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DEDUCTIVE VERSUS EXPRESSIVE POWER:
A PRE-GODELIAN PREDICAMENT?*

here is a distinguished branch of inquiry which goes back to

antiquity and captivates the imagination even today. It began

with Euclid of Alexandria, and over two millenia later ran into
difficulties posed by the foundational work of the great twentieth-
century logician, Kurt Godel—even though, somewhat ironically,
Godel himself ranks as an arch proponent of the branch of inquiry in
question. It is called monomathematics, a term to be made more precise
presently. Suffice it to say at this stage that success in monomathemat-
ics requires both expressive power (the power to describe structures
exactly) and deductive power (the power to prove whatever follows
logically from one’s description).

L. INTRODUCTION
The main question is this. Why was the logical community so slow to
realize that monomathematics—the combination of these expressive
and deductive aspirations—was impossible?’ Why was it only some

*An earlier version of this paper was presented to the 1998 Logic and Language
Conference in London. I am grateful to the organizers, Barry Smith, Tim Crane,
and Gabriel Segal for their hospitality. A later version was presented at the Center
for Philosophy of Science, University of Pittsburgh. The paper owes much to helpful
comments and suggestions from Steve Awodey, Solomon Feferman, Torkel Fran-
zen, Harvey Friedman, Akihiro Kanamori, Moshé Machover, Stewart Shapiro, and
Wilfried Sieg.

! The impossibility claim is not that a number theorist, say, would be wrong to
maintain that there is a unique structure of natural numbers. A number theorist
could well maintain such a thing. But in order to exclude nonstandard structures as
possible interpretations of his theory, he would have to formulate that theory in a
sufficiently expressive language. But then that language would fail to enjoy a
sufficiently powerful logic, that is, a deductive system enabling one to prove any
consequence of what the theorist claims. This is but one illustration of the sense in
which monomathematics turns out to be impossible.
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time after Godel’s work that it dawned on philosophers, logicians,
and mathematicians that the naive ideals were self-defeating and that
there were certain inevitable limits to the combination of expressive
power in one’s mathematical language and deductive power in its
underlying logic? Indeed, why was this not apparent even before the
1920s? Why did Godel have to prove such deep and difficult results to
make the lesson sink in, when the lesson could have been learned, in
a stark and stripped-down form, years earlier??

My aim is not so much to answer these questions as to show that the
puzzlement they express is justified. The intrinsic limitations on
monomathematics as a combined expressive and deductive venture
are almost immediate, I shall show, upon simple reflection on two
central concepts: proving a result conclusively, and describing something
exactly. The interplay between these two concepts leads to what I call
the noncompossibility theorem, which poses an insuperable difficulty for
monomathematics, because it tells us that it is impossible to achieve
the combined ideals of exact description and exhaustive deduction.

The noncompossibility theorem shares an interesting feature with
other results that have reforged concepts and reshaped philosophical
and mathematical inquiry. What come to mind here are the proof in
antiquity that V2 is not rational, and the subsequent realization of
the peculiar richness of the continuum; the liar paradox, and the
resulting objectlanguage/metalanguage distinction; Russell’s para-
dox, and the subsequent shift from a logical conception of set to the
mathematician’s iterative conception; and Cantor’s theorem, with its
resulting proliferation of higher infinities. As with these other well-
known results, the proof of the noncompossibility theorem takes less
than half a page. It involves an utterly simple construction, and it uses
apparently unproblematic conceptual materials. It takes some time
for the result to sink in; and when it does finally sink in, it causes a
sinking feeling.

The noncompossibility theorem could have been stated and
proved by the end of World War I. For both ingredient concepts—
categoricity of theory, and completeness of a system of proof—were
well in place by the winter of 1917/18. It is tempting to suggest that,
had the theorem been stated in timely fashion, both logical positivism

2 For an example of a recent exposition that appeals to Godel’s completeness and
compactness theorems for first-order logic, and his incompleteness theorem for
firstorder arithmetic, in order to develop the tension between categoricity and
completeness (for the theory of [the ordering of] the natural numbers), see S.
Read, “Completeness and Categoricity: Frege, Godel and Model Theory,” History
and Philosophy of Logic, Xvi11, 2 (1997): 79-93. The tension, however, can be brought
out more simply and more deeply, without prior knowledge of Godel’s results.
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and Hilbert’s program might have been affected. Knowledge of the
noncompossibility theorem would have preempted, for example,
important conceptual confusions or conflations both in Rudolf Car-
nap’s 1927 paper “Eigentliche und uneigentliche Begriffe,”® and in
David Hilbert’s* 1928 address to the International Congress of Math-
ematicians in Bologna. But it is impossible here to pursue any coun-
terfactual speculations about the development of foundational
thought, or to elaborate a really detailed historical case for the claim
that the two ingredient concepts had been satisfactorily isolated. This
is primarily a conceptual study; historical details will be adduced only
to heighten the interest of the investigations.

II. MONOMATHEMATICS VERSUS POLYMATHEMATICS

Any mathematician is easily apprised of the difference between two
kinds of mathematics. Monomathematics is the mathematics of a
unique structure. Examples would be: the theory of natural numbers,
the theory of the rationals, the theory of the real-number line, and
the theory of the usual algebraic operations on the complex plane. In
each case, the mathematician has a unique structure in mind (often
called the intended structure), and is trying to articulate as compre-
hensively as he can the interesting truths about it. He wants to exhibit
them all as true statements concerning the intended structure.

Polymathematics, by contrast, is the mathematics of structures enjoy-
ing some definable structural affinity. Examples would be: groups,
rings, and topological spaces. In each case, the mathematician has a
variety of structures in mind, which all have one crucial thing in
common. They all satisfy a particular collection of axioms pinning
down certain structural features: the axioms for groups, the axioms
for rings, the axioms for topological spaces, and so on. In each case
here, the mathematician is interested not only in the logical conse-
quences of the (underspecific) set of axioms characteristic of these
structures, but also in various embeddings of any one such structure
into others within the same class of structures, and in the invariants
of such embeddings. The mathematics here is, as it were, more a
brand of model theory for the axiom set in question.

IIl. ON THE UNIQUENESS OF INTENDED STRUCTURES
A Platonic realist, such as Godel, takes himself to be engaged in some
sort of direct intellectual apprehension of the intended abstract

3 In Symposion: Philosophische Zeitschrift fiir Forschung und Aussprache, 1 (1927):
355-74.

4 “Probleme der Grundlegung der Mathematik,” Mathematische Annalen, C11
(1929): 1-9.
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structure. The sequence of natural numbers, the dense ordering of
the rationals, the hierarchy of the hereditarily finite pure sets, the
continuous ordering of the reals, and the complex plane—these are
structures for which one has an immediate and intuitive “feel” (or for
which one can acquire such a “feel” through appropriate training and
problem-solving practice). One thinks one can reason about each of
these structures in its own right. This is especially so with the countable
structures among those just mentioned—the natural numbers, the
rationals, and the hereditarily finite pure sets.

The conception of a unique intended structure is taken by some to
apply even in the case of the ultimately general mathematical theory,
within which (or in terms of which) many mathematicians believe it
possible to interpret every other branch of “more particular” mathe-
matical theorizing, namely, set theory. (Here, I mean the theory of
pure sets in general, not just the hereditarily finite ones.) Now, the
universe of sets—indeed, any model of set theory—does not, as will
become clear below, satisfy the hypotheses about models exploited by
the noncompossibility theorem. Therefore, the “uniqueness” of any
intended model for set theory is not really germane for establishing
the pre-Goédelian predicament—which, it is my purpose to show,
arises from the noncompossibility theorem. Nevertheless, it is inter-
esting and instructive to examine just how ambitious the expressive
ideal of monomathematics can be, insofar as it asserts uniqueness of
intended structure even in the case of the most populous abstract
universe, namely, that of all (pure) sets.

Here, it is worth recalling Goédel’s classic statement of his Platonic
realism. In “What Is Cantor’s Continuum Problem?”5 he wrote:

...set-theoretical concepts and theorems describe some well-determined
reality, in which Cantor’s conjecture must be either true or false. Hence
its undecidability from the axioms being assumed today can only mean
that these axioms do not contain a complete description of that reality
[emphasis added] (ébid., p. 260).

Note Godel’s choice of the anaphoric phrase ‘that reality’. He did not
write ‘any such reality’, despite the punctuation by the intervening
period. This textual evidence supports the attribution to Godel—well

5 In Kurt Godel: Collected Works, Volume II, Solomon Feferman et alia, eds. (New
York: Oxford, 1990), pp. 254-70. The original date of publication of this essay was
1964. The 1964 version was a revised and expanded version of the article by the
same title in American Mathematical Monthly, L1v (1947): 515-25. Note that the latter
postdates Godel’s proof of the consistency of the axiom of choice and the gener-
alized continuum hypothesis (1938).
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known as being very careful in his choice of words—of a conception
on which the sets form a unique intended structure.

The immediate context of the above quote is a conditional claim by
Godel. The material quoted above is preceded in his text by the
words:

..if the meanings of the primitive terms of set theory as explained
[earlier] are accepted as sound, it follows that the....

One could be convinced of the soundness of the axiomatic concep-
tion, however, by having in mind some model or other for the axioms
concerned, rather than by having intellectual access to an alleged
unique intended model. Why does Go6del here insist on the unique-
ness of ‘that reality’?

The classical polymathematician will say that any mathematical
statement, and a fortiori Georg Cantor’s conjecture, will have a
determinate truth value in any model (of the appropriate relational
type). What truth value this is will, of course, depend on what model
is in question. The same conjecture could be true in one model, and
false in another. And that, indeed, is precisely what is shown by the
combination of Godel’s and Paul Cohen’s® results establishing the
independence of Cantor’s continuum hypothesis (CH) from the usual
axioms of set theory. In the universe of constructible sets given by
Godel, CH is true; whereas in the universe given by Cohen, it is false.

In the essay cited, Godel went on to give reasons that, in his view,
supported the conjecture at the time of writing—a conjecture borne
out by Cohen’s subsequent result—that Cantor’s CH was unsolvable
on the basis of the usual axioms of set theory. Since Godel had
already proved the consistency of CH with the usual axioms, these
reasons had to indicate the consistency of its negation. Godel pointed
to various “highly implausible consequences” of CH. These were
consequences concerning subsets and mappings of the real line,
consequences “not known in Cantor’s time.”” The background as-
sumption to which the textual evidence points was clearly that, given
one’s monomathematical intuitions about the real line itself (a
unique structure), the counterintuitive character of such conse-

6See Godel, “The Consistency of the Axiom of Choice and of the Generalized
Continuum Hypothesis,” Proceedings of the National Academy of Sciences, U.S.A., XX1V
(1938): 556-57 (reprinted in Collected Works, Volume II, pp. 26-27); and Cohen,
“The Independence of the Continuum Hypothesis, I,” Proceedings of the National
Academy of Sciences, U.S.A., L (1963): 1143-48, and “The Independence of the
Continuum Hypothesis, II,” Proceedings of the National Academy of Sciences, U.S.A., L1
(1964): 105-10.

7 “What Is Cantor’s Continuum Problem?” p. 263.
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quences had to be construed as evidence that CH would be false in
the unique, intended model of set theory (within which would be a
copy of “the” real line).

What further reflections (on matters other than the textual
evidence) would justify this attribution, to Godel, of a monomathe-
matician’s expressive conception—a conception of the reals (re-
spectively, pure sets) as forming a unique structure—on the basis
of his view of certain consequences of CH as “implausible”? Godel
did not explicitly anticipate the possible objection, at this stage,
that a polymathematical attitude to “set-theoretic universes” would
be extensible (as needed, for internal consistency) to a similarly
polymathematical attitude toward allegedly nonisomorphic and
competing “systems of real numbers,” or “real lines,” thereby
blurring one’s claimed view of any privileged and unique “system
of real numbers” or “real line.”

Now, it may be suggested that this apparent failure to anticipate
such an objection stems from Go6del’s being satisfied that any such
implausible consequence ¢ of CH (modulo the currently accepted
axioms I') “should be false in any model that answers to our concep-
tion of the real line and its subsets, even if there is more than one
such model.”® But such a suggestion would not be well taken. To
show that this is so, I shall pursue a dilemma. I shall suppose, first,
that our “conception” is captured by the axioms I', and then show
that this supposition is untenable, because of a result due to Godel
himself. Next, I shall explore the other horn of the dilemma, by
supposing that our “conception” is not captured by I'. I shall argue
that, in this case, one confronts philosophical difficulties that are
probably insuperable and, in any event, highly likely to have deterred
Godel from taking that horn of the dilemma. The upshot will then be
that the suggestion just quoted cannot be sustained as an interpreta-
tion of Godel’s platonistic attitude.

So let us suppose, first, that the set I" of axioms already available to
express our conception of the real line and its subsets captures that
very conception. Thus, every model of the axioms I is supposed to
render the “implausible” statement ¢ false. Thus, those axioms T
would logically imply —¢. Hence, since those same axioms I', taken in
conjunction with CH, imply ¢—the results “not known in Cantor’s
time”—the axioms I' themselves would imply —CH. But Goédel did not
believe that the currently available axioms I decided CH negatively.

8 The suggestion giving rise to this dialectical twist is owed to an anonymous
referee, whose words are quoted here.
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On the contrary, he had already proved the consistency of CH with
those axioms.?

So the first horn is untenable; it is illicit to assume that for a model to
“answer to our conception” of the real line demands no more than that
it satisfy the currently available axioms I" expressing that conception.

Let us pass, then, to the second horn: let us assume now that the set
I' of currently available axioms does not capture our “conception” of
the mathematical structure(s) in question. On this new assumption,
our “conception” (or, more to the point, Gédel’s “conception”) of
the real line would be neither as specific as the intended structure itself,
nor as lax as the currently accepted axioms I' (which, however, the
conception would in some sense quasi-theoretically “extend”—that is,
all of I' would be true, according to the conception). Nevertheless
(according to the suggestion under consideration), the conception
would be exigent enough to admit only of such models as would
make the implausible statements ¢ false. Hence, by contraposition on

I CHF o

one could conclude to the falsity of CH in all models answering to
one’s “conception” of set-theoretic reality—yet without having to
“have in mind” a unique model answering to that “conception.”

The burden of semantic and metaphysical explication now falls on
the theorist favoring this second horn of the dilemma. What can such
a “conception” be, if it is neither the current axiomatic articulation I’,
nor (capable of determining) a unique intended structure itself?
Such a “conception” would be, currently, not fully expressed (since it
is supposedly more demanding than I') but, at the same time, not be
as determinate as, or able intensionally to determine, any unique
intended structure. Indeed, if to be intended is, in this context, to be
conceived, then there is no uniquely “intended” structure at all; rather,
one has at best a multiply satisfiable “conception” that nevertheless
goes beyond current axiomatic expression.

On this conception of “conception,” the burden is on the objector
to provide an account of their semantic and metaphysical status. Such
conceptions would have to reach beyond any current system of
axioms and guide all acceptable extensions thereof, and yet fall short
of determining any intended structure uniquely or of being any
unique intended structure. Such ‘conceptions’ would be intentional,
nonlinguistic, and irremediably indeterminate: a tall order for fur-
ther philosophical development.

9 “The Consistency of the Axiom of Choice and of the Generalized Continuum
Hypothesis,” p. 557.
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The objector’s suggestion, as quoted above, therefore does not
stand the test of reflection, once one pursues its broader philosoph-
ical consequences. When complaining of the implausibility of certain
known (mathematical) consequences ¢ of CH, Godel must after all
have been thinking of “the” real line and also of “the” universe of sets,
insofar as the latter has to contain a copy of “the” real line. Further
support for this conclusion derives from the fact (albeit one not
known to Godel) that no axiomatic extension of Zermelo-Fraenkel
set theory plus the axiom of choice, whether exploiting large-cardinal
axioms or exploiting axioms of determinacy for projective sets (or
even for ordinally definable sets), has succeeded in deciding CH (if
it is consistent). Some variants of large cardinal axioms—most nota-
bly ‘there exists a real-valued measurable cardinal’ or ‘the continuum
is real-valued measurable’—do imply the negation of CH; but they do
not command much support among set theorists as new axioms.?

No matter what further reasonably “evident” or independently
motivated axioms have been wrung from our “conception” of set-
theoretical reality, they have failed to settle CH—and, a fortiori, failed
to settle it as false. This is strong circumstantial evidence that the
appeal to a “conception” of the kind described two paragraphs back
is not vindicated by the activities of the minds presumably best
apprised of it. For, despite being less exigent than a unique intended
structure, the allegedly multiply satisfiable “conception” has failed to
deliver itself of the essential and salient common feature of all models
answering to it—to wit, that CH is false. A better way for any Platonist
to explain the elusiveness of CH would surely be to appeal to the
sheer structural complexities and intricacies of the unique intended
model, and the attendant difficulty of encapsulating, in any epistemi-
cally evident or accessible claims, what it is about the model that
makes CH false.

The case of Godel turns out, therefore, to be quite instructive for
the contrast that is my present theme. He is clearly the quintessential
monomathematician, at least in the “expressive” regard, insofar as his
conception of a unique structure guides his thinking in the most
foundational of all mathematical theories, namely, set theory itself.

I have pursued at some length the exegetical question of whether,
on the basis of a certain famous quotation, Godel can legitimately be
regarded as committed to the existence of a unique intended struc-
ture (for set theory) that somehow informs our theorizing about sets.
However the exegetical chips fall on this score, it is not essential, for

10T am indebted here to Harvey Friedman.
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my main theme here, to pin this view upon Gédel beyond all reason-
able doubt. For I am not indulging in any appeal to his authority; nor
am I at all concerned, as it happens, with the full universe of sets. The
noncompossibility theorem poses a predicament only for our thought
about certain kinds of countable mathematical structures, such as the
structure of the natural numbers. It is much more plausible to claim
that Gédel—and indeed, almost every platonistically minded mathe-
matician—regards the natural numbers as forming a unique, intended
structure. This is the structure which any mathematician takes him-
self to be talking about when engaged in arithmetical theorizing.!!

My particular interest in the analogous situation of Godel and set
theory was occasioned, first, by the sheer generality of set theory as a
foundation for all of mathematics, and, secondly, by the venerable
status that Godel enjoys as both arch-platonist and foundational
iconoclast. It is not essential to my main argument, however, to secure
general agreement with my characterization of Gédel’s platonism,
and least of all as the latter philosophical view concerns sets. All I
need is acknowledgment of widespread pretheoretical confidence in
“the” structure consisting of the (standard) natural numbers.

III. MONOMATHEMATICAL METHODOLOGY
The monomathematician tries to intuit various simple, obvious, and
logically comprehensive truths about his chosen structure, and to
express these as axioms in a formal language whose syntax is finitary,
precise, and fully understood.

Whatever the epistemic refinements involved in laying down a set
of axioms, one general claim about the result in monomathematics is
incontestable: the axioms strike one as intuitively evident. They speak
directly of the structure, in its own intrinsic terms. For the case of the
natural numbers, these will be 0, 1, +, X, < ; for the theory of sets,

11 Interestingly, the view—represented most notably by Michael Dummett—that
our concept of natural number is “indefinitely extensible” is best regarded as a
philosophical response to the theoretical incompleteness of formal theories of
arithmetic against the background of our conception of the standard natural
numbers as constituting a determinate ontology. It is because we take the (unique)
intended structure to consist only of the standard natural numbers that we are able,
either by higher-order reasoning or by the application of reflection principles, to
keep on extending our incomplete theories with new principles that are true of the
intended structure. Note also that once given the standard natural numbers as the
only members of the domain, the atomic diagram of the model is fixed by the
noninduction axioms of Peano arithmetic. This reinforces the conviction that our
arithmetic thought is directed to a unique intended structure, however incomplete
our theorizing about it will have to be.
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the relation € of membership and the operation {x|...x...} of set
abstraction.'?

When the monomathematician’s aim is to characterize some
unique intended structure M, his methodology is as follows. First, he
has to choose a language L (in order to talk about the intended
structure M) in which all structural nuances of M can be registered
(that is, L has to be of appropriate relational type). Then, he has to
choose a decidable nonempty set X of axioms in the language L,
ensuring that each member of X is intuitively evident and certain as
a claim about M. The axioms need to be intuitively evident and
certain because of the justificatory weight they are expected to bear.
Membership in the set of axioms has to be decidable because we need
to be able effectively to tell, when giving proofs, whether each of the
premises used in any proof is indeed among the permissible axioms.
So, the decidability of the set of axioms is an absolutely general
epistemic precondition on the deductive enterprise. Proofs have to
convince. To do so, they must be finite, and their starting points must
be among the permitted axioms. Moreover, we have to be able
effectively to tell when a premise of any given proof is indeed an
axiom. Only in that way will we be able to convince ourselves that the
conclusion of the proof has thereby been established as a logical
consequence of our axioms.

Note, though, that the notion of decidability here is an informal
one. One need not invoke the mathematical notion of recursiveness,
nor the thesis that all decidable sets (of natural numbers) are recur-
sive. Indeed, the notion of decidability will subsequently play a role
only in allowing one to calibrate the logical strength of a certain
completeness requirement (see (I) below). It will turn out that this
completeness requirement can be made very weak and yet still con-
flict with a categoricity requirement (see (II) below).

To satisfy this requirement of decidability of the set of axioms, it is
not enough simply to ensure the finitude of some pathologically
defined set of truths and then to propose it as a set of axioms. We
need, at the very least, to have the proposer exhibit to us an algorithm
for deciding, of any sentence, whether it is in the axiom set proposed.
Thus, it will not do simply to choose some large number k and put
forward as one’s ‘axiom set’ {¢ | ¢ is true in N and length(¢) < A}
Although this set is finite, hence (classically) decidable, the proposer

12 Some of these notions can be defined in terms of their companions. That is,
they do not all have to be taken as primitive. For example, the relation < on natural
numbers is definable in terms of 1 and +; and one can do set theory with just €
primitive, defining set-abstraction terms contextually.
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has failed to exhibit an algorithm for deciding membership in it.
Moreover, not every one of its members is self-evident. The joint
requirement of self-evidence of members, and evident decidability of
membership, is epistemically very demanding; but, arguably, satisfied
by all well-known and nonpathological axiom sets for important
mathematical theories.!3

Th(M) will be the set of sentences true in the model M. For each
member ¢ of Th(M), the monomathematician wants a truth-preserving
proof of ¢ from (some subset of) his set X of axioms about M.

Proofs and refutations are finitary constructions, and they are
effectively checkable. A proof is ‘of (A,¢)’, where A is a finite set of
sentences and ¢ is a sentence. A is the set of premises of the proof and
@ is its conclusion. A refutation is ‘of A’, where A is a nonempty finite
set of sentences. Here again, A is the set of premises of the refutation,
whose conclusion, of course, is absurdity. Both kinds of construction
are sound in the following sense. If there is a proof of (A,¢) then
every model making all of A true makes ¢ true; and if there is a
refutation of A, then there is no model making all of A true. Proofs
and refutations are provided by systems, usually consisting of axioms
and rules of inference.!* We can think of a system, in general (and in
a laxer epistemological frame of mind), as simply being an effective
enumeration (of proofs or of refutations).

Among the general requirements of the ideal methodology for the
monomathematician are those of completeness and categoricity. Let us
understand by =-literal an identity statement or the negation of an
identity statement. Recall that the monomathematician has a decid-
able set X of axioms (in some language L) describing an intended
structure M. Consider now the following requirement that one
should be able to impose on his methods of proof (and of refuta-
tion).

(I) Weak completeness: X-relative refutation in extensions of L. For any exten-
sion L* of L (via finitely many new extralogical expressions), there is
a system of sound refutations such that for any decidable but satis-
fiable set Y of =-literals of L*, if X U Y has no model, then there is
a refutation of some finite subset of X U Y.

First comment on (I). The intuitive motivation for (I) is as follows. Y
is just a simple imagined addendum to the story X about M. If Y

13 The pathological example here is due to Torkel Franzen.

14 For a treatment of proofs and refutations as co-inductively definable, see my
“Negation, Absurdity and Contrariety,” in Dov M. Gabbay and Heinrich Wansing,
eds., What Is Negation? (Boston: Kluwer, 1999), pp. 199-222.
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conflicts with the story told so far (that is, if X U Y has no model),
then one should be able to tell that it does so—in the sense of
“eventually discover,” not “effectively decide.” And, of course, such
discovery can only be sustained by an appropriate refutation.

Second comment on (I). It might be objected that the weak complete-
ness requirement is more general than what might have been envis-
aged and sought by Hilbert and his followers.!® For they wanted only
of certain special theories that they be Entscheidungsdefinit—that is,
prove or refute (but not both) every sentence in the language of the
theory concerned. Certain selected theories of central interest to
mathematicians might turn out to be Entscheidungsdefinit, even de-
spite an underlying incompleteness in the system of logic provided
for the language.

From this more limited interest in matters of (theory-) complete-
ness, however, it is but a short step of abstraction and generalization
to contemplate a conjecture such as (I) above. For the question
immediately arises as to how one might expect a variety of theories to
be Entscheidungsdefinit, if indeed the underlying logic of the language
were unable to provide proofs of certain valid arguments. One is far
more likely to lay down the more general requirement of logical
completeness as a prolegomenon to one’s investigations of the
Entscheidungsdefinitheit of certain select theories formulable in a lan-
guage equipped with the inferential resources in question. And, once
one approaches the matter in this more general spirit, requirement
(I) above should appear eminently reasonable, given how weak it
appears to be.

Third comment on (I). Just how weak is requirement (I)? A theorem
of Harvey Friedman!® is that on a suitably weak understanding of
what is meant by the “models” quantified over, (I) is implied, modulo
the system of recursive comprehension arithmetic (known as RCA),
by ‘validity is r.e.’, that is, by the weak completeness of first-order
logic.!'” Conversely, even with X empty and L trivial, (I) implies
‘validity is r.e.” over RCA,. ‘Validity is r.e.’ is strictly weaker than
completeness for logical consequence from sets of sentences in gen-

151 am indebted here to Steve Awodey.

16 Personal communication.

17 RCA, is the system of second-order arithmetic with induction on all 2¢- and
comprehension on all Afformulae. A useful introduction to the concepts and
results involved in Friedman’s program of so-called “reverse mathematics” is S. G.
Simpson, “Subsystems of Z, and Reverse Mathematics,” Appendix to Gaisi Takeuti,
Proof Theory (Amsterdam: North-Holland, 1986, 2nd edition), pp. 432-46. The main
aim of reverse mathematics is to calibrate the logico-mathematical strength of
various theorems.
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eral; and strictly weaker than compactness. The required understand-
ing of ‘model’ is that a model is a saturated set of sentences resulting
from the atomic diagram of a model in the ordinary sense. This
weaker-than-usual sense of ‘model’ suffices for the logical application
to be made of (I) below, and for the philosophical moral to be drawn
from the result of that application.

The point of the technical digression in the foregoing comment is
to stress that the clash of imperatives to be revealed between our
completeness requirement (I) just formulated, and the categoricity
requirement (II) to be formulated below, arises even though (I) is, in
the sense just clarified, a relatively weak completeness requirement.
The irresoluble tension arises between two distinct, and prima facie
rather modest, methodological aims.

Turning now to the second of these aims, bear in mind that I am
still considering the monomathematician’s set X of axioms describing
an intended structure M. It would be perfectly legitimate to impose
the following requirement on the monomathematician; indeed, it
would be self-imposed, as a way of explaining his own understanding
of his enterprise.

(II) Categoricity requirement. Any structure making X true is isomorphic to
the intended model M (that is, X is categorical).

Comment on (II). Note that (II) says nothing about the number of
possible isomorphisms between any two isomorphic models. There is
a more stringent requirement that could be laid down, namely, the
requirement that any model isomorphic to the intended model
should enjoy exactly one isomorphic mapping onto it. Intended
models meeting the more stringent requirement are what Wilfried
Sieg'® calls “accessible domains.” As it happens, the models for which
the noncompossibility theorem holds are accessible domains; but for
that very reason we can leave (II) in its current, weaker, form.

Now, it is important, for an appreciation of the dialectical exposi-
tion to follow, that the reader be aware that it is not intended at this
stage to bring to bear any substantial results in metalogic which might
reflect on either the rationality of the monomathematician’s aspiring
to attain ideals (I) and (II) or the logical possibility of attaining them.
The aim is to make as clear as possible a distinction grounded in what
one might call prefoundational conceptions of mathematical interests
and practice. That is, the distinction between monomathematics and

18 “Aspects of Mathematical Experience,” in Evandro Agazzi and Gy6rgy Darvas,
eds., Philosophy of Mathematics Today (Boston: Kluwer, 1997), pp. 195217, here
p. 206.



270 THE JOURNAL OF PHILOSOPHY

polymathematics is to be drawn by employing notions which are easy
to grasp but about which one does not, at this stage, take oneself to
know any deep or important metalogical results.

A skeptical historian of logic and mathematics might object that it
would be anachronistic to impute ideals (I) and (II) to any thinker
during, say, the early 1920s or even the heyday of the Vienna and
Berlin Circles. Logicians, mathematicians, and philosophers, the ob-
jector might contend, simply did not have the various concepts in
sharp enough form to frame any methodological ideals in this way.

But such an objection would be misplaced. The concept of the
categoricity of a system of axioms was well established as early as 1902
(E. V. Huntington!®) but certainly no later than 1910 (O. Veblen and
J. W. Young?®); while the concept of the completeness of a system of
logical proof was properly formulated no later than 1918 (Hilbert
and Paul Bernays®!). The more recent studies of Hilbert and Ber-
nays’s lecture notes of 1917/1918, and of Bernays’s Habilitationsschrift
of 1918, infirm Warren Goldfarb’s?? contention that first-order logic
was really properly understood only by 1928.

During the decade before the publication, in 1928, of Hilbert and
Wilhelm Ackermann’s Grundziige der theoretischen Logik,?® in which the
definition of completeness of first-order logic was first published, the
main figures at Gottingen, and many talented students trained by
Hilbert, and many a distinguished visitor invited there by him, would
presumably have been conversant with the concept of deductive
completeness articulated in 1917/18. So, at least for this relatively
privileged group in the decade before publication of the Grundziige,
the conceptual materials (completeness and categoricity) were
readily at hand. The methodological ideals (I) and (II) would have
been intellectually accessible, appealing, and compelling.

Any of these workers, then, could have aspired to meet ideals (I)
and (II), only on the charitable assumption that they grasped the
constituent concepts. For at least a few months in the year 1929, after
Godel’s proof of his completeness theorem for firstorder logic, it

19 “A Complete Set of Postulates for the Theory of Absolute Continuous Magni-
tude,” Transactions of the American Mathematical Society, 111 (1902): 264-79.

20 Projective Geometry, Volume I (Boston: Ginn, 1910).

21 See Gregory Moore, “The Emergence of First-Order Logic,” in William Aspray
and Philip Kitcher, eds., History and Philosophy of Modern Mathematics, Minnesota
Studies in Philosophy of Science, Volume XI (Minneapolis: Minnesota UP, 1988),
pp- 95-135; and Sieg, “Hilbert’s Programs: 1917-1922,” Bulletin of Symbolic Logic, v, 1
(1999): 1-44.

22 “Logic in the Twenties: The Nature of the Quantifier,” journal of Symbolic Logic,
xL1v, 3 (September 1979): 351-68.

23 Berlin: Springer, 1928.
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might well have seemed that (I) and (II) were attainable. For cer-
tainly his completeness theorem, though welcome, came as no sur-
prise; and its proof required some of the main concepts directly
involved in (I) and (II)—which concepts certainly sufficed for easy
definition of all the other concepts involved in (I) and (II).

The noncompossibility theorem proved below, however, shows that
(I) and (II) are not jointly attainable in certain natural and important
cases. Could not this impossibility have been evident well before
Godel’s completeness proof? After all, only the concepts were
needed and not any results, such as compactness or strong complete-
ness. The conclusion forces itself upon one that there was a quite
remarkable “blind spot” to the general impossibility established by
the noncompossibility theorem.

IV. THE NONCOMPOSSIBILITY THEOREM

The monomathematician could content himself with proving theo-
rems from his axiom set X, thereby learning more about the intended
model M. The monomathematician wants to know what it is like to be
immersed within this one structure, M; and the obvious way to do that
would be to prove theorems about M from (subsets of) the obvious,
decidable, (theoretically) complete, and categorical set of axioms X.
From the structure M and his intuitions about it, the axioms and
theorems should flow. Conversely, from those axioms (and the the-
orems that follow from them), an intellect not yet apprised of the
structure that is their source should be able to work out that it is
(isomorphic to) M.

That is all well and good, while thinking quite generally of struc-
ture M, and not being apprised of substantial results of metalogic.
But even at this “naive” stage, our metalogically uninstructed philos-
opher of mathematics ought to realize that there is a fundamental
difficulty in meeting the two ideals (I) and (II). Consider what is
involved in meeting them: given a structure M, the language L of the
appropriate relational type is forced upon us; so it is left to us to try
to choose a decidable set X of sentences in L, such that: (1) every
sentence in X is true in M, (2) for any extension L* of L, one can
choose some “X-relative” sound refutation method such that for any
decidable but satisfiable set Y of =-literals of L*, if X U Y has no
model, then there is a refutation of some finite subset of X U Y; and
(3) any model of X is isomorphic to M, that is, X categorically
describes M.

But we have the promised unpalatable result, which shows we are

stymied:
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Noncompossibility theorem. If M is a countably infinite structure every one
of whose individuals is definable, then M cannot be categorically de-
scribed by any decidable set X of M-truths for which (2) holds.

In the proof about to be given, it matters not whether the mathema-
tician is taken to be speaking and reasoning about the structure M at
first order or any higher order. The considerations to be advanced
are perfectly general; they hold for all languages, of whatever order
(first, second, or higher order), and regardless of the logical vocab-
ulary employed (branching quantifiers, infinite-cardinality quantifi-
ers, and so on).

Proof of the noncompossibility theorem. Let M be a countably infinite struc-
ture every one of whose individuals is definable. Thus, for every individ-
ual m in M, there is some term ¢, in the language that denotes it. Let X
be any set of true statements about M.

Introduce a new name a. This gives us the extension L* of L. Consider
Y = XU{=a=t,|m in M}. Suppose for reductio that ¥ has no model.
Then by the desideratum (I) there is a refutation of some finite subset
Z, say, of Y. Since Z is a finite set of sentences, each of which is finite,
there are only finitely many singular terms involved in members of Z But
M is infinite. Hence some member of M is not denoted by any term
occurring in any sentence in Z. Now extend the model M of X by letting
the new name a denote such a member of M. We thereby obtain a model
for Z—which is impossible, since there is a (sound) refutation of Z

So by classical reductio ad absurdum, Y must have a model after all.
And such a model cannot be isomorphic to the intended model M,
because it has to contain a denotation for the name « distinct from the
denotation of any term ¢, Quod erat demonstrandum.

There was a considerable window of time during which the reflec-
tions embodied in the noncompossibility theorem above should have
been transparent. All that is needed for an appreciation of those
reflections is a grasp of the concept of categoricity, a grasp of refu-
tations as finitary and sound, and the conviction that refutation
modulo axioms is our sole uniform means of access to the falsity of
false claims about certain infinite structures.

I remarked above that the noncompossibility theorem is perfectly
general, afflicting all languages. Thus, for example, it establishes the
noncompossibility for second-order language as much as it does for
first-order language. One does not have to know that first-order logic
is complete and conclude from that deep fact that first-order arith-
metic will have nonstandard models. Nor does one have to know that
second-order arithmetic is categorical and conclude from that sub-
stantive fact that second-order logic is deductively incomplete. With-
out knowing either that first-order logic is complete, or that second-
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order arithmetic is categorical, one can say, on the basis of the
noncompossibility theorem: “Look, it doesn’t matter whether you try
to describe the system N of natural numbers at first order or at second
order. Whichever way you set about it, you will not be able to produce
a categorical description of N within a language whose deductive
system is even weakly complete (in the sense specified in (II)).”

The result is so simple and so general that one can be forgiven for
wondering why no one discovered it well before Gédel’s proof in
1929 that first-order logic is complete. It would not be anachronistic
to expect mathematical experts of the day to have been minded of
the “flavor” of the method of proof of the noncompossibility theo-
rem. The idea of being able to do with a finite subset of objects of a
certain kind what can be done with an infinite set of objects of that
kind was not at all new. In 1871, Heinrich Eduard Heine had proved
that any real function continuous on a finite closed interval was
uniformly continuous. As J. C. Burkill and H. Burkill?* observe, his
argument “contains the seeds of a covering theorem” (ibid., p. 71). In
1894, Emil Borel proved that every covering of a finite closed linear
interval by a countable collection of open intervals has a finite
subcovering. By 1902, Henri Lebesgue had removed the restriction of
countability. By 1905,%° what is now known as the Heine-Borel theo-
rem “was essentially known”: any set in a metric space is compact if
and only if every open covering of the set contains a finite subcover-
ing. This theorem is paradigmatically of the flavor required to make
the noncompossibility theorem, if not more palatable, then at least
digestible.26

It would not be anachronistic, either, to expect foundationalists in
the early 1920s to be able to engage in the sort of minimally “model-
theoretic” thinking involved in the proof of the noncompossibility
theorem. All that is required, after all, is contemplation of the deno-
tation relation between singular terms of the language and members
of the domain of discourse. Alien intruders, avoiding denotation by
any singular term of L, obviously destroy categoricity of theories
expressed in L. Ever since the early work of geometers such as Veblen
and Huntington (not to mention: Hilbert himself), mathematicians
were well able to drive a wedge between language and its subject
matter. They were flexible enough to appreciate, for example, that a
finite (hence discrete) system of points modeling the axioms of pro-
jective geometry establishes the consistency of those axioms—even

24+ A Second Course in Mathematical Analysis (New York: Cambridge, 1970).
25 As evidenced by Borel’s note in Comptes Rendus, cxr (1905, I): 298-300.
26 See Burkill and Burkill, pp. 69-71.
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though the primary, intuitive applications of projective geometry are
to infinite and continuous two- and three-dimensional spaces.

The reader well-versed in the history of model theory will rec-
ognize that the proof of the noncompossibility theorem is very like
that of theorem 3 of Anatolii I. Mal’cev?” (1936), concerning the
extendibility of infinite models. Mal’cev proved his result, how-
ever, as a corollary to the compactness theorem for first-order
logic (which he had generalized to uncountable systems in theo-
rem 1 of the same paper). The noncompossibility theorem culls
the most general features of the reasoning involved, in order to
bring out the fact—not noted by Mal’cev—that a predicament is
thereby generated for any language whatsoever. Robert Vaught?®
has remarked that it is extraordinary that neither Thoralf Skolem
nor Godel observed (before Mal’cev’s contribution) that the exis-
tence of nonstandard models for Th(N) “is a simple consequence
of the compactness theorem [for first-order logic]” (ibid., p. 377).
It is even more extraordinary that no logician of their caliber
pointed out well before the completeness and compactness theo-
rems that categoricity and even a weak form of logical complete-
ness would be impossible to attain simultaneously.

The predicament established by the noncompossibility theorem is
to be distinguished from what is usually called Skolem’s paradox. In
1920, Skolem?® improved a result of Leopold Lowenheim, showing
that any model of a theory contained a countable elementary sub-
model of the theory. It is this version of the Lowenheim-Skolem

27 “Untersuchungen aus dem Gebiete der mathematischen Logik,” Matema-
ticheskii sbornik, n. s. 1, 3 (1936): 323-36; English translation “Investigations in the
Realm of Mathematical Logic,” in Mal’cev, The Metamathematics of Algebraic Systems:
Collected Papers, 1936-1967, Benjamin F. Wells III, ed. and trans. (Amsterdam:
North-Holland, 1971), pp. 1-14.

28 Introductory Note to Godel’s reviews of two of Skolem’s papers, in Kurt Gidel:
Collected Works, Volume 1, Feferman et alia, eds. (New York: Oxford, 1986), pp.
376-78. The papers in question by Skolem were “Uber die Unméglichkeit einer
Charakterisierung der Zahlenreihe mittels eines endlichen Axiomensystems”
(1933), and “Uber die Nichtcharakterisierbarkeit der Zahlenreihe mittels endlich
oder abzahlbar unendlich vieler Aussagen mit ausschliesslich Zahlenvariablen”
(1934), both to be found in Skolem, Selected Works in Logic, Jens Erik Fenstad, ed.
(Oslo-Bergen-Tromso: Universitetsforlaget, 1970), pp. 345-66.

29 “Logisch-kombinatorische Untersuchungen uber die Erfilllbarkeit und Beweis-
barkeit mathematischen Sitze nebst einem Theoreme uber dichte Mengen,” in
Fenstad, ed., pp. 103-36.
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theorem that Paul Benacerraf® regards as being of greatest impor-
tance.

The “Skolem predicament” is that one cannot, at first order, char-
acterize uncountable structures (such as the reals, or the universe of
sets) up to isomorphism. Note that the predicament is limited to
first-order languages. Now, Erik Ellentuck®! has claimed that

One of the earliest goals of modern logic was to characterize familiar
mathematical structures up to isomorphism...in a first order language
[emphasis added] (ibid., p. 639).

John Corcoran,?2 however, challenges this view. He adduces the date
of Skolem’s aforementioned paper and claims “there appears to have
been very little interest in first order languages before [1920]” (¢bid.,
p- 192, fn. 7). Thus, Ellentuck (according to Corcoran) must be
misdescribing the imputed goal.

The observations below about what will be called the “pre-Gédelian
predicament” are not subject to criticism on the same score. For this
predicament is independent of any particular choice of, or prefer-
ence for, first-order languages over other languages.

VI. THE PRE-GODELIAN PREDICAMENT
The noncompossibility theorem tells us that whatever axiomatization
Xabout M we were to provide to an inquiring intellect, we could have
no guarantee that he would be able both to appreciate (in principle)
every consequence of X as following from X, and to “form the proper
conception” of M as the source of our inspiration for our axiomati-
zation.

This predicament is pre-Godelian. The adjective adverts to its
conceptual, not chronological, provenance. It shows that, even
before we try to prove positive results, such as the completeness of
first-order logic, we ought to realize that our epistemic and com-
municative aspirations in mathematics are already thoroughly
compromised. We can only come to know truths with certainty by
finitary means. But when the structure M about which we are
coming to know truths is a countable infinity of definable ele-

80 See his symposium with Crispin Wright, “Skolem and the Skeptic,” Proceedings
of the Aristotelian Society, Supplementary Volume L1x (1985): 85-115 and 87-137, respec-
tively. For a discussion of this exchange, and an argument for the claim that the
Skolem predicament does not afflict the intuitionist, see my and D. C. McCarty’s
“Skolem’s Paradox and Constructivism,” Journal of Philosophical Logic, xv1, 2 (1987):
165-202.

81 “Categoricity Regained,” Journal of Symbolic Logic, XL1, 3 (September 1976):
639-43.

32 “Categoricity,” History and Philosophy of Logic, 1 (1980): 187-207.
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ments, the ineluctable consequence is that M cannot be charac-
terized up to isomorphism by any set of axioms relative to which we
have a weakly complete refutation procedure. As soon as we em-
ploy a logic that is complete in this weak respect, we shall not be
able to specify M up to isomorphism. Conversely, any language
that allows us to specify M up to isomorphism will fail to have a
logic that is complete even in that weak respect. Deductive and
expressive power cannot simultaneously be optimized in our
thought about any countable infinity of definable elements. This
holds not just of first-order thought, but of thought tout court. In
particular, such optimization is impossible in the case of our
thought about the natural numbers, or about the rational num-
bers, or about the hereditarily finite pure sets. For in these unique,
intended structures, every element is definable.

It is this condition of definability (or distinguishability) which
ensures that the noncompossibility theorem does not conflict with
Cantor’s3% well-known result (1895) that every countably infinite
linear unbounded ordering (D,<) is isomorphic to the ordering of
the rationals. Cantor’s back-and-forth method is able to generate
the sought isomorphism precisely because the members of D are
not distinguished and are not being combined by any algebraic
operations that would also have to be accommodated in the iso-
morphism being established. Thus, the mere ordering (D,<) is
quite unlike the standard model of the rationals, all of whose
elements are distinguished and enter into algebraic operations.
One is led to wonder whether Cantor’s result had perhaps fostered
a widespread but mistaken impression, by the turn of the century,
that countable mathematical structures would, in general, be cat-
egorically describable.

One would like to think not, and to think that the simple reflec-
tions behind the noncompossibility theorem could, in principle, have
been accessible to any philosophically minded mathematician (such
as Bernays, Hans Hahn, Hilbert, Skolem, Veblen, Weyl, or Young)
over a decade before Godel proved the completeness and compact-
ness theorems for first-order logic.

The stark lesson there for the grasping was: if a mathematician
really knows what he is thinking about, then no one could be in a
position to deduce any given consequence of his thoughts. And

83 “Beitrage zur Begriindung der Transfiniten Mengenlehre,” Mathematische An-
nalen, XLv1 (1895): 481-512; here §9: “Der Ordnungstypus w der Menge R aller
rationalen Zahlen, die grosser als 0 und kleiner als 1 sind, in ihrer natiirlichen
Rangordnung.”
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anyone who is in a position to deduce any given commitment that a
mathematician makes by expressing certain thoughts cannot be sure
what the mathematician is thinking about. Or, with apologies to
Werner Heisenberg,?* whose uncertainty principle for quantum me-
chanics was, perhaps significantly for these investigations, formulated
only in 1927: in countably infinite realms, you cannot know both
where you are and where you are going.

NEIL TENNANT
Ohio State University

3¢ “Uber den anschaulichen Inhalt der quantentheoretischen Kinematik und
Mechanik,” Zeitschrift fiir Physik, XLi11 (May 1927): 172-98.





