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NATURAL DEDUCTION AND SEQUENT CALCULUS
FOR INTUITIONISTIC RELEVANT LOGIC

NEIL TENNANT

Relevance logic began in an attempt to avoid the so-called fallacies of relevance.
These fallacies can be in implicational form or in deductive form. For example,
Lewis’s first paradox can beset a system in implicational form, in that the system
contains as a theorem the formula (4 & ~A4) — B, or it can beset it in deductive
form, in that the system allows one to deduce B from the premisses A, ~A.

Relevance logic in the tradition of Anderson and Belnap has been almost
exclusively concerned with characterizing a relevant conditional. Thus it has
attacked the problem of relevance in its implicational form. Accordingly for a
relevant conditional — one would not have as a theorem the formula (4 & ~A)
— B. Other theorems even of minimal logic would also be lacking. Perhaps most
important among these is the formula (4 — (B — A)). It is also a well-known feature
of their system R that it lacks the intuitionistically valid formula (4 v B) & ~A4)
— B (disjunctive syllogism).

But it is not the case that any relevance logic worth the title even has to concern
itself with the conditional, and hence with the problem in its implicational form. The
problem arises even for a system without the conditional primitive. It would still be
an exercise in relevance logic, broadly construed, to formulate a deductive system
free of the fallacies of relevance in deductive form even if this were done in a
language whose only connectives were, say, &, v and ~. Solving the problem of
relevance in this more basic deductive form is arguably a precondition for solving it
for the conditional, if we suppose (as is reasonable) that the relevant conditional is to
be governed by anything like the rule of conditional proof. To assert the relevance
conditional 4 — B, one will have to be able relevantly to prove B from A; and
characterizing the notion of relevant deduction appealed to here is no more than
what I have called the problem of relevance in its deductive form.

So it is the problem in its deductive form to which the present paper is addressed.
Moreover, as the title indicates, I am concerned with relevantising intuitionistic
logic. I do so by applying a method already developed for relevantising classical
logic in Tennant [1984].

But first, a word on notation. If X is a finite set of sentences and A is a sentence,
X:A will be the sequent or argument with premisses X and conclusion A. If a system
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666 NEIL TENNANT

is said to contain X:A then this means that A4 is deducible from X in the system. I
shall be considering systems of natural deduction and of sequent proof. A natural
deduction system contains X:A if and only if there is a natural deduction in the
system whose conclusion is 4 and whose undischarged assumptions form the set X.
A sequent system contains X: A4 if and only if there is a proof in the system whose
bottom sequent is X: 4. Itis important to understand that what is commonly known
as the rule of cutis a rule that belongs only to sequent systems. It has no place at all in
a system of natural deduction. The rule of cut for a sequent system directly expresses
and ensures the unrestricted transitivity of deduction within that system. For
example, the rule of cut for intuitionistic logic is the sequent rule

XA A Y:Z 7 inel

X1z empty or a singleton.
In a system with such a rule of cut any two sequent proofs of the top two sequents
can be brought together, with a terminal application of the rule, so as to form a
sequent proof of the bottom sequent in the rule.

By contrast, for a natural deduction system (such as for minimal, intuitionistic or
classical logic), in which cut is not a rule, the unrestricted transitivity of deduction
amounts just to this: if one has a deduction D’ of Bfrom Y, 4 and a deduction D of A
from X, then the result of grafting D on top of undischarged occurrences of the
assumption A4 in D’ is a deduction, in the system, of B from X, Y:

X
D
Y,(A)
iy
B

An important part of the investigations in this paper will concern how to contain
the loss of transitivity in a sequent formulation if one gives up the unrestricted
transitivity ensured by the cut rule; and, correlatively, how to contain the loss of
transitivity in a natural deduction formulation if one defines natural deductions so
that one no longer has the guarantee in general that the process of accumulating
deductions as just described always results in something that counts as a deduction
in the new system. This would be the case, for example, if it were a requirement in the
new system that all deductions be in normal form. A deduction is in normal form if
and only if it contains no sentence occurrence standing both as the conclusion of an
introduction rule and as the major premiss of the corresponding elimination rule.
An occurrence of this kind is said to be maximal. In the last figure, for example, some
occurrence of A4 at a point of grafting might be maximal; and the figure accordingly
would not count as a well-formed deduction in a system with the normality
constraint just described. In the natural deduction system for intuitionistic relevant
logic to be given below, we shall be imposing just such a normality constraint.
Reasons for doing so will emerge in due course. The normality constraint is just one
of the reforms that I shall be pursuing for the sake of relevance. Similar reforms will
be undertaken in the sequent system.
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The main result of this paper is that the resulting reformed systems agree on their
deducibility relations. This is evidence that the motivation behind the reforms is
natural. Furthermore I shall prove results that show that the amount of transitivity
surrendered in the process is of minor consequence, compared to the relevantist
epistemic gains to be had from its local failures.

In order to motivate my approach further, and to contrast it with that of
Anderson and Belnap and others, it is worth looking at a simple “proof” of the first
Lewis paradox in its deductive form.

The proof purports to show that one can deduce any conclusion B from the
inconsistent set of premisses A, ~A. Informally, it runs as follows:

1. Assume A.

2. Then, by v-introduction, A v B (from 1).

3. Now assume ~A.

4. Then, by disjunctive syllogism, B (from 2, 3 and hence, ultimately, from 1, 3).

In tree form, the argument could be represented as the result of grafting the one-
step deduction

A
Av B

onto the one-step deduction

Av B ~A
B

in order to obtain B “overall” from A, ~A4:

Now let us suppose one has no objection to the step of v-introduction. Then, in
order to reject the overall fallacy of inferring B from A4, ~ 4, there are two options to
consider:

1. Reject disjunctive syllogism.

2. Reject transitivity of deduction.

Anderson, Belnap and others opt for (1). They seek to retain unrestricted
transitivity of deduction at all costs. Relevance logic has since become bound to the
orthodox presupposition that the deducibility relation should be unrestrictedly
transitive.

But it is worth examining option (2) more closely in the light of our exercise above
with the proof of the first Lewis paradox. Note that each of the two little deductions,
before grafting, had this property:

its conclusion is not a logical truth and its undischarged assumptions
form a consistent set

But the overall deduction, after the grafting, did not have this property; for the newly
accumulated assumptions A, ~A form an inconsistent set.
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Moreover, a simple procedure brings out this inconsistency explicitly. First, take
the overall figure after the grafting, and supply the missing detail in the step of
disjunctive syllogism:

1_

where A is the absurdity symbol and the occurrences of the numeral 1 indicate
discharge of assumptions by v-elimination.

Note that the occurrence of 4 v B in this figure is maximal. Now apply the
reduction procedure for v in order to get rid of it. The result is

A ~A
A

B

Now shed the terminal application of the absurdity rule. The result is

A ~A
A

which is the explicit demonstration of inconsistency promised.

In this simple and degenerate case we have an illustration of what is generally the
case: one can normalise and relevantise any deduction so as to obtain one ending
either with the original conclusion or with 4, and with all undischarged assump-
tions among the originals. The detailed statement of the general result is given in
Theorem 1 below.

The idea that naturally occurs in the light of these considerations is that one could
pursue option (2) in such a way that transitivity of deduction fails only when the
grafting does not preserve the property formulated above. It turns out that there is
a very natural system of classical relevance logic with just this feature. It was
investigated in Tennant [1984]. In this paper I investigate its intuitionistic analogue.

My main result, Theorem 4 below, is the coextensiveness of a sequent formulation
and a natural deduction formulation of a new logic. I call it intuitionistic relevant
logic (IR). The coextensiveness of the two formulations is what permits me to refer
to the system simply as IR, rather than as SIR (for the sequent system) and NIR (for
the system of natural deduction).

IR has classical versions in both the sequent formulation and the natural
deduction formulation. The classical sequent version SCR is obtained from the
sequent formulation of IR by simply allowing more than one formula to appear in
sequent succedents. SCR was investigated in Tennant [1984]. The classical natural
deduction version NCR would be obtained from the natural deduction formulation
of IR by adopting a classical rule of reductio. It remains to be proved that SCR and
NCR are coextensive. On the basis of the main result in this paper I conjecture that
they are. Henceforth by CR I shall mean SCR.
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That the systems IR and CR earn the title of relevance logics follows from the
obvious failure in both systems of the Lewis paradox A, ~A:B. This result is
immediate by inspection of the rules of the systems. It was first noted for the classical
sequent system CR in Tennant [1984].

But note that in the acronyms CR and IR the letter R is semantically inert! CR
differs from the well-known relevance logic R of Anderson and Belnap in important
respects. IR differs in the same respects from Dosen’s intuitionised version of R.
These respects are:

1. CR and IR contain disjunctive syllogism (4 v B, ~A:B); whereas neither
Anderson and Belnap’s system R, nor Dosen’s intuitionised version of R, contains
disjunctive syllogism.

2. The latter two systems enjoy unrestricted transitivity of deduction. But in CR
and IR transitivity does not hold unrestrictedly.

A counterexample to unrestricted transitivity in IR is the following. In IR one can
prove both 4:4 v Band A v B, ~A:B. By transitivity (cut) one would expect to be
able to prove A, ~A:B. But one cannot. (Why this is so will become clear later.) This
failure of transitivity, however, is desirable for the relevantist, who would not wish to
obtain B from the inconsistent set of premisses 4, ~A. Moreover, one can show, at
least for the language based on ~, v,&,3 and V (without the conditional), that
transitivity in general fails only where it ought to fail. The metatheorem for IR that
shows this is the following, corresponding to the metatheorem proved for CR in
Tennant [1984]:

Suppose the language contains only the logical operators ~, v, &, 3, V.
Then every intuitionistic proof of X:Y can be converted into a proof in
IR of X": Y’ for some subsets X', Y’ of X, Y respectively. (Remember Y is
empty or a singleton.)

This has the following immediate corollaries, for the language based on ~, v, &, 3
and V, corresponding to similar results for the classical version in Tennant [1984]:

(i) Every intuitionistically inconsistent set can be proved inconsistent in IR.

(ii) Every intuitionistic logical truth is a theorem of IR.

(iii) Every intuitionistic consequence of an intuitionistically consistent set can be
deduced from it in IR.

Both the metatheorem above and the three corollaries fail if the conditional is
primitive in the language. A counterexample to the metatheorem and to corollary
(iii) would be the obvious intuitionistic proof of ~A4:4 — B. There is no proof of
this result in IR, nor, obviously, of ~A4: , :4 — B, or the empty sequent. A
counterexample to corollary (ii) would be ~A4 — (4 — B), and a counterexample to
corollary (i) would be ~(~A — (A — B)).

It remains to be seen what results in the neighbourhood of this metatheorem and
its corollaries could be recovered for the full language in which the conditional is
primitive.

The main result mentioned above, however—the coextensiveness of the sequent
formulation and the natural deduction formulation of IR—is obtained for the full
language with a conditional. In fact, it holds for both a weak conditional and a
strong conditional. The weak conditional does not require the antecedent to have
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been used as an assumption in conditional proof; the strong conditional does.
Accordingly, B:4 — B holds for the weak conditional but not for the strong
conditional.

In Tennant [1984] I gave a natural semantics for the classical system CR without a
conditional. I showed that its provable sequents are exactly the entailments. An
entailment is a substitution instance of a perfectly valid sequent. A perfectly valid
sequent is one which is (classically) valid but which ceases to be so upon removal of
any of its member sentences. It remains to be seen whether and how that semantics
might be adapted to the intuitionistic system IR without a conditional. I conjecture
that simply substituting “(intuitionistically)” for “(classicaily)” would do. Thus I
conjecture that in the intuitionistic system IR without a conditional the provable
sequents are exactly those that are substitution instances of intuitionistically valid
sequents that cease to be intuitionistically valid upon removal of any of their
member sentences. If this conjecture is correct, it would then remain to be seen
whether the respective intuitionistic and classical semantics for the relevance
systems without a conditional could be extended so as to deal with a conditional.

But for the present my concerns are entirely proof-theoretical. I am in part
following a suggestion put to me by Horst Luckhardt: that any significant
“syntactic” notion of relevance should permit generalisation to the usual inference
rules for the conditional. The main result shows that simple changes made to either
the sequent formulation or the natural deduction formulation of intuitionistic logic,
motivated by the same concern to avoid Lewis’s paradox 4, ~A:B and its close
cousin 4, ~A:~ B, but to retain disjunctive syllogism 4 v B, ~A:B, give rise to the
same relation of deducibility in the full language containing the conditional as a
primitive. It suggests that the system of intuitionistic relevant logic is especially
natural.

For reasons explained in Tennant [19797, [ 19807, if one wishes to avoid proofs of
Lewis’s paradox A, ~A4:B and its close cousin A, ~A4:~B in the natural deduction
system, one must

(a) ban applications of the absurdity rule 4-,

(b) insist that proofs be in normal form, and

(c) insist that discharges should not be vacuous in applications of ~E, VE and
JE

Reasons for (a), (b) and (c) are the following “proofs” of the first Lewis paradox A4,
~A:B or of the closely related A, ~A4:~ B that could be constructed by violating (a),
(b) and (c) respectively:

A ~A

A
B

(application of absurdity rule),
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(maximal occurrence of 4 & B; proof not in normal form), and

A ~A
A

~B

(application of ~ I with vacuous discharge of assumption).

Once we have imposed restrictions (a), (b) and (c), then we can recover disjunctive
syllogism in the intuitionistic case by liberalizing v E (proof by cases) in the way to
be stated below.

Similarly, for reasons explained in Tennant [19847], if one wishes to avoid proofs
of A, ~A:B and A, ~A:~B in the sequent system, one must ban cut and ban thin-
ning. If we do not, we will be able to construct the following sequent proofs:

AA
A:A A, ~A: B:B
A:Av B Av B, ~A:B

t
A, ~A:B (cut),
A:A
A, ~A: L.
A ~AB (thinning).

Once we have banned cut and thinning, then we can ensure that we have disjunctive
syllogism by choosing carefully the particular form in which we state the sequent
rule for introducing v on the left. One further result of this choice is that we can
prove A v (B & ~B): A. Similar careful choice of the form of the sequent rule for
introducing & on the right ensures that we still have 4, B:4 & B.

All these ingredients now appear in the statement below of the rules for both the
natural deduction version of IR and the sequent version of IR.

The information already provided about what is and is not provable in IR serves
to locate IR with respect to other well-known systems as follows:

Classical logic contains ~ ~A:A4; IR does not

Intuitionistic logic contains 4, ~A:B; IR does not

Minimal logic contains A, ~A:~B; IR does not

Minimal logic does not contain 4 v (B & ~B):A; IR does

The relevance logic R of Anderson and Belnap, and Dosen’s intuitionised version
of it, and even Anderson and Belnap’s logic of first degree entailments do not contain
A v B, ~A:B; IR does

For all these other logics, the cut rule

XA AYZ
X,Y:Z
is admissible, in the sense that if there are proofs of the top sequents then there are

proofs of the bottom sequent. This holds quite generally, for all X, Y, (singleton or
empty) Z and A. For IR it is not admissible. There are some such X, Y, Z and 4 such
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that there are proofs in IR of the top sequents, but no proof in IR of the bottom
sequent.

The picture that therefore emerges is that IR, like minimal logic, is properly
contained in intuitionistic logic. And IR overlaps with minimal logic. But it differs
from all other known relevance logics by retaining disjunctive syllogism at the
expense of (controlled) loss of transitivity.

Natural deduction formulation of IR. In all applications of the introduction rules
that follow, the conclusion is said to be introductory in nature. In all applications of
the corresponding elimination rules, it is required that the major premiss not be
introductory in nature. In applications of v -Elimination and 3-Elimination, if C is
introductory in nature as a subordinate conclusion, then it is introductory in nature
at its occurrence as the main conclusion of the elimination. Henceforth “MPE” will
abbreviate “major premiss for an elimination”.

In all applications of rules in which discharge is indicated, the discharge is
obligatory. That is, there must be an undischarged occurrence of the assumption of
the indicated form on which the subordinate conclusion depends. Upon application
of the rule all such occurrences must be discharged.

Included within the scope of this last requirement is the introduction rule for the
conditional. The requirement makes it the strong conditional referred to above. If
we relaxed the requirement just for this rule, we would obtain the weak conditional.
In the interests of uniformity I shall treat of the strong conditional.

Our overall restrictions ensure that every natural deduction is in normal form;
that it contains no applications of the absurdity rule (since that rule is absent from
the list below, and the discharge requirement on negation introduction prevents it
from having applications which could be construed as applications of the absurdity
rule); and that it contains no vacuous discharges. (In a deduction in normal form no
sentence occurrence is both the conclusion of an application of an introduction rule
and the major premiss of an application of the corresponding elimination rule.)

I shall adopt the obvious notation &I, &E, etc. for these introduction and
elimination rules. Note that, as explained in Tennant [1978], the rules in a system of
natural deduction correspond to clauses in an inductive definition of the notion “P
is a proof of A from the set X of undischarged assumptions”. The basis clause is that
any occurrence of A is a proof of A from singleton 4. In a system of natural
deduction there is no need for any rule of cut: what transitivity of proof there is, is a
byproduct of the inductive definition of proof just mentioned. Note also that A, the
absurdity constant, appears only on its own as a line in a proof; it never occurs as a
subformula (nor, therefore, as a formula).

Inconsistency of X is established in a system of natural deduction by giving a
deduction of A from X; while it is established in a sequent system by giving a sequent
proof of X: (that is, X:(¥, where (J is the empty set). Theoremhood of A is
established in a system of natural deduction by giving a deduction whose conclusion
is A and whose assumptions have all been discharged by the end of the deduction;
while in a sequent system it is established by giving a sequent proof of  :4 (that is,
of &¥:A).

I shall now state the rules of natural deduction for IR in schematic form, and then
give some examples of how they are to be understood as clauses in the inductive
definition of proof.
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Introduction rules Elimination rules
—()
A
A ~A
A A
)
A B A&B A&B
A& B A B
S () B ()
A B
A B : :
AvB AvB AvB A/C_AC .
A/C

[In the statement of v E the slash notation A/C is to be understood as follows: we
allow a subordinate conclusion of either one of the cases to be brought down as
main conclusion if the other subordinate conclusion is A. Of course, if both subor-
dinate conclusions are of the same form, the main conclusion has the same form.]

A
: A A-B
B . B
—— (i)
A—- B
VxAx
: At
Aa )
VxAx Aa
At dxAx B .
TxAx g W

In VI, a does not occur in any assumptions on which 4a depends, and in 3E, a does
not occur in dxAx, B, or in any assumption other than Aa, on which the upper
occurrence of B depends.

I shall now illustrate how these rules are to be understood as clauses in the
inductive definition of proof, in the context of the normality constraint and the ban
on vacuous discharge. I shorten “D is a deduction of A from X to “ded(D, 4, X)”.

&-introduction should be understood as follows: If ded(D,,A4;,X,) and
ded(D,, A4,, X,), then

D, D
ded( —2-—2.4, & 4
e <A1&A2’ 1 & A, X, qu),

and the conclusion 4, & 4, is introductory in nature.
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&-elimination should be understood as follows: If ded(D, A, & A,, X) and the
conclusion A; & A, is not introductory in nature [normality constraint!], then

D
—, A, X
ded(AA’A” >

]

and the conclusion 4; is not introductory in nature.
~-introduction is to be understood as follows: if ded(D, A, X) and A is in X [ban
on vacuous discharge!], then

ded<%, ~A X — {A})

and the conclusion ~4 is introductory in nature.
The reader will now be able to supply similar clauses for the remaining rules.
Note the following simple example of how transitivity fails, given the restrictions
we have imposed on the application of rules. We have proofs

but it is easy to see by inspection of the rules that there is no proof of B from A, ~ A.

Our restrictions on proofs, for intuitionistic relevant logic, that they be in normal
form, results in no loss as far as the deducibility relation is concerned. For the
normalization theorem (Prawitz [1965]) states that every intuitionistic natural
deduction can be converted into one in normal form, of the same conclusion and
from (possibly a subset of ) the same premisses. So loss of deducibility, if incurred at
all, would have to be the result of the other restrictions we have imposed on proofs in
intuitionistic relevant logic: the ban on the absurdity rule, and the ban on vacuous
discharge of assumptions. How serious is this loss? The answer, given by the
following theorems, is that it is not serious at all.

THEOREM 0. For the language based on ~, v, &, 3 and YV (with the conditional
missing), every intuitionistic natural deduction of C from X that is in normal form can
be converted into a natural deduction in IR of either A or C from some subset of X.
Moreover, if the conclusion of the IR deduction is C, then it is not introductory in
nature if the conclusion of the original intuitionistic deduction is not.

PrOOF (by induction on the length of intuitionistic natural deductions in normal
form). The only case that requires care is that where the intuitionistic deduction ends
with v E. The complication that would arise is that the IR deductions guaranteed by
the inductive hypothesis for the two subordinate case-proofs may not have the same
conclusion. One may end with A and the other may end with the conclusion B of the
original subdeduction. But our rule of v E in IR is designed to cater for just such an
outcome. The remaining cases, where the intuitionistic deduction ends with some
rule other than v E (including the absurdity rule) are easy to deal with. The method
is essentially that of the proof of the extraction theorem in Tennant [1980].
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Combining this result with the normalisation theorem, we have immediately

THEOREM 1. For the language based on ~, v, &, 3 and V (with the conditional
missing), every intuitionistic natural deduction of C from X can be converted into a
. natural deduction in IR of either A or C from some subset of X.

Theorem 1 (and, equally well, its counterpart theorem for the sequent calculus,
which we shall prove as Theorem 2 below) serves as the metatheorem mentioned
above, with the three corollaries discussed there.

We now proceed to develop a structural idea regarding natural deductions in IR
that is of use in the proof of Theorem 3 below.

Any deduction ending with an application of an elimination rule possesses a
spine: that unique sequence of occurrences of MPE’s ending with the bottommost
one (immediately above the conclusion of the deduction) and choosing as the
immediately preceding one (if there is one) the one immediately above the one last
chosen. Note that the only elimination rules that permit discharge of assumptions
(namely v E and 3E) only ever discharge assumptions on which the minor premisses
of such applications depend. They do not discharge any assumptions on which their
major premisses depend.

Thus suppose MPE,, MPE,,...,MPE, is a spine with MPE, as the last one
immediately above the conclusion of the deduction. Suppose that each MPE, rests
on the set X; of undischarged assumptions. Suppose further that X is the set of
undischarged assumptions of the whole proof. Then by the last remark, X, < X,
c - < X, € X. Note also that X, = {MPE, }. Note moreover that if MPE; is of
the form ~ A, then the spine ends on MPE;; that is, negations can only be terminal
(that is, bottommost) members of spines. This is because, obviously, A cannot be an
MPE.

Example
Vz(Pz > (Q & 3xAx)) | [MPE,] (1)  Vx(Ax—>Bx) X, = {Vz(Pz > (Q & IxAx))}
Pt Pt—(Q&3xAx)  [MPE,] Aa Aa— Ba X, =X,
Q& IxAx | [MPE, ] Ba X,=X,u{Pt)
IxAx . ... .. [MPE,] IxBx (1) X=X,
IxBx X = X; u {Vx(Ax > Bx)}

Note that this is a natural deduction built up in accordance with the introduction
and elimination rules which, as illustrated above, correspond to clauses in the
inductive definition of what counts as a deduction in the system. The deduction just
given does not contain any step that can be construed as an application of the cut
rule. The cut rule has its proper place in the sequent version of any logic whose
deducibility relation is to be unrestrictedly transitive. To the development of
sequent rules [ now turn; and, it is important to note, the cut rule is missing from the
system of sequent rules that I shall formulate. The sequent rules of IR are the rule of
initial sequents in the restricted form A4:4 (rather than the liberal form X:4 for 4 in
X); and rules for introducing logical operators on the right and on the left of
sequents. After stating the rules I shall use them to give a (cut free!) sequent proof
corresponding to the natural deduction above.

Sequent rules for IR. As in Tennant [1984], X and Y are sets of sentences in the
sequent X:Y. Furthermore, Y is empty or a singleton. Since we are dealing with sets
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and not sequences as antecedents and succedents of sequents, there is no need for
such structural rules as permutation and contraction. Indeed, there is only one
structural rule in IR, and that is the rule of initial sequents, 4:4, where 4 is a
sentence. I shall denote the union of X and Y by “X, Y”, and shall shorten “X, {4}”
to “X, A”.

The remaining rules of IR are for introducing logical operators into bottom
sequents, both on the left and on the right of the colon. I shall call these rules &L,

&R, etc. They are as follows.

Right Left

X, A: X:A
, . i X

X <A where A is not in HX, "y

X:A Y:B X, AY X,BY

X,Y:A&B X,A&BY X A&BY
X:A X:B X,AY Z,B.W

X:Av B X:Av B X,Z,Av B:Y, W

where the union of Y and W has at
most one member.

X, A:B where 4 is not in X XA BZ:W
XA>B ¢ X,Z, A B:W

The rule of —R here is for the strong conditional. The weak conditional would be
obtained by keeping — L as it stands, but relaxing the rule —-R to

X:B
X - {A}:A->B’

To complete our list of sequent rules, the ones for the quantifiers are:

X:Aa  where a does not occur X, AtY
X:VxAx inany member of X X, VxAx:Y

X:At X,Aa:Y where a does not occur in any
X:3xAx X,3xAx:Y sentence in the bottom sequent.

This completes the statement of sequent rules for IR.
We can illustrate them by giving a sequent proof of the same example for which
we gave a natural deduction earlier, when illustrating the notion of spine. The
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sequent proof would be

Aa:Aa Ba:Ba —-L

Aa, Aa — Ba:Ba VL

Aa,Vx(Ax — Bx):Ba IR
Aa,Vx(Ax — Bx):IxBx L
IxAx,Vx(Ax — Bx):3xBx &L

Pt:Pt Q & 3IxAx,Vx(Ax — Bx):3xBx —-L
Pt, Pt - (Q & 3xAx),Vx(Ax — Bx):3xBx VL

Pt,Vz(Pz - (Q & 3xAXx)),Vx(Ax — Bx):3xBx

Note that this sequent proof has no applications of the cut rule, which is banned
from our system. Our task will be to show quite generally how a sequent proof of the
sequent X:A4 can be obtained from a natural deduction of A from the set X of
undischarged assumptions. This task is solved by Theorem 3. As we shall see later
from the method of proof of Theorem 3, it is no accident that the ordering of L-rules
in the last four steps here should be the same as the ordering of eliminations down
the spine of the natural deduction given earlier. A similar observation applies to the
top two steps, and the spine of the subdeduction with conclusion Ba in the earlier
example.

The sequent calculus just given for IR can be extended to one for intuitionistic
logic by adopting the extra rules of thinning on the left and thinning on the right (cf.
Dummett [1977, pp. 133—134]). Thinning is also known as dilution:

X: XY
X:A X,AY

THEOREM 2. For the language based on ~, v, &, 3 and ¥ (without the conditional ),
if X:Y is provable in the sequent calculus for intuitionistic logic, then for some subsets
X', Y' of X, Y respectively, X":Y" is provable in the sequent calculus for IR.

PROOF. Straightforward by induction on the length of proofs in the sequent
calculus for intuitionistic logic, and by inspection of the sequent rules for IR. The
method is essentially that of the proof of the dilution elimination theorem in
Tennant [1984].

Theorem 2 is the counterpart, for the sequent calculus, to Theorem 1 above for the
natural deduction system. In the light of Theorem 4 below, which establishes the
coextensiveness of the natural deduction formulation and the sequent formulation
of IR, we can regard Theorems 1 and 2 as equivalent versions of the metatheorem
stated above, which had the three corollaries discussed there.

It is easy to turn a sequent proof in IR into a natural deduction in IR of the same
result—cf. the remark in Prawitz [1965, p.91] concerning intuitionistic logic.
Combining this observation with Theorem 3 below, we shall have our main result:

THEOREM 4. The natural deduction formulation and the sequent formulation
determine the same logic IR.

The reason why care is needed in the proof of Theorem 3 below is that we have
defined sequent proofs in IR in such a way that they are not allowed to contain any
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applications of the cut rule. We therefore cannot avail ourselves of the usual method
of transforming natural deductions into sequent proofs. This method involves
liberal use of the cut rule when forming the desired sequent proofs from sequent
proofs already available by inductive hypothesis (cf. Gentzen [1969, Section V,
§4, pp. 120-123: transformation of an NJ-derivation into an equivalent LJ-
derivation]. Instead we have to devise a more direct method of transforming natural
deductions into sequent proofs. The method in the proof below generalises that in
Prawitz [1965, pp. 92-93] for converting natural deductions into sequent proofs.
The cases where the natural deduction ends with v E or JE were not treated
explicitly by Prawitz. I owe this extension of his method to Peter Schroeder-Heister.
It simplifies an earlier proof of mine using a somewhat different method.

THEOREM 3. Every natural deduction P in IR of C from X can be converted into a
sequent proof in IR of X:C

ProoF (by induction on the number of applications of rules of inference in P). The
basis is obvious by the rule of initial sequents. Assume the inductive hypothesis that
the result holds for all natural deductions simpler than P. The inductive step falls into
cases according to the rule last applied in P.

If P ends with an introduction, then apply the corresponding R-rule to the sequent
proofs guaranteed by the inductive hypothesis for the subordinate deductions for
the introduction.

If P ends with an elimination, then focus on the topmost MPE of P’s spine. P will
have one of the forms displayed on the left below. In each case the displayed formula
with the logical operator is the topmost MPE of the spine. Moreover, the set X of
undischarged assumptions of P is that formula, plus the union of the displayed X;.
By the inductive hypothesis we assume for each subordinate deduction P, a
corresponding sequent proof S;. The inductive step in each case is then to form for P
the sequent proof displayed on the right by means of an application of the
corresponding L-rule:

X, S,
P, X:A
A ~A X, ~AT
A
VxAx M
At, X, X,,At:C
P, X,,VxAx:C
C
X, S, S,
P, X;:A X,,B:C
A A-B X,,X,,A—- B:C
X,, B
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A & A, S,
A, > X, X, A:C
P, X,,A, & A4,:C
C
(1)
Aa, X, S
P, X,,X,, Aa:C
IxAx B i) X,,X,,3xAx:C
X,, B
P,
C

Aa, X,
Py
X,,B
P,
C
(i ()
X17A1 Xza A2
P, P, Sy S,
A, v A, A D (i) X, A X,,X5,A4,:C
D ., X3 X, X5, X5,A4, v A,:C
Py
C
where S, corresponds by IH to
XZ’AZ
P,
X5,D
Py
C

and similarly for the cases where P, ends with D and P, ends with A, where both P
and P, end with A, and where both P, and P, end with D. This completes the proof.
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