “different ways”.
Some inconsistencies, as it were, might be less harmful than others.

I do not wish at this stage to raise unduly the hopes of naive set theo- .
rists. Hor I shall also show below that Curry’s instance of naive abstraction
enables us to Prove arbitrary sentences of the language of set theory.
I have discussed elsewhere ([2], [3]) how a proper response to the early set
theoretical paradoxes is to adopt a free logic of sets. The Curry paradox
is Provable simply because the first order Proof system is still based on
the misguided agsumption that every term of the language denotes. Thus
the possibiliby I would still hold out for those interested in paraconsistent
mathermatics is that, in a free Logic of sets there might be interestingly
distinct inconsistent Theories. Different large cardinal assumptions in ZF,
for exaiiple, might be inconsistent in different sorts of ways.

Results (2) and (3) above show that our Proof system is adequate to all
the demands of our mathematical practice. What are these demands? We
are deprived of finitary consistency proofs for interesting theories like
arithmetic and set theory. Pending proofs of contradictions from our
axioms (such as Peano’s postulates, or the Zermelo-Fraenkel axioms)
we carry on proving theorems from these axioms. Whenever we do disco-
ver incousistencies in our axioms we do not rejoice in the deluge of easy
consequences licensed by the first Lewis paradox, or absurdity rule. Instead
we turn our attention byek to our starting points, to seek the source of the
contradiction. Thus it appears that the demands we make of our logic are
two-fold.

(i) The logic should deliver all contradictions, wherever they may be

(ii) The logic should deliver all consequences of our mathematical
axioms, should these be collectively consistent. '

In oar Proof system, as results (2) and (3) above show, these demands
can be met. In a nutshell, if ZF is inconsistent, then it is Provably so;
if it is ¢onsistent, then all its theorems are Theorems — that is, they are
Deducible from the axioms.



Perfect validity, entailment... ) 183

Finally, result (4) shows that Deductive progress is cumulative in the
usual way. So by (1) we have excised the Lewis Paradoxes. By (2), (3)
and (4) we have done so with minimum mutilation to the deductive fabric
of mathematics — indeed, arguably disturbing no part of mathematies
as actually practised.

I ended [1] by suggesting that a slightly stronger notion vf Proof
would preserve results (1) — (4), and also yicld

(3) Any Proof of a conclusion other than absurdity from a non-empty
gset of premisses is a substitution instance of a Proof the premisses
of which form a consistent set; and any Proof of a logical truth from
a non-empty set of premisses is a substitution instance of a Proof of
a contingent conclusion

The gist of (5) is that Proofs contain no Lewis-like features. I:: a Proof
one does not trade illicitly on the inconsistency of the premisses in order
to obtain a potentially irrelevant conclusion. Nor does one trade on the
logical truth of the conclusion in order to obtain it “from” any premisses.
Rather, Proofs establish conclusions from premisses by means culy of so
- much logical detail as is insufficient to reveal either the inconsistency
of the premisses or the logical truth of the conclusion (hence the .l about
substitution instances in (5)). For example, the Proof

A& —4
A

is a2 substitution instance of the Proof

A &B
A

the premiss “set” of which is consistent; and the Proof
4
Av —A4

is a substitution instance of the Proof

A
Av B

the conclusion of which is contingent. (These are of course trivial examples-
The general conjecture (5), however, is not trivial.)

My purpose in this paper, already briefly stated at the beginning, is
to re-work all these ideas and results in a Gentzen sequent setting. Proofs
of results are thereby simplified, and also slightly improved by symmetrie
treatment of premiss sets and conclusion sets of sequents. More.ver I am
able also to prove conjecture (5) in a suitably Gentzenised forn:.
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To do this I employ a semantical notion of entailment, or validity of
sequents. In [1] I passed over this in silence, for the reason that I could
not say anything about it. Indeed, I even maintained that one might be
able to do without it. In this paper I am happy to address myself to the
semantical problem, even if only to secure (5). It might still turn out that
all the desired results can be obtained proef-theoretically. Whether one
would wish in that case to kick the ladder away is an issue I shzll not
discuss here.

Once the semantical notion of entailment has been defined, the pro-
blem of soundness and completeness results arises for our Proof system. It
is intercesting that the usual burden of proof is shifted. In this paper it
will be the soundness theorems that call for less trivial proof. This, how-
ever, might have been expected. The usual problem for the entailment
theorist is to show that his Proof system does not let in too much — that it
excludes the Lewis paradoxes and other undesirable results. This problem
becomes that of proving a soundness theorem with respect to the new
semantics that has been designed to invalidate these undesirable results.

At this point it is worth mentioning that I regard disjunctive syllogism

AvB, —A: B

as a thoroughly desirable result, in opposition to those in the Anderson-
Belnap tradition. They preserve unrestricted transitivity at all costs.
One of these costs is the rejection of disjunctive syllogism, a mode of
inference indispensable in mathematical reasoning. In contrast, I give
up transitivity in a very controlled way, arguably where it least matters —
arguably, indeed, where it ought to be given up! — and thereby preserve
disjunctive syllogism. I shall say more about this below.

Apart from its promise for paraconsistent mathematics, the Proof
system given below might also be usefully applied in the logic of know-
ledge and belief. Existing systems treat only of ideal or rational attitudes,
consistent and logically closed. What appears to be needed is a logic al-
lowing sensitive discrimination between different inconsistent belief
sets. This is a topic, however, that I shall not pursue in this paper.

§ 1. Semantics

Let us proceed now to the main semantical idea. I shall generalize the
basic idea behind & definition given by Smiley in [4] in connection with
entailment, a definition that he gave for a single conclusion system. This
generalization requires our being able to speak not just of premisses 4,,
..., 4, entailing a (single) conclusion B, but of their entailing in general
a set of conclusions By, ..., B,,. Thus we wish to speak of a sequent of the
form
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being valid, being perfectly valid or being an entailment (to mention
the three main notions to be defined in due course). Note that it is sels
that stand on each side of the colon in a sequent. Order and repetition
of premisses on the left, or of conclusions on the right, are irrelevant.
Thus also when we come to the Gentzen systems of proof and Proof,
it will be set sequents with which we shall be dealing, rather than the
sequence sequents of Gentzen himself. So we shall not be needing rules
like Permutation and Contraction in the sequent system — but more of
that below.

Classically, a valid sequent X: Y is a sequent that cannot be “parti-
tioned” by any interpretation, or model, of the language. That is, there is
no way of making all of X true and all of Y false. Diagrammatically, an
invalid sequent X : Y is thus one for which there exists a model M resulting
in a partition of the sentences of the language L thus:

True-in-M False-in-M

The model M is a counterexample to the argument

All of X
ergo, At least one of ¥

or, more simply, a model of X: Y. Thus a valid sequent is one that has no
models.

o is the empty set. By our definition, X: ¢ is valid just in case X is
not satisfiable, and @: Y is valid just in case Y is not falsifiable. And
precisely for this reason the Lewis paradoxes are valid on the classical
definition. Neither {4, —A}:{B} nor {4}:{B, — B} has a model. (Hence-
forth I shall omit set braces wherever possible). This is because neither
of the respective proper subsequents

A, —A: 9 9:B, —B

has any models. This motivates the following definition.

A sequent X: Y is perfectly valid iff it is valid and has no valid pro-
per subsequents. The Lewis paradoxes, though valid, are not perfectly
80. Likewise with the sequent 4, B: A. The sequent A & B: 4, however,
is perfectly valid, as is 4 & B: B. The sequent 4 &— A: B is valid,
but not perfectly so.
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A substitution is a mapping from atoms to formulae. It can be extended
to a mapping from formulae to formulae in the obvious way —

$(4A & B) = s(4) & s(B) ete
and to sets of formulae —
$(X) = {s(4)|4 € X}
and thus also to sequents —
$(X: Y) =s(X): s(Y)
We shall represent this diagrammatically as

X: Y
A ... 4,
sy ¥
B, ...B,
s(X: Y)

where s roplaces each atom A4; by the (possibly complex) formula B;.
Whenever

X Y

s |

zZ: W

weo say also that X: Y 4s a suprasequent of Z: W via s.

We are now in a position to state our main definition.

A sequent X: Y is an entailment iff X: ¥ has a perfectly valid supra-
sequent.

This «efinition of entailment deals only with classical validity and
economy of statement in terms of set-inclusion and substitution. It invol-
ves no unusual or eounterintuitive re-interpretation of the senses of logical
operators.

The scquent A & —A:A is an entailment by virtue of the perfectly
valid suprasequent A & B: A. Some perfectly valid sequents have perfectly
valid proper suprasequoents, e.g.

B, —B: —(4 &B): —Av(C, Dv—B
\ ¥
—A, ——A4: —(4 &B): —Av —B

Every perioctly valid seqaent is a proper suprasequent of some perfeetljr
valid sequont, as can be seen by simply mapping atoms to their double
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negations. A sequent can be an entailment by virtue of two perfectly
valid suprasequents neither of which is a suprasequent of the other, e.g.

A&C: AvD E &B: FvB
A CD \ / EBZF
RN oy
A BB N 4 A B A

A &B: Av B

The different suprasequents correspond to distinet “lines of argument”
that serve to establish the entailment — in this case, extracting right
or left conjuncts of the premiss A & B. Of course, much more radical
difierences can be expected in more complicated cases.

Our task in the next section will be to define notions of Proof and of
perfect proof in appropriate sequent calculi and to obtain the adequacy
result. ‘

The Provable sequents are precisely the entailments.

Our Proof theorywill then tell us some important facts about the enta-
ilment relation. The adequacy result is also of course the aifirmative
golution of conjecture (5) in a Genbzen setting.

§ 2. Syntax

T shall confine myself throughout the body of this paper to the con-
nectives —, &. All the proof theoretical results hold for —, &, v, 3 and V
primitive. Towards the end of the paper I shall have more to say about
quantification and identity. For the time being, however, the ideas are
best illustrated in the simplest possible system.

In the classical sequent system each logical operator has {wo rules.
One tells us how to introduce a dominant occurrence of the operator
in a formula on the left of the colon in a sequent derived by me:ns of that
rule; the other tells how to do so on the right. For our chosen operators
these rules are

X, A: Y X: Y, A )
X:Y, —A X, —4: Y
X:Y, A Z:W,B X, A4:Y X,B:Y

X,2: Y, W,A &B X, A&B: Y X,A&B:Y

The displayed formula A in the negation rules is called the component
for its application. Likewise for 4, B in the conjunction rules. We have
a notational convention whereby the component is assumed not to be
a member of the set separated off from it by a comma. Thus in the first
negation rule above, we assume A ¢ X.
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In addition to these rules for logical operators there are the following:
structural rules.

X: Y X: Y
Diluti
Huhon X Y, 4 X A: Y
X:Y, A A Z:W
Ct y ’ .
b X, Z: Y, W

Using any of these rules one builds proofs from initial sequents of the form:
A:A in the usual way. For example

A: A B: B A: A B: B
4, -4 : B, —B AvB: A, B
: 4, —Av —B : B, —Av —B AvB, —A: B
: A&B, —Av—B
—(4 &B): —Av —B

These proofs of course also involve rules for disjunction. which are dual
to those we have given for conjunction. For the record, they are

X: Y, A X: Y, B X, A:Y Z, B: W

X: Y, AvB X: Y, AvB X, Z, AvB: Y, W

In neither of our two procfs above is the Cut rule applied. This is no accident:
As is well known, Gentzen proved the following theorem.

Cur ELIMINATION THEOREM. Any proof of X : ¥ can be converted into
a cut free proof of X:Y.

But even in a cut free proof, dilutions can be a source of irrelevancy.
This can be shown clearly by the following cut free proof of the first Lewis
paradox.

Ad: A
4, —A:

m dilution

Our next theorem tells us what can be done about this. We define
a Proof (with uppercase ‘P’) as a cut free, dilution free proof.

DinurioN ELIMINATION THEOREM. Any cut free proof of X : X can be
converted into a Proof of some subsequent of X:Y.

(We shall write /2 for “z can be converted into the Proof X7.)

Proor. By induction on the length of proof. The basis is obvious,
since A: A is already a Proof. In the inductive step we proceed by cases,
according to the rule last applied. If any Proof given by the inductive
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hypothesis establishes a final sequent lacking the relevant component on
the relevant side, take it as the required Proof; otherwise, apply the rele-
vant rule to obtain the required Proof. For example, if

mNY

X:Y, A Z:W ZsX,WzY)

then
7 X

LY,

but if
& M X

X:Y, 4 Z:W,A (Z<X,WcX)

then
7 z
X: Y, A Z: W, A

X, —4: Y ‘7 —4: W

Other cases are similar and are left to the reader. Of course, if

NN A
XY Z:W
then
7 > and 7 ¥
X:Y X: Y
—_— Z: W — Z: W
X: 7, 4" X, A7

This completes the proof of the theorem.

The dilution elimination theorem is the sequent version of the extrac-
tion theorem for systems of natural deduction in [1]. Note how in its proof
the inductive step cannot be carried out for . The sequent rules for > are

X, A: Y, B X:Y, A Z, B: W
X:Y, Ao B X, Z, A>B: Y, W

An example of a proof without cut that cannot be converted into a Proof
of any subsequent of its final sequent is

A: A
A, —A
A, —A: B
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We therefore restrict ourselves to a system with —, & and v as primitive
connectives, We can now obtain as corollaries of the cut - and dilution -
elimination theorems sequent versions of our results (1) — (4) above.

COROLLARY 1. The Lewis paradoxves A, —A:Band A: B, —B are
not Provable.

Proor. The only possible forms of cut free proof of the first paradox
are
A: A A: A

A: 4, B A, —A:

4, —A: B A, —A: B

both of which involve dilution and are therefore not Proofs. Similarly
for the sccond paradox.

COROLLARY 2. If X is not satisfiable then for some subset Z of X there
4s a Proof of Z: @; and if Y is not falsifiable, then for some subset W of ¥
there 18 a Proof of o: W.

Proor. Suppose X is not satisfiable. By classical completeness there
is a proof of X': o for some subset X’ of X. By eliminating cuts and then
dilutions we obtain a Proof of Z: ¢ for some subset Z of X’, hence of X,
as required. The second half is proved similarly.

COROLLARY 3. If X is satisfiable and logically implies A, then for some
subset Z of X there is a Proof of Z: A.

Proor. Suppose X is satisfiable and logically implies A. By classical
completeness, cut- and dilution-elimination there is a Proof of Z: g or of
Z: A, for some subset Z of X. By satisfiability of X and classical soundness,
only the latter can be the case.

Corollary 3 has been formulated with an emphasis on single conclusions,
but this is unnecessary. A general and symmetric statement is

If X is satisfiable and Y is falsifiable and X: Y is valid, then for
some non-empty subsets Z, W of X, Y respectively there is a Proof
ol Z: W.

Note that a proof (hence 2lso a Proof) of a subsequent Z: W of X: Y tells
us something stronger than a proof of X: Y itself. It is much harder for
a sequent to be valid (provable), the fewer sentences it has — ‘fewer’ in
the sense of proper inclusion. Hence the subsetting mentioned in Corol-
laries 2 and 3 (and 4 below) does not detract at all from the result — in
fact, it enhances it. If one can ‘winnow down’ a sequent without loss of
validity or of provability, one is improving matters. One might even
come to learn that the premisses were inconsistent or the conclusions not
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falsifiable, or that fewer of the premisses served to ensure that the truth
lay among fewer of the conclusions. This epistemic gain should therefore
be borne in mind in assessing the next result.

COROLLARY 4, For 1 i< n, let =; be a Proof, and let z
X1Y A, Xgsd |50 0dpniTy

be a Proof. Then there is a Proof az for some subsels X, Y of the respective
untons of the X, and of the Y
Proor. By n-fold cut obtain a proof of the sequent UX UY,.

=0 i=
By cut- and dilution-elimination turn this into a Proof as required.

Thus if we have Proofs of Axioms: Lemma 1 and of ... and of Axioms:
Lemma # and of Axioms, Lemmata 1 —n: Theorem, then we cun deter-
mine from them a Proof either of Axioms: Theorem or of Axioms: g or of o=
Theorem. In the last two cases — where transitivity of Proof “fuils” —
we learn either that our axioms are inconsistent (in which casc we are
hardly likely to mourn the loss of Theorem) or that Theorem was « logical
truth anyway (in which case we are pleased to have a Proof of it cutright).
This is why I insist that transitivity of Proof fails where it least mintters —
indeed, where it ought to fail.

Note that every substitution instance of a Proof is a Proof.

We now introduce the notion of perfect proof, designed to capture
perfect validity. But note that not all perfect proofs will be Proofs, nor will
all Proofs be perfeet proofs, as will become evident in due course. Kirst
we need some notation and terminology.

When X and Y are non-empty sets of formulae, X & Y is the set of
all conjunetions with left conjuncts in X and right conjuncts in Y.
When X is a non-empty set of formulae, and A4 is & formula, then X & 4 is
- the set {B & A/B e X}. Likewise for A & X. ~X is {~A/4 e X}

Now perfect proofs are built up from initial sequents A: 4 (with 4
atomic), without cut or dilution, by means of the following ‘Fr«benian”
rules having sets of formulae in general as components:

X: Z, Y X, Z: Y
X, —%: ¥ X: Y, —Z
X,Zz:Y X:Y,zZ U:V, W
X, Z&A: Y X, U0:Y,V,Z&W
X, Z: Y where the upper sequents have
m no atoms in common (i.e. are

vocabulary disjoint)
where A is an atom
that does not occur
in the top sequent
(i.e. 4 is a fresh atom)
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PERFECTION THEOREM Any Proof n can be converted into a perfect

proof fw some suprasequent Z: W of X: Y.

Proor. We obtain 2 by working from the top down in n. At &: we
re-label so as to achieve foreignness of atoms, and at : & we re-label so as to
achieve vocabulary disjointness. Via the substitution mapping thus indu-
ced at cach stage we keep track of what subsets within the new sequents
thus formed “on the way to” X correspond to the components of each
step in the original Proof x; and as we work down = we mimiec its steps in
the new perfect proof X under construction in the appropriately “Frobenian”
fashion.

Exayeres. Our Proof above of disjunctive syllogism 4 vB, —A:B
is already a perfect proof. Our Proof of the de Morgan sequent (4 & B):
:— Av — B,however, is not. Bearing in mind that the rules for v are simply
dual to those for &, so that the same sorts of considerations apply, we
can turn our Proof of the de Morgan sequent into the following perfect
proof.

A: A B: B

4, —A4 :B, —B A B ¢ D
:4, —AvC :B, Dv—B sy 4 A
A &B, —Av(C, Dv —B AB —-B —A

—(4 &B): —Av(0, Dv—B

Note how in the third line ¢ and D are foreign atoms for :v, and how
the sequents in the third line are “vocabulary disjoint” for : &. As a final
example, consider the Proof

A: A B: B
4, —A :B, —B
4 —Av—-B :B, —Av—B
A &B,—Av —B

—(—4Av —B):A &B

with the perfected version

A: A B: B
A, —4 :B, —B AB ¢ D
:4, —Av(C :B, Dv—B sy 4 4
AB —B —A

4 & B, {—AvC, Dv —B}
—(—Av (0, —(Dv—B):A &B
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The final step here is an application of the “Frobenian® rule —: of perfect
proof. The set braees are inserted to make clear what the component ig
for the application of the rule. Note how under the substitution s this set
component “collapses” to the single formula —Av — B which, in the
original Proof, was the component for the application of the negation rule
in question.

§ 3. Soundness and Completeness Results

CoMPLETENESS THEOREM. Every entailment ts Provable.

Proor. Suppose X : Y is an entailment. Let Z : W be a perfcctly valid
suprasequent of X: Y via 8, as required by the definition of entailment.

By Corollaries 2 and 3 above there is a Proof = for some subsets Z', W’ of Z,
z:w

W respectively. By soundness of proof, hence of Proof, Z': W is valid.

By perfect validity of Z: W, Z = Z’ and W = W’. Substituting via s in =

we obtain a Proof of X: Y.

PERFECT COMPLETENESS THEOREM. Every perfecily valid sequent has
a perfectly provable suprasequent.

Proor. Let X : Y be perfectly valid. By classical completeness there
is a proof of X: ¥, which by eut- and dilution-elimination, and then perfec-
tion, can be turned into a perfect proof = for some Z: W guch that

zZw

Z: W
¥
X:YcX:Y
Sinee X: Y is perfectly valid, X = X’ and ¥ = ¥'. Hence tl.¢ result.

COROLLARY. Ewery entailment has a perfecily provable suprasequent.
Thus we can generate the entailments not only by Procf, but also by
perfect proof and substitution.

PErricT SOUNDNESS THEOREM. Every perfectly provable scquent is
perfectly valid.

Proor. Initial sequents are perfectly valid. It is clear that the rules
of perfect proof preserve ordinary validity. Thus it remains to ~liow that,
if their upper sequents are perfectly valid, then so are their lower sequents.
To do this we assume the perfect validity of the upper sequents, and show
that any proper subsequent of a lower sequent has a model (i.e. i+ invalid).
We proceed by ecases, acecording to the rule in question.

13 — Studia Logica XLIIV/1-2
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The rule . —

Considexr X, Z: Y

X: Y, —Z
Suppose the upper sequent X, Z: XY is perfectly valid (i.e any proper
subsequent of X, Z: Y has a model). Consider any proper subsequent

TI: U of the lower sequent X: Y, —Z. So T': U is the result of dropping
at least one formula 4 say in X: ¥, —Z.

(i) Suppose A is dropped from X. Let the result be X’. Then
X', Z: Y is a proper subsequent of X, Z: ¥ and thus has a model
M say. M is a model of X': ¥, —Z, hence also of T: U.

(i)  Suppose A is dropped from Y. Let the result be ¥'. Then X, Z: ¥’
is o proper subsequent of X, Z: ¥ and thus has a model M say.
M isa model of X: Y', —Z, hence also of T': U.

(iii) Suppose A is dropped from —Z. Then the result is of the form — 2’
for some proper subset Z' of Z. X, Z': ¥ is a proper subsequent
of X, Z: Y;and thus has a model M say. M is a model of X: ¥, —Z,
hencealsoof 7': U.

The reasoning for the rule —: i3 similar.
The rule &;

Consider X,Z:Y where B is a foreign atom. (The reasoning for
X, Z&B:Y

B & Z is similar.) Suppose the upper sequent X, Z: ¥ is perfectly valid.

Comnsider any proper subsequent 7': U of the lower sequent X, Z & B: Y.

So T': U is the result of dropping at least one formula A sayin X,Z & B: Y.

(i)  Suppose A is dropped from X. Let the result be X’. Then X', Z: ¥
is « proper subsequent of X, Z: Y and thus has a model M say.
Since B is foreign, extend M to a model N in which B is true. N
is 1 model of X', Z & B: ¥, hence also of T: U.

(ii) If 4 is dropped from ¥, the reasoning is similar.

(iii) Suppose A is dropped from Z & B. Then the result is of the form
Z’' & B for some proper subset Z’ of Z. Now X, Z': ¥ has a model M
say. Extend M to a model N in which B is true. N is a model of
X, Z' & B:Y, hence also of T:U.

The rule : &

Consider X:Y¥Y,Z U:V,W with the upper sequents vocabulary dis-
X, U:Y,V,Z&W
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joint and perfectly valid. Consider any proper subsequent I': R of the
lower sequent, resulting from it by dropping at least one formula A say.

(i) Suppose 4 is dropped from X. Let X' be the result. X': Y, Z has
a model M say. By truth table for &, Misamodelof X': ¥, 7 & W.
U: V has a model N say. By vocabulary disjointness the¢ union
of M and N is a model of X', U: ¥, V, Z & W, hence also of T: E.

(iiy If 4 is dropped from U, Y or V the reasoning is similar.

(iii) Suppose A is dropped from Z & W. Suppose 4 is B & C, where
Bisin Zand Cisin W. X: ¥, Z\{B} has a model M say, and
U:V,W\{C}has a model N say.By vocabulary disjointness the union
of M and N is a modelof X, U: Y, V, Z & WN\{B & C}, hence of
T: R. This holds no matter how the union model may have to be
extended to deal with atoms involved in B and C that might not be
assigned values in M and N respectively.

SOUNDNESS THEOREM. Hvery Provable sequent is an entailment.

Proor. Take any Proof = . Then it can be turned into a perfect

XY
proof X of some suprasequent Z: W of X:¥. By perfect soundness, Z: W
is perfectly valid. Hence X: Y is an entailment. '

In a readily graspable sense explained in the proof of the perfeetion
theorem, s is a “substitution instance” of Z, even though & may not be
perfect. Moreover if X and Y are non-empty, so are Z and W, with Z
satisfiable and W falsifiable (by virtue of perfect validity of Z: W). lIence
conjecture (5) above has been answered affirmatively.

§ 4 Quantifiers and Identity

So far we have been discussing only propositional logie. Now that the
reader is familiar with the main ideas, we can indicate how to extend the
treatment to deal with the quantifiers. For the time being we shall consider
first order logic without identity.

An important point to note is that perfecting Proofs is a process that
produees sets of sentences in general as components for applications of
rules. Consider now the rule for introducing the existential quantilier on
the left.

X, A%: Y h i " . the lowar sequemt
Y A4V 5 ,,‘ e - .
X,EmA:yw ere a does not occur 1n q
A proof =z« might be perfected as z where the associated

X,4%:¥ Z,47F,... 475w
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substituiion mapping is

1x nx
Z, Aa, ..... . Aa w
X .
s a cY

Our rules in the propositional case mentioned “foreignness of atoms”
and “vocabulary digjointness”. In the case of first order logic without
identity we now understand this to apply to function and predicate ex-
pressions, but not necessarily to names or parameters. In perfecting
a Prool we can leave the pattern of name- and parameter-occurrences
untouched, save for the proliferation of their occurrences under the set-
creation just mentioned. To apply J: in the perfect proof X &bove,f we
need the notion of a set conjunction

& (AL, ...y ATT)
go thai we ean form its existential closure
3z & (4}, ..., A7)

The scb conjunction is a new kind of “sentence” the truth conditions of
which are that every member should be true. Likewise for VY we shall
need @ mnotion of set disjunction.

Under substitution via s, the existential sentence just given collapses
to 32 & (4), which we simply identify with Jx4. Equipped with these
notions, the reader can carry out all the proofs above for first order logie
without identity. Most importantly, the perfect soundness theorem requires
that wo be able to form model unions and extensions. By the respective
disjoininess and foreignness conditions, this is easy, given that the language
does not contain identity. For, consider what is involved in forming the
union of two models. If they differ in cardinality, add indiscernibles to
the smaller model in order to make the domains have the same cardinality.
Then define a 1-1 onto map between the domains by assigning to named
individuals their namesakes in the other model, and extending the map
arbitracily on nameless individuals. Vocabulary disjointness then ensures
the consisteney of the model formed by the union of the relational struc-
tures viu the 1-1 map just constructed, in the obvious way. In this union,
an individual has all the relational properties that it (via the map) has in
either of the two models forming the union.

In the language of the first order logic with identity the identity predi-
cate itzelf will not be distinguished. Identity will be treated axiomatically.
Logic:! ivuths of the first order logie of identity will be just those sentences
that follow from the axioms of identity, namely all instances of reflexivity
and substitutivity.
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§ 5. Comparison with other systems

The system of entailment and Proof set out above is distinet from the
Anderson-Belnap system of first degree entailment. Tor disjunctive
syllogisin is Provable, but is not a first degree cntailment.

Nor will the restriction of ¥ to singletons make our system of ’'rovable
sequents X: ¥ coextensive with minimal logie. For disjunctive =yllogisim
is not provable in minimal logic either. Morcover, the sequent 1, —A:
:— B 4s provable in minimal logic, but is not Provable.

Note that Johansson obtained minimal logic from Gentzen’s scquent
system for intuitionistic logic simply by dropping dilution. But the rules: &
and :v had the more restrictive form

X:Y, A X:Y,B X, 4:Y X, B: Y

X: Y, A&B X, AvB: Y

In owr Proof system, the rules
X:Y, A Z: W, B X, 4:Y Z,B: W
X, Z:Y,W,A &B X, Z,AvB: Y, W

ironically allow in a little of the dilution that would otherwise be vequired
to top up the upper sequents to the same X and Y before applving the
more restrictive rules.

§ 6. The Curry paradox in naive set theory

As noted by Meycr, Routley and Dunn [7], sonie people had heped that
a paraconsistent logic might be found in which naive set theory, despite
its inconsistency, would not collapse onto the whole language. As they
show, the relevance logic R cannot serve this purpose, because using R
one can derive arbitrary sentences as theorems of naive set theory by
choosing suitable substitution instances, due to Curry, of the naive
comprehension axiom scheme. In this section I show that the sume is
true of the logical system of this paper.

Remembering that we do not have o primitive, let y be the sei abstract
{o] —(x ez & —q)}. Let p be the sentence y € y. The naive comprehension
schema has the instance

Vizey = —(rez & —q))
which in (—, &) language is
(4) Vz(—(zey & ——(2€2& —q)) & —(—(rez & —@) & zey))
Tuking y for z we obtain by universal elimination the instance

—P& ——(p & —q) & —(=(p & —g) & —p)
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The following Proof = shows that this entails p:
P& —q:p & —¢q

__prp p& —¢ —(p & —q):
P& —qp P& —q: ——(p & —¢q)
P& - p& ——(p & —g)
» & —q -:(p&—-(p&——q)): p:p
P& ——-p & —g): —(p& —9 P, —p

—p&——(p & —9): —@&—9 &—p, p

(p&——(p&—q)) —(—p & —q) & —p): D
& -0 & —) & [~ &—Q & —p), —(-(P&—¢) &—7):p

(P& ——(P & —0) & —(—(p & —q) & —p):.p

Abbreviute the final sequent to r: p. We can then continue the Proof
to one of A: ¢ as follows:

2 q:q
rip ¢, —¢
r:p & —q, g
x N —(P&—q:q
rip v —— (P & —q),4q

P& ——(p & —q), ¢
'_'} —(p& ——(p& —q): ¢
riq

A:q

(The reader might, out of interest, try to perfect this Proof!)

Thus our Proof system cannot save naive set theory from triviality.
Nevertheless, this need not count against the possibility of discovering
distinct inconsistent set theories — perhaps even theories extending ZF.
The prohlem with naive set theory is that it is so thoroughly naive! More
precisely, the first order logic on which it is based is naive. The first and
most obvious response to the inconsistency of naive set theory is to adopt
a free logic, freed of the assumption that every set abstract denotes.
Curry’s paradox has been shown above to arise within a non-free logic
from a naive axiom schema. We might, however, prefer to treat the latter
inferentially, by incorporating into a “Logic of sets” the two sequent rules

X:. Y, F? X, F7: Y
X: Y, te{x|F} X, te{wF}: Y

Of coursc we can then no longer prove that every (classical) proof can
be converted into a cut-free version, so the new Proof system (in which
cut is prohibited as before, as well as dilution) does not automatically
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satisfy results (1) — (4) about Proofs above, results that relied on cut-
elimination in the underlying proof system. Nevertheless, the snggested
“Logic of sets” is not without interest, being such a simple extension to
sot theory of our earlier proof system. Neither Russell’s paradox nor
Curry’s paradoxical instances appear to admit of Proof in thix system.
It would be most interesting to investigate just how much of naive set
theory could be thus Developed.

§ 7. Varia

Our definition of entailment in this paper is reminiscent of Smiley’s
definition ([4], p.240) of an entailment relation F:

A,,..., A, F Bif and only if the implication (4, & ... & 4,) > B
is a substitution instance of a tautology (4; & ... & ;) > B,
such that neither + B nor F —(A4; & ... & 4,).

Tony Dale has pointed out to me that on this definition the premisses
(4v B), —(Av B) do not entail A & B. Now on my account - (Av B)
entails each of — A, — B, so by applying disjunctive syllogism 1wice one
would expect A & B to be entailed by the given premisses. And indeed
the following Proof shows this to be the casc:

B: B A: A
A: A B: AvB A: Av DB B: B
AvB: Av B, A Av B: Av B, B

AvB, —(AvB): A Av DB, —(AvDB): B
AvB, —(AvB): A&D

The perfected version of this Proof is

B: B F: E
A: A B: CvB B:EvD F:F
AvB: CvB, A IvF: EvD, I

AvB, —(CvB): A Ev@F, —(EvD): ¥

AvB, EvF, —(CvB), —(EvD): A&F

Note how the re-lettering with ¢ and D brings out the different lines of
argument indicated in the remarks above. Note also how by liberalizing
to sets of premisses on the left of a colon, rather than eonjoining them to
form the antecedent of an implication, we achieve an important degree
of freedom in seeing how one argument (i.e. & sequent) can be a =ubstitu-
tion instance of another. Substitution can importantly “merge” previously
distinet formulae, as has happened in our example, in which the distinet
formulae —(Cv B), —(Av D) merge, upon substitution of A for ¢ and B
for D, into the single formula —(A4v B).
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The relation of entailment in propositional logic is decidable on finite
X and Y, because there are only finitely many suprasequents (up to
isomorphism via re-lettering) to check for perfect validity.

Enfuilment for first order logic is compact and undecidable because
ordinary logical consequence is.

I conjeeture that the mutual entailment of two sentences is a sufficient
condition for their interreplaceability salva veritate in all statements
of entailment.

Finally, it is worth noting an agreeable philosophical stability in our
shoice of a Liogie. If all the background theory of sets etc. that has been
used in our metalogical treatment is consistent, then by Corollary 3 above
we have secured all our meta-results about our Logic using the same as
our metuLogic!
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