**Math 3345- Spring 2018**

**ANNOUNCMENTS:**

- You can now find some
**selected solutions**in the Homework section, and you can find**Handouts**in the Handouts and Reading section. - Final Exam Review Sheet
**Final Exam Review session**: F. 4-6 pm*April 20*BOLZ HALL 128**Erika’s big office hours day**: Mon. 2-5 pm*April**30*, Math Tower 209; this is your last chance to discuss homework grade and ask questions before the final. If you cannot make it and need assistance, please contact her for an appointment.**Final Exam**Tuesday May 1 from 4 – 5:45 pm- April 13 Nice weather hand-out: Injective/Surjective + CauchySchwarz_hand-out

**HOMEWORK: **

Assignment 13 (pdf) (due Friday, April 20 at beginning of class)

Assignment 12 (pdf, tex) (due Friday, April 13 at beginning of class) (solution to Exercise 1 (page 160))

Assignment 11 (pdf, tex) (due Friday, April 6 at beginning of class) (solutions to Exercises 8 (page 148) and Exercise 13 (page 149)) (solution to Exercise 20, page 129)

Assignment 10 (pdf, tex) (due Friday, March 30 at beginning of class*) (solutions to page 122 (3) , page 127 (15))

Assignment 9 (pdf, tex) (due Friday, March 23 at beginning of class). Reading: Russel’s Paradox (wiki and youtube)

Assignment 8 (pdf, tex) and some review (primes, modular arithmetic, binomial theorem, abs. value) (due Wednesday, March 7 at the 1:50 pm in class (no late homework accepted)).

Assignment 7 (modular arithmetics, series, order properties of real numbers) (due Wednesday, February 28 at the 1:50 pm in class (no late homework accepted)).

Assignment 6 (due Wednesday, February 21 at the 1:50 pm in class (no late homework accepted)).

Assignment 5 (you need only do even exercises) (due Wednesday, February 14 at the 1:50 pm in class (no late homework accepted)).

Assignment 4 (divisibility, proof, induction) (you need only do odd exercises 1- 27) (due Wednesday, February 7 at the 1:50 pm in class (no late homework accepted)).

Assignment 3 (irrational numbers and divisors) (due Wednesday, January 31 at the 1:50 pm in class (no late homework accepted)).

Assignment 2 (logic and quantifiers) (due Wednesday, January 24 at the 1:50 pm in class (no late homework accepted)).

Assignment_1_(logic) (due Wednesday, January 17 at the 1:50 pm in class (no late homework accepted)).

You are encouraged to write your homework using LaTex. Here is a template as well as some additional help.

**PROOF JOURNAL: **Please look at all three documents below:

*to clarify, this is counted as 15% of your final exam score

**HANDOUTS and READING:**

Part 2: Injective/ Surjective hand-out (plus Cauchy-Schwarz) (Nice weather hand-out given on April 13)

Part 1: Injective/ Surjective hand-out

Russel’s Paradox + Set builder hand-out

Proof using contrapositive, Proof by way of contradiction

Some notes on Modular Arithmetic (see section 2)

**OFFICE HOURS:**

(We are very happy to help and to see you. Please feel free to come by anytime or e-mail to let us to set up an appointment: Erika ( her first name @cimat.mx ), K. Taylor (my last name.2952@osu.edu)

- Tuesday 4-5 pm (Math Tower 622, with K. Taylor)
- Friday 4-6 pm (Bolz Hall 317, with Erika Roldan Roa)
- by appointment (Math Tower 209, with Erika Roldan Roa)
- Review session for Midterm II will be on Monday, March 5, in Bolz Hall 128, 5 pm – 7 pm
- Starting March 30, EACH FRIDAY (4- 6 pm), we will have a homework/ review session in BOLZ HALL 317.

(*in case we cannot make it to the office, we will do our best to alert you via e-mail)

**MIDTERMS**

- Midterm I: Midterm I (practice exercises); In-class Midterm I solutions; Take Home Midterm Solutions– written by Paul
- Midterm II: review sheet. midterm 2 (key 1-4) (5 was done in class)

**Final Exam and REVIEW SESSIONS:**

- Review sessions: F. 5-7 pm March 30 BOLZ 317
- Review sessions: F. 4-6 pm April 20 BOLZ HALL 128
- Last chance to discuss homework grade and ask questions before the final w Erika: Mon., 2-5 pm April 30, 209 Math Tower
- Final Exam Tuesday, May 1 4 – 5:45 pm

**SYLLABUS: **

**MATH READING AND VIDEOS** (more books and reading suggested in syllabus):

(found by Michael)

Fun math links (REUs, study abroad, what is math…)

pigeon hole principle (Meyer-2013)

please check back soon for some interesting mathematics and course updates…